| 研究生: |
何建鋐 Ho, Chien-Hung |
|---|---|
| 論文名稱: |
利用電紡絲技術製備具光催化之二氧化鈦奈米纖維及其應用 Preparation of Titanium Dioxide Nanofibers Photo-Catalyst by Using Electro-Spinning Technique and its Application |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 二氧化鈦 、電紡織 、光觸媒 、奈米纖維 |
| 外文關鍵詞: | TiO2, electro-spinning, photo catalyst, nanofiber |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以新穎電紡絲設備來製備出以二氧化鈦為主之複合奈米纖維,其新穎設備內容主要是利用加速內管的離心力配合著電場作用來使得有機/無機奈米纖維材料獲得相當程度之牽伸,進而得到奈米等級之複合纖維。此新穎電紡絲技術非但保留了原先傳統電紡的優點,以連續式的製程將可大幅提升產物得獲得進而獲得具不織布型態之產物。
最後此複合纖維產物在藉由高溫燒結處理後方可獲得具光催化特性奈米纖維。至於在製備二氧化鈦複合纖維時「適當」高分子黏粘劑的導入是相當重要的,因為當燒結溫度過高時二氧化鈦將會由銳鈦礦轉向成為金紅石礦,屆時將會大大降低其光催化特性。因此在本計畫中擬選擇以在較低溫度就能完全裂解乾淨的聚甲基丙烯酸甲酯來當作高分子黏粘劑,選用此高分子除了可以避免高溫燒結時二氧化鈦發生相態轉變外,亦可以降低未完全裂解之有機物毒化觸媒的可能。除此之外,觸媒比表面積的大小亦是決定催化效率的關鍵之一,因此在此計畫中亦會選擇適當的燒結條件,來製備出多孔性且兼具高比表面積之二氧化鈦奈米纖維。
A novel electro spinning process has been used to successfully fabricate Titanium dioxide (TiO2) nanofibers. The process not only retains the advantages of the traditional electro spinning process but also improves the yield of the nanofibers. In order to obtain the good quality the TiO2 nanofibers, the polymer binder PMMA was being selected. In the cause of obtaining the inorganic TiO2 nanofibers, the composite fibers must be sintered. However, the higher sinter temperature process will cause the TiO2 change phase from anatase to rutile. Furthermore, different size of the TiO2 nanofibers will be obtained by controlling the experiment parameters. In addition utilize this set of novel electro spinning equipment that can collect the large area nanofibers sheet. Finally, we will employ the TiO2 nanofibers for dye degradation test and appraise the efficiency of the photo catalyst.
參考文獻
[1] M.I. Litter, Appl. Catal. B: Environ. (1999) 23 89–114.
[2] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann,
Appl. Catal. B (2001) 31 145–157.
[3] Q. Xiao, L.L. Ouyang, Chem.ical Eng. J. (2009) 148 248–253.
[4] N. Serpone, R.F. Khairutdinov, Stud. Surf. Sci. Catal. (1997) 103
417–444.
[5] S.W. Oh, S.H. Park, Y.K. Sun, J. Power Sources. (2006) 161, 1314-1318.
[6] Y.F. Su, Y.C. Weng, T.C. Chou, J. Electrochemical Soc. (2008) 155
K23-K29.
[7] S.W. Yang, L. Gao, J. Am. Ceram. Soc. (2005) 88 968–970.
[8] B.H. Kim, J.Y. Lee, Y.H. Choa, M. Higuchi, N. Mizutani, , Sci. Eng. B:
Solid-State Mater.r Adv. Tech.(2004) 107 289-294.
[9] T.N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, J. Photochem.
Photobiol. A Chem. (2004)164 187–197.
[10] Z.Y. Yuan, B.L. Su, , Colloids Surf. A (2004) 241 173–183.
[11] X.W. Wang, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, J. Phys. Chem. C.
(2008) 112 5384-5389.
[12] J.N. Nian, H.S. Teng, J. Phys. Chem. B. (2006) 110 4193-4198.
[13] J.L. Zhao, X.H. Wang, T.Y. Sun, L.T. Li, Nanotechnology (2005) 16
2450-2454.
[14] G. Mogilevsky, Q. Chen, H. Kulkarni, A. Kleinhammes, W. Mullins, M.
Wu, J. Phys. Chem. C.(2008) 112 3239-3246.
[15] G. Li., Z.Q. Liu , Z. Zhang, X. Yan , Chin. J. Catal. (2009) 30(1) 37–42.
[16] X.H. Li, W.M. Liu, H.L. Li, Appl. Phys. A. (2005) 80 317–320.
[17] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, S.
Shinkai, Chem. Mater. (2000)12 (6), 1523-1525.
[18] Hooi-Sung Kim, Mi-Ra Kim, Hyo-Jin Kang, Jin-Kook Lee, Mol. Cryst.
Liq. Cryst. (2007) 464 65-71.
[19] F. Pichot, B. A. Gregg, J. Phys. Chem. B. 104, 6 (2000)
[20] A. Mills, S. L. Hunte, J. Photochem. Photobiol. A:Chem, 108,1 (1997)
[21] Bo Sun, Alexandre V. Vorontsov, and Panagiotis G. Smirniotis*,
Langmuir, 19, 3151-3156 (1993)
[22] C.Wu, Y. Yue, X. Deng, W. Hua, Z. Gao, Catalysis Today 93-95, 863
(2004)
[23] M. Yan, F. Chen, J. Zhang, M. Anpo, J Phys. Chem. B 109, 8673 (2005)
[24] Michael Grätzel, NATURE. VOL 414. 15 NOVEMBER (2001)
[25] B. Sun, Alexandre V. Vorontsov, and Panagiotis G. Smirniotis,
Langmuir 19, 3151-3156 (2003)
[26] A. Kudo, H. Kato, and I. Tsuji, Chem. Lett. 33 (2004) 1534
[27] I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc., 126
(2004) 13406
[28] 吳大誠;杜忠良;高珊, 奈米纖維. 五南圖書出版股份有限公司:2004
[29] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, Compos Sci.
Technol. 203, 63, 2223.
[30] S. Chand, J. Mater. Sci 2000, 35, 1303.
[31] P. P. Tsai, H. Schreuder-Gibson, J. Electrostat. 2002, 54, 333
[32] M. D. Stenoien, W. J. Draster, R. J. Scott, M. L. Jenson, M.L., US patent
5866217, 1999.
[33] A.G. Scopelianos, US patent 5522879, 1996.
[34] A. Bornat, US patent 4689186, 1987.
[35] W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, F. K. Ko, Biomed
Mater. 2002, 60, 613
[36] E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, G. L. Bowlin, J. Macromol. Sci. Part A Pure Appl. Chem. 2001, 38, 1231.
[37] G. E. Martin, I. D. Cockshott, F. J. T. Fildes, US patent 4878908, 1989
[38] G. E. Martin, I. D. Cockshott, F. J. T. Fildes, US patent 4044404, 1977
[39] X. Y. Li, S. X. Wu, L. M. Xu, Y. J. Liu, X. J. Xing, and S. W. Li
JOURNAL OF APPLIED PHYSICS 2008, 104, 093914
[40] Z. Zhice, B. M. G. Josephine, J. M. David, B. Sonal, J.H.C. Robin, C. K.
Jonathan, J. M. Nicola, R.G. E. Julian, F. C. Albert, B. Michael, A. D.
Jawwad, Journal of the European Ceramic Society 2009, 29, 2343–2353
[41] Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Chemical Physics, 2007,
339, 20–26
[42] L. H. Huang, Z. X. Sun, Y.L. Liu, Journal of the Ceramic Society of
Japan 2007, 115, 28–31
[43] S. J. Doh, C. Kim, S. G. Lee, S. J. Lee, H. Kim, Journal of Hazardous
Materials 2008, 154. 118–127
[44] S. Chuangchote, T. Sagawa, S. Yoshikawa, APPLIED PHYSICS
LETTERS 2008,93, 033310
[45] X. W. Zhang, S. Y. Xu, G. R. Han, Materials Letters, 2009, 63,
1761-1763
[46] Y. M. Liu, J. Z. Liu, Y. L. Lin, Y. F. Zhang, Y. Wei, Ceramics
International 2009, 35, 3061–3065
[47] Y. J. Qiu, J. Yu, Solid State Communications 2008, 148, 556-558
[48] J. Yang, H. Z. Bai, X. C. Tan, J. S. Lian, Applied Surface Science 2006,
253, 1988–1994
[49] H. L. Tai, Y. d. Jiang, G. Z. Xie, J. S. Yu, M. J. Zhao, Intern. J. Environ.
Anal. Chem. 2007, 87, 539–551
[50] P. Periyat, D. E. McCormack, S. J. Hinder, S. C. Pillai, J. Phys. Chem.
C 2009, 113, 3246–3253
[51] J. Madara’ sz, A. Bra˘ileanu, M. Crisan, G. Pokol. J. Anal. Appl.
Pyrolysis, 2009, 85, 549–556
[52] N. C. Saha, H. G. Tompkins, J. Appt. Phys, 1992, 72, 3072-3079
[53] C. Liu, W. Chen, Y. Sheng, L. Li, IEEE, 2009
[54] K. M. Reddy, B. Baruwati, M. Jayalakshmi, M. M. Rao, S. V.Manorama,
Journal of Solid State Chemistry 2005, 178, 3352–3358
[55] S. H. Lee, C. Tekmen, W. M. Sigmunda, Materials Science and
Engineering A, 2005, 398, 77–81
[56] J.G. Zhao, C.W. Jia, H.G. Duan, H. Li, E.Q. Xie, Journal of Alloys and
Compounds , 2008,461, 447–450
[57] H. J. Kim, Y. S. Choi, N Kanuka, H. Kinoshita, T. Nishiyama, T. Usami,
Applied Catalysis A: General 2008,Article in press
[58] C. Tekmen, A. Suslu, U. Cocen, Materials Letters, 2008, 62, 4470–4472
[59] B. Ding, C. K. Kim, H. Y. Kim, M. K. Seo, S. J. Park, Fibers and
Polymers 2004, 5, 105-109
[60] J. Watthanaarun, V. Pavarajarna, P. Supapholb, Science and Technology
of Advanced Materials 2005, 6, 240–245
[61] J. Ye, X. Y. Ni, C. Dong, Journal of Macromolecular Sciencew, Part A:
Pure and Applied Chemistry, 2005, 42, 1451–1461
[62] S. H. Kim, S. K. Lim, Applied Catalysis B: Environmental 2008, 84,
16–20
校內:2015-12-24公開