簡易檢索 / 詳目顯示

研究生: 楊祐任
Yang, You-Nien
論文名稱: 形狀記憶合金線驅動之撓性機械手設計
Design of a Compliant Robotic Hand Actuated by Shape Memory Alloy Wires
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 88
中文關鍵詞: 撓性機構射擊法人工義肢機械手指形狀記憶合金線
外文關鍵詞: Compliant mechanisms, shape memory alloy, robotic finger, shooting method, prosthetic hand
相關次數: 點閱:134下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的為結合撓性材料與形狀記憶合金線,設計出可模仿人類手動作的五指撓性機械手。相異於傳統機械手是利用數個可相對運動的機構,本文使用撓性材料的變形來取代傳統機構的運動,且為了模仿手指的動作,配合三段獨立的形狀記憶合金線組合來分別驅動由三分段組成之撓性手指以期達到類人手的靈活動作。此外,為了改善形狀記憶合金線之反應速度,本文研究並設計出不同的合金線組合來加快其速度並維持原本或更大的收縮力。結合撓性機構與形狀記憶合金的優點,能有效減輕撓性手指的重量與其機構設計。本文亦提出一套數學模型來分析利用形狀記憶合金線驅動撓性材料時之材料變形,並設置實驗來驗證該模型與設計撓性桿件的形狀以期達到更大的變形量。為增加該撓性手指的靈活度,提出數種設計使撓性手指具有三維方向的運動。由於撓性機械手是藉由撓性材料的變形來達到類似手指的動作,故具有不需使用感測器便可適應所抓取物體之外形。此外,期望利用本機械手輕巧與低功率驅動的優點,讓此撓性機械手的設計能更在工業與人工義肢的領域有廣泛的應用。

    A five-fingered compliant hand is designed in this thesis to mimic the motion of a human hand. As traditional robotic hands require numerous relative-moving mechanical parts to achieve dexterous manipulation, we design a compliant robotic hand the manipulation of which relies on finger deflections. To mimic muscle-activated human fingers, three independent shape memory alloy (SMA) wires are applied to actuate each finger. The combination of compliant members with embedded SMA wires makes the finger more compact and lightweight. Various SMA wire layouts are investigated to improve their response time while maintaining sufficient output force. The mathematical model for finger large deflection caused by SMA contraction is derived along with experimental validation. As finger shapes are essential to the range of deflected motion, we design finger shapes based on the model for larger deflection. We further illustrate our method by designing a compliant finger that is capable of three-dimensional manipulation. Finally, a prototype of humanoid compliant hand is presented. The proposed compliant hand has the advantage of grasping external objects with a range of geometry variation without using sophisticated feedback sensors. It is also lightweight, compact, and requires low power consumption. We expect that the design formulations provided here would have wide applications from prosthetics to industrial and medical robotic manipulations.

    摘要 (ABSTRACT in chinese)......................I ABSTRACT......................II 致謝 (ACKNOWLEDGEMENTS in chinese)......................III TABLE OF CONTENTS......................IV LIST OF TABLES......................VI LIST OF FIGURES......................VII LIST OF SYMBOLS......................X CHAPTER 1 INTRODUCTION......................1 1.1 REVIEW OF HUMANOID HANDS FOR ROBOTIC MANIPULATIONS......................1 1.2 MOTIVATIONS AND OBJECTIVES......................10 1.3 ORGANIZATION OF THESIS......................11 CHAPTER 2 WORKING PRINCIPLES OF SMA WIRES......................13 2.1 INTRODUCTION......................13 2.2 PHYSICAL PROPERTIES OF SMA WIRES......................15 2.2.1 Driving power for SMA wires......................16 2.2.2 Contraction ratio of SMA wires......................18 2.3 THE RELAXATION TIME OF SMA WIRES......................22 2.3.1 Improving relaxation time of SMA wires with forced air......................24 2.3.2 Effects of external loads on the relaxation time of SMA wires ......................29 2.4 CONCLUSIONS......................35 CHAPTER 3 SMA WIRE ACTUATED COMPLIANT BEAM MODEL......................37 3.1 INTRODUCTION......................37 3.2 MATHEMATICAL MODEL OF COMPLIANT BEAM DEFLECTION......................38 3.2.1 Deformation model of a compliant beam......................39 3.2.2 Boundary conditions of SMA wire contraction......................41 3.3 SHAPE DESIGN OF A COMPLIANT BEAM......................43 3.3.1 Assembling method of SMA wires on the compliant beam......................45 3.3.2 Effect of support block on the compliant beam deflection......................47 3.3.3 Experimental validations......................49 3.4 CONCLUSIONS......................53 CHAPTER 4 DESIGN OF A SMA WIRE ACTUATED COMPLIANT FINGER......................55 4.1 INTRODUCTION......................55 4.2 SHAPE DESIGN OF A COMPLIANT FINGER......................56 4.3 MOTION OF A COMPLIANT FINGER......................60 4.4 DESIGN OF A FINGER WITH THREE-DIMENSIONAL MOTION......................63 4.5 CONCLUSIONS......................66 CHAPTER 5 DESIGN OF A COMPLIANT ROBOTIC HAND......................68 5.1 INTRODUCTION......................68 5.2 DESIGN OF FIVE FINGERS AND A RIGID PALM......................68 5.3 COOLING SYSTEM ON THE COMPLIANT ROBOTIC HAND......................74 5.4 MOTION OF THE COMPLIANT ROBOTIC HAND......................76 5.5 CONCLUSIONS......................78 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK......................80 REFERENCES......................84 APPENDIX PROPERTIES OF SMA WIRE OF FLEXINOLR......................86 PERSONAL COMMUNICATION......................87 COPYRIGHT......................88

    [1] Abe, R., Takemura, K., Edamura, K., Yokota, S., 2007, Concept of a micro finger using electro-conjugate fluid and fabrication of a large model prototype, Sensors and Actuators, A 136, pp. 629–637.
    [2] Barrett Technology Inc. http://www.barrett.com/robot/products-hand.htm
    [3] Bekey, G. A., Liu, H., Tomovic, R., and Karplus, W. J., 1993, Knowledge-Based Control of Grasping in Robot Hands Using Heuristics from Human Motor Skills, IEEE Transactions on Robotics and Automation Society, 9(6), pp. 709-722.
    [4] Carrozza, M. C., Cappiello, G., Giovanni, S., Zaccone, F., Vecchi, F., Micera, S., Dario, P., 2005, A Cosmetic Prosthetic Hand with Tendon Driven Under-Actuated Mechanism and Compliant Joints: Ongoing Research and Preliminary Results, proceedings of the IEEE International Conference on Robotics and Automation.
    [5] Carrozza, M. C., Suppo, C., Sebastiani, F., Massa, B., Vecchi, F., Lazzarini, R., Cutkosky, M.R., and Dario, P., 2004, The SPRING Hand: Development of a Self-Adaptive Prosthesis for Restoring Natural Grasping, IEEE Robotics and Automation Society, 16(2), pp. 125–141.
    [6] Chang, R. J., Wang, H. S., Wang, Y. L., 2003, Development of mesoscopic polymer gripper system guided by precision design axioms, Precision Engineering, 27, pp. 362-369.
    [7] Cho, K. J., Rosmarin, J. and Asada, H., 2007, SBC Hand: A Lightweight Robotic Hand with an SMA Actuator Array implementing C-segmentation, IEEE International Conference on Robotics and Automation Roma, Italy.
    [8] Dechev, N., Cleghorn, W. L., Naumann, S., 2001, Multiple finger, passive adaptive grasp prosthetic hand, Mechanism and Machine Theory, 36, pp. 1157-1173.
    [9] Dynalloy, Inc. http://www.dynalloy.com/
    [10] Ikuta, K., 1990, Micro/Miniature Shape Memory Alloy Actuator, IEEE.
    [11] Ikuta, K., Tsukumoto, M., Hirose, S., 1988, Shape Memory Alloy Servo Actuator Ststem with Electric Resistance Feedback and Application for Active Endscope, IEEE.
    [12] Jacobsen, S. C., Wood, J. E., Knutti, D. F. and Biggers, K. B., 2008, The UTAH/M.I.T. Dextrous Hand: Work in Progress, Center for Biomedical Design Department of Mechanical and Industrial Engineering University of Utah.
    [13] Kohl, M., Just, E., Pfleging, W., Miyazaki, S., 2000, SMA microgripper with integrated antagonism, Sensors and Actuators, 83, pp. 208-213.
    [14] Konishi, S., Nokata, M., Jeong, O. C., Kusuda, S., Sakakibara, S., Kuwayama, M., and Tsutsumi, H., 2006, Pneumatic Micro Hand and Miniaturized Parallel Link Robot for Micro Manipulation Robot System, proceedings of the IEEE International Conference on Robotics and Automation Orlando, Florida.
    [15] Lan, C. C. and Cheng, Y. J., 2008, Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions, ASME Journal of Mechanical Design, Vol. 130, 072304.
    [16] Lan, C. C. and Lee, K. M., 2006, Generalized Shooting Method for Analyzing Compliant Mechanisms with Curved Members, ASME Journal of Mechanical Design, Vol. 128, Issue 4, pp. 765-775.
    [17] Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M. H., Liu, Y. W., Wei, R., Xie, Z. W., 2007, The modular multisensory DLR-HIT-Hand, Mechanism and Machine Theory, 42, pp. 612-625.
    [18] Lotti, F. and Vassura, G., 2002, A Novel Approach to Mechanical Design of Articulated Fingers for Robotic Hands, proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.
    [19] Lotti, F., Zucchelli, A., Reggiani, B., Vassura, G., 2006, Evaluating the Flexural Stiffness of Compliant Hinges Made with Close-wound Helical Springs, proceedings of DETC/CIE 2006, ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 10-13, Philadelphia, Pennsylvania, USA.
    [20] Loucks, C., Johnson, V., Boissiere, P., Starr, G. and Steele, J.,1987, Modeling and control of the stanford/JPL hand, proceedings of IEEE International Conference on Robotics and Automation.
    [21] Lovchik, C. S. and Diftler, M. A., 1999, The Robonaut Hand: A Dexterous Robot Hand For Space, proceedings of the IEEE International Conference on Robotics and Automation.
    [22] Massa, B., Roccella, S., Carrozza, M. C. and Dario, P., 2002, Design and Development of an Underactuated Prosthetic Hand, proceedings of the IEEE International Conference on Robotics 8 Automation.
    [23] Mosley, M. J., Mavroidis, C., 2001, Experimental Nonlinear Dynamics of a Shape Memory Alloy Wire Bundle Actuator, Journal of Dynamic Systems, Measurement, and Control, Volume 123, Issue 1, pp. 103-112.
    [24] Nishida, M., Tanaka, K. and Wang H, O., 2006, Development and Control of a Micro Biped Walking Robot using Shape Memory Alloys, proceedings of the IEEE International Conference on Robotics and Automation Orlando, Florida.
    [25] Otto Bock HealthCare. http://www.ottobockus.com/products/upper_limb_prosthetics/m
    [26] Perkins, J., 1975, Shape Memory Effects In Alloys, Plenum Press, New York, pp. 203-208.
    [27] Shadow Robot Company. http://www.shadowrobot.com/hand/
    [28] Takashi M. and Toshiyuki H., 2006, Miniature Five-Fingered Robot Hand Driven By Shape Memory Alloy Actuators, proceedings of the 12th IASTED International Conference, Honolulu, Hawaii, USA.
    [29] Touch Bionics. http://www.touchbionics.com/
    [30] Yang, J., Abdel-Malek, K., Pitarch, E. P., Grosland, N., 2005, A Light Weight Compliant Hand Mechanism With High Degrees of Freedom, Virtual Soldier Research (VSR) Program, Center for Computer-Aided Design, The University of Iowa.
    [31] Yao, W. and Dai, J. S., 1008, Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space, ASME Journal of Mechanical Design, VOL. 130(2), 022303.

    下載圖示 校內:2010-07-29公開
    校外:2010-07-29公開
    QR CODE