| 研究生: |
林昆慶 Lin, Kuen-ching |
|---|---|
| 論文名稱: |
以矩形板試體求取花崗岩石材I型破裂韌度之研究 Determination of Mode I Fracture Toughness of Granite Using Double Torsion Method and Double Cantilever Beam Method |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 雙扭試驗 、雙懸臂樑試驗 、裂紋擴展速度 、花崗岩 |
| 外文關鍵詞: | double cantilever beam test, double torsion test, granite, crack growth velocity |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對花崗岩石材分別進行雙扭試驗及雙懸臂樑試驗求取I型破裂韌度。在選擇影響破裂韌度的因子方面,於雙扭試驗部份,改變試體幾何條件,加載速率、初始裂紋長度;雙懸臂樑方面,改變試體幾何條件、初始裂紋長度、溝槽條件。本研究並利用有限元素分析軟體ABAQUS,來驗証吾人建議之無溝槽雙懸臂樑試驗破裂韌度解析解及求解有溝槽試體的數值解。在試驗過程中使用改良式裂紋量測系統分別對上述試驗求取裂紋擴展速度。
研究結果顯示:(1).雙扭試驗的破裂韌度,在選定的幾何條件下,隨初始裂紋長度變化而變化,但試體尺寸及加載速率對破裂韌度值影響並沒有顯著的不同。(2).以楔形塊施加荷重之雙懸臂樑試驗破裂韌度值隨初始裂紋長度無顯著變化;不同試體尺寸的試驗結果顯示,較大的試體有較大的破裂韌度;在溝槽條件的影響下,較大的試體有較大的差距。(3).以ABAQUS軟體模擬以楔形塊施加荷重之無溝槽雙懸臂樑試驗,破裂韌度數值解與吾人建議的解析解結果比較後,誤差在-0.16%~1.9%。(4).在裂紋擴展速度的結果中,雙扭試驗的試體較大時,其裂紋擴展速度試驗值與解析解值差距較大。另外,其試驗值與雙懸臂樑試驗結果相較之下大了1.83倍。
This study proposes double torsion(DT) test and double cantilever beam(DCB) test to determine the fracture toughness of granite plates. In DT test, the effects of specimen geometry, loading rate, and initial crack length are investigated. In DCB test, the effects of specimen geometry, initial crack length, and specimen with or without groove are investigated. A finite element software, ABAQUS, is carried out to obtain the numerical solution of fracture toughness of DCB specimen by wedge loading. The numerical results are compared with the analytical solution of ungroove specimen. Additionally, a KYOWA crack measurement system is modified to measure the crack growth velocity in DT test and DCB test.
The major findings are as following: (1) The fracture toughness of DT test varies with initial crack length in specimen geometry. (2) The fracture toughness of the bigger DCB specimen are greater than the one from small DCB specimen. (3) In DCB test, the discrepancy between the numerical solution and analytic solution is -0.16% ~ 1.9%. (4) The difference of crack growth velocity in big size DT specimen between experimental results and analytic solution is large. Besides, the crack growth velocity measured from DT test is 1.83 times the one from DCB test.
1. Atkinson B. K., "Subcritical crack growth in geological materials," Journal of Geophysical Research, Vol. 89, No. B6, pp.4077-4114, 1984.
2. Astafjev V. I., Shmelev P. S. and Tetjueva T. V., "Modified double-cantilever beam test for sulfide stress cracking of tubular steels," Corrosion, Vol. 50, No. 12, pp.947-952, 1994.
3. ABAQUS, "Fracture mechanics," Hibbitt, Karlsson and Sorensen, 1995.
4. Arola D., Rouland J. A. and Zhang D., "Fatigue and fracture of bovine dentin " Experimental Mechanics, Vol. 42, No. 4, pp.380-388, 2002.
5. Albuquerque Maria da Consolação Fonseca de and Rodrigues José de Anchieta, "Characteristics of the double-torsion test to determine the r-curve of ceramic materials," Materials Research, Vol. 9, No. 4, pp.361-368, 2006.
6. Chevalier. J., Saadaoui. M., Olagnon. C. and Fantozzi. G., "Double-torsion testing a 3Y-TZP Ceramic " Ceramics International, Vol. 22, No. 2, pp.171-177, 1995.
7. Ciccotti M., "Realistic finite-element model for the double-torsion loading configuration," Journal of the American Ceramic Society, Vol. 83, No. 11, pp.2737-2744, 2000.
8. Evans A. G., "A method for evaluating the time dependent failure characteristics of brittle materials and its application to polycrystalline alumina," Journal of Materials Science, Vol. 7, No. 10, pp.1137-1146, 1972.
9. Fuller E. R., Proceedings of the Eleventh National Symposium on Fracture Mechanics :a symposium, American Society for Testing and Materials, Philadelphia, pp.3-18, 1979.
10. Fichter W. B., "The stress intensity factor for the double cantilever beam," International Journal of Fracture, Vol. 22, No. 2, pp.133-143, 1983.
11. Foote R. M. L. and Buchwald V. T., "An exact solution for the stress intensity factor for a double cantilever beam " International Journal of Fracture, Vol. 29, No. 3, pp.125-134, 1985.
12. Frassine R., Ricco T., Rink M. and Pavan A., "Evaluation of double-torsion testing of polymers by visualization and recording of curved growth," Journal of Materials Science, Vol. 23, No. 11, pp.4027-4036, 1988.
13. Heady R. B., "Evaluation of sulfide corrosion cracking resistance in low alloy steels," Corrosion, Vol. 30, No. 1, pp.98-107, 1975.
14. Haerle A.G., Cannon W.R. and Denda M., "Direct measurement of crack tip stresses," Journal of the American Ceramic Society, Vol. 74, No. 11, pp.2897-2901, 1991.
15. Holder J., Olson J. E. and Philip z., "Experimental determination of subcritical crack growth parameters in sedimentary rock," Geophysics Research Letters, Vol. 28, No. 4, pp.599-602, 2001.
16. Kies J. A. and Clark A. B. J., Proceedings of the Second International Conference on Fracture, Chapman & Hall, Brighton, pp.483-491, 1969.
17. Kanninen M. F., "An augmented double cantilever beam model for studying crack propagation and arrest " International Journal of Fracture, Vol. 9, No. 1, pp.83-92, 1973.
18. Kobayashi R., Matsuki K. and Otsuka N., "Size effect in the fracture-toughness of OGINO tuff," International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 23, No. 1, pp.13-18, 1986.
19. Labuz J. F., Shah S. P. and Dowding C. H., "The fracture process zone in granite - evidence and effect," International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 24, No. 4, pp.235-246, 1987.
20. Mariano N. A. and Spinelli D., "Stress corrosion cracking of stainless steel used in drill collars " Materials Science and Engineering, Vol. 385, No. 1-2, pp.212-219, 2004.
21. Madjoubi M. A., Hamidouche M., Bouaouadja N., Chevalier J. and Fantozzi G., "Experimental evaluation of the double torsion analysis on soda-lime glass," Journal of Materials Science Vol. 42, No. 18, pp.7872-7881, 2007.
22. Nara Y. and Kaneko K., "Study of subcritical crack growth in andesite using the double torsion test," International Journal of Rock Mechanics & Mining Sciences, Vol. 42, No. 4, pp.521-530, 2005.
23. Nara Y. and Kaneko K., "Sub-critical crack growth in anisotropic rock," International Journal of Rock Mechanics & Mining Sciences, Vol. 43, No. 3, pp.437-453, 2006.
24. Outwater J. O. and Gerry D. J., "On the fracture energy, rehealing velocity and refracture energy of cast epoxy resin," The Journal of Adhesion, Vol. 1, No. 4, pp. 290-298, 1969.
25. Outwater J. O. , Murphy M. C. , Kumble R. G. and Berry J. T. , Fracture toughness and slow stable cracking, American Society for Testing and Materials, Philadelphia, pp.127-138, 1974.
26. Pletka B. J., Fuller E. R. and Koepke B. G., Proceedings of the Eleventh National Symposium on Fracture Mechanics :a symposium, American Society for Testing and Materials, Philadelphia, pp.19-38, 1979.
27. Pabst R. F. and Weick J., "Double-torsion measurements with and without a guiding notch," Journal of Materials Science Vol. 16, No. 3, pp.836-838, 1981.
28. Peck L. and Gordon R. B., "The effect of compressive stress on the fracture energy of sioux quartzite," Geophysical Research Letters, Vol. 9, No. 3, pp.186-189, 1982.
29. Roy A. K., Fleming D. L., Freeman D. C. and Lum B. Y., "Stress corrosion cracking of alloy C-22 and Ti Gr-12 using double-cantilever-beam technique," Micron, Vol. 30, No. 6, pp.649-654, 1999.
30. Shetty D. K. and Virkar A. V., "Determination of the useful range of crack lengths in double torsion specimens," Journal of the American Ceramic Society, Vol. 6, No. 1-2, pp.93-94, 1978.
31. Stam G., "The stress intensity factor for grooved DCB specimens loaded by splitting forces " International Journal of Fracture, Vol. 76, No. 4, pp.341-354, 1986.
32. Sano O., "A revision of the double torsion technique for brittle materials," Journal of Materials Science, Vol. 23, No. 7, pp.2505-2511, 1988.
33. Sano O. and Kudo Yozo, "Relation of fracture resistance to fabric for Granitic rocks," Pure and Applied Geophysics, Vol. 138, No. 4, pp.657-677, 1992.
34. Saadaoui M., Reynauda P., Fantozzia G., Peronnetb F. and Caspar J.P., "Slow crack growth study of plaster using the double torsion method," Ceramics International, Vol. 26, No. 4, pp.435-439, 2000.
35. Shyam A. and Lara-curzio E., "The double torsion testing technique for determination of fracture toughness and slow crack growth behavior of materials: A review," Journal of Materials Science, Vol. 41, No. 13, pp.4093-4104, 2006.
36. Trantina G. G., "Stress analysis of the double-torsion specimen," Journal of the American Ceramic Society, Vol. 60, No. 7-8, pp.338-341, 1977.
37. Tseng A. A. and Berry J. T., "3-dimensional finite-element analysis of the double-torsion test," Journal of Pressure Vessel Technology-Transactions of the ASME, Vol. 101, No. 4, pp.328-335, 1979.
38. Tait R. B., Fry P. R. and Garrett G. G., "Review and evaluation of the double torsion technique for fracture toughness and fatigue testing of brittle materials," Experimental Mechanics, Vol. 27, No. 1, pp.14-22, 1987.
39. Virkar A. V. and Johnson D. L., "Some kinetic considerations regarding the double-torsion specimen," Journal of the American Ceramic Society, Vol. 59, No. 5-6, pp.197-200, 1976.
40. Williams D. P. and Evans A. G., "A simple method for studying slow crack growth," Journal of Testing and Evaluation, Vol. 1, No. 4, pp.264-270, 1973.
41. White C. S., "Line-spring analysis of the double torsion specimen," Engineering Fracture Mechanics, Vol. 19, No. 4, pp.751-753, 1984.
42. 愛發股份有限公司, "ABAQUS實務入門引導," 全華出版社, 台北市, 2005.