| 研究生: |
仁妮娜 Febriana Intan Ramdhani |
|---|---|
| 論文名稱: |
以結合聚離子液體和TiO2奈米粒子的原位生成系統改善鋰電池之性能 The integration of in-situ formation poly(ionic liquid) systems and TiO2 nanoparticles improves the performance of lithium batteries |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 固體複合高分子電解質 、雙陽離子咪唑交聯劑 、聚離子液體 、二氧化鈦納米粒子 、鋰金屬電池 |
| 外文關鍵詞: | solid composite polymer electrolyte, dicationic imidazole cross linker, poly(ionic liquid)s, TiO2 NPs, lithium-ion batteries |
| 相關次數: | 點閱:41 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當前,鋰離子電池由於其高能量密度,最小的記憶效應和良好的循環壽命而具有出色的能量存儲能力。但是,商用液體電解質(LE)由於容易洩漏而經常引起爆炸,並且不能有效地抑制樹枝狀晶體的生長,這是一個主要的安全隱患。為了解決這些問題,我們提出了在咪唑交聯劑、鋰鹽、低聚物添加劑作為固體聚合物電解質 (SPEs) 和添加 TiO2 NPs 作為固體複合電解質 (SCPEs) 的情況下的聚(離子液體)電解質以進一步改進.通過原位聚合和無溶劑形成聚合物網絡,然後直接製造到陽極上並使用熱聚合進行固化。這種製備提供了一種有效的製造方法,可以降低電解質和電極之間的界面電阻。添加 XVIm-8-TFSI 作為咪唑交聯劑和 0.5 wt.% TiO2 NPs 提供了最佳條件,表示為 SCPE-A。最佳電解質表現出均勻的形態,無定形區域和較低的玻璃化轉變溫度(Tg)。在室溫下可實現高離子傳導度(1.97×10-4 S cm-1)和電化學穩定性窗口(5.5 V)。此外,SCPE-A與鋰金屬陽極兼容,並顯示2800小時的穩定電壓。組裝了Li/SCPE-A/LiFePO4電池,並在0.2 C下以高庫侖效率(>97%)提供了165 mAh g-1的放電容量,經過150次循環後容量保持率為88%。這項工作揭示了一種新穎有效的方法,可增強鋰離子的傳輸,並有望用於鋰離子電池。
Currently, lithium-ion batteries are excellent for energy storage due to their high energy density, minimal memory effect, and good cycle life. However, commercial liquid electrolytes (LEs) frequently cause explosions due to easy leakage and do not effectively suppress dendrite growth, which is a major safety concern. To address these issues, we propose poly (ionic liquid) electrolytes in the presence of imidazole cross-linker, lithium salts, oligomer additives as solid polymer electrolytes (SPEs) and the addition of TiO2 NPs as solid composite electrolytes (SCPEs) for further improvement. The formation of a polymeric network was directly fabricated onto the anode and cured via thermal polymerization. In situ preparation and solvent-free offer an efficient fabrication and can reduce the interface resistance between the electrolyte and electrode. The addition of XVIm-8-TFSI as an imidazole cross-linker and 0.5 wt.% TiO2 NPs provided optimal conditions, denoted as SCPE-A. The optimal electrolyte exhibits homogeneous morphology, amorphous region, and lower glass transition temperature (Tg). High ionic conductivity (1.97×10-4 S cm-1) and electrochemical stability window (5.5 V) are achieved at room temperature. Furthermore, the SCPE-A is compatible with Li metal anode, indicated by stable voltage for 2800 hours. The Li/SCPE-A/LiFePO4 cell was assembled and delivered a discharge capacity of 165 mAh g-1 at 0.2 C with high Coulombic efficiency (>97%) and the capacity retention is 88% after 150 cycles. This work reveals a novel and effective method for enhancing the transport of Li ions and rendering a promising for lithium-ion batteries.
[1] M. Marinaro, D. Bresser, E. Beyer, P. Faguy, K. Hosoi, H. Li, J. Sakovica, K. Amine, M. Wohlfahrt-Mehrens, S. Passerini, Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA, J. Power Sources. 459 (2020) 228073.
[2] R. Korthauer, Lithium-ion batteries: Basics and applications, 2018.
[3] S. Roundy, D. Steingart, L. Frechette, P. Wright, J. Rabaey, Power Sources for Wireless Sensor Networks, in: H. Karl, A. Wolisz, A. Willig (Eds.), Wirel. Sens. Networks, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004: pp. 1–17.
[4] G. Tuna, V.C. Gungor, Energy harvesting and battery technologies for powering wireless sensor networks, in: 2015: pp. 25–38.
[5] D. Linden, T.B. Reddy, Handbook of batteries, 1995.
[6] R. Brodd, Secondary Batteries | Overview, in: Encycl. Electrochem. Power Sources, 2009: pp. 254–261.
[7] U. Koehler, Chapter 2 - General Overview of Non-Lithium Battery Systems and their Safety Issues, in: J. Garche, K. Brandt (Eds.), Electrochem. Power Sources Fundam. Syst. Appl., Elsevier, 2019: pp. 21–46.
[8] P. Bernard, Secondary Batteries – Nickel Systems | Nickel–Cadmium: Sealed, in: Encycl. Electrochem. Power Sources, 2009: pp. 459–481.
[9] F. Torabi, P. Ahmadi, No Title, in: Simul. Batter. Syst., Academic Press, 2019: pp. 217–262.
[10] D. Pavlov, Invention and Development of the Lead–Acid Battery, in: 2017: pp. 3–32.
[11] S. Qazi, Fundamentals of Standalone Photovoltaic Systems, in: 2017: pp. 31–82.
[12] Z. Abdin, Single and polystorage technologies for renewable-based hybrid energy systems, Academic Press, 2019.
[13] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries, J. Mater. Chem. A. 4 (2016) 10038–10069.
[14] H.Q. Pham, H.-Y. Lee, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries, J. Power Sources. 404 (2018) 13–19.
[15] J. Kasemchainan, P.G. Bruce, All-solid-state batteries and their remaining challenges, Johnson Matthey Technol. Rev. 62 (2018) 177–180.
[16] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nat. Mater. 10 (2011) 682–686.
[17] J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources. 195 (2010) 4554–4569.
[18] J.Y. Lim, D.A. Kang, N.U. Kim, J.M. Lee, J.H. Kim, Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength, J. Memb. Sci. 589 (2019) 117250.
[19] N. Paranjape, P.C. Mandadapu, G. Wu, H. Lin, Highly-branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity, Polymer. 111 (2017) 1–8.
[20] Y.C. Tseng, S.H. Hsiang, C.H. Tsao, H. Teng, S.S. Hou, J.S. Jan, In situ formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries, J. Mater. Chem. A. 9 (2021) 5796–5806.
[21] Y. Zhou, B. Wang, Y. Yang, R. Li, Y. Wang, N. Zhou, J. Shen, Y. Zhou, Dicationic tetraalkylammonium-based polymeric ionic liquid with star and four-arm topologies as advanced solid-state electrolyte for lithium metal battery, React. Funct. Polym. 145 (2019) 104375.
[22] W. Wang, P. Alexandridis, Composite polymer electrolytes: Nanoparticles affect structure and properties, Polymers. 8 (2016).
[23] Y.-Y. Lin, Y.-M. Chen, S.-S. Hou, J.-S. Jan, Y.-L. Lee, H. Teng, Diode-like gel polymer electrolytes for full-cell lithium ion batteries, J. Mater. Chem. A. 5 (2017) 17476–17481.
[24] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. 104 (2004) 4303–4418.
[25] M.S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev. 104 (2004) 4271–4302.
[26] N. Mohamed, N.K. Allam, Recent advances in the design of cathode materials for Li-ion batteries, RSC Adv. 10 (2020) 21662–21685.
[27] P. Kurzweil, K. Brandt, Overview of rechargeable lithium battery systems, Elsevier B.V., 2018.
[28] A. Purwanto, C.S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi, H. Haerudin, NCA cathode material: synthesis methods and performance enhancement efforts, Mater. Res. Express. 5 (2018) 122001.
[29] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today. 18 (2015) 252–264.
[30] Y. Miao, P. Hynan, A. Von Jouanne, A. Yokochi, Current li-ion battery technologies in electric vehicles and opportunities for advancements, Energies. 12 (2019) 1–20.
[31] B. Wu, R. Yonghuan, L. Ning, LiFePO4 Cathode Material, in: Electr. Veh. - Benefits Barriers, InTech, 2011.
[32] C. Usubelli, M.M. Besli, S. Kuppan, N. Jiang, M. Metzger, A. Dinia, J. Christensen, Y. Gorlin, Understanding the Overlithiation Properties of [LiNi]0.6Mn0.2Co0.2O2 Using Electrochemistry and Depth-Resolved X-ray Absorption Spectroscopy, J. Electrochem. Soc. 167 (2020) 80514.
[33] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7 (2014) 513–537.
[34] C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo, L. Liu, Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries, Carbon N. Y. 64 (2013) 553–556.
[35] N. Loeffler, D. Bresser, S. Passerini, M. Copley, Secondary lithium-Ion battery anodes: From first commercial batteries to recent research activities, Johnson Matthey Technol. Rev. 59 (2015) 34–44.
[36] G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy Environ. Sci. 5 (2012) 6652–6667.
[37] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol. 12 (2017) 194–206.
[38] U. Janakiraman, T.R. Garrick, M.E. Fortier, Review-Lithium Plating Detection Methods in Li-Ion Batteries, J. Electrochem. Soc. 167 (2020) 160552.
[39] Z. Hu, J. Li, X. Zhang, Y. Zhu, Strategies to Improve the Performance of Li Metal Anode for Rechargeable Batteries, Front. Chem. 8 (2020) 1–11.
[40] G. Wang, X. Xiong, D. Xie, X. Fu, X. Ma, Y. Li, Y. Liu, Z. Lin, C. Yang, M. Liu, Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes, Energy Storage Mater. 23 (2019) 701–706.
[41] Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li, T. Qiu, G. Zou, H. Hou, X. Ji, Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries, Mater. Chem. Phys. 229 (2019) 303–309.
[42] H. Wu, Q. Wu, F. Chu, J. Hu, Y. Cui, C. Yin, C. Li, Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries, J. Power Sources. 419 (2019) 72–81.
[43] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes, Adv. Mater. 28 (2016) 1853–1858.
[44] R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes, Angew. Chemie - Int. Ed. 56 (2017) 7764–7768.
[45] J. Park, J. Jeong, Y. Lee, M. Oh, M.H. Ryou, Y.M. Lee, Micro-Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium-Ion Batteries, Adv. Mater. Interfaces. 3 (2016) 1–9.
[46] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy Environ. 1 (2016) 18–42.
[47] I. Aldalur, M. Martinez-Ibañez, A. Krztoń-Maziopa, M. Piszcz, M. Armand, H. Zhang, Flowable polymer electrolytes for lithium metal batteries, J. Power Sources. 423 (2019) 218–226.
[48] Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries, Nat. Rev. Mater. 5 (2020) 229–252.
[49] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A. 3 (2015) 19218–19253.
[50] A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study, Ionics, (2017).
[51] D.J. Brooks, B. V. Merinov, W.A. Goddard, B. Kozinsky, J. Mailoa, Atomistic Description of Ionic Diffusion in PEO-LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration, Macromolecules. 51 (2018) 8987–8995.
[52] H. Teng, K. Koike, D. Zhou, Z. Satoh, Y. Koike, Y. Okamoto, High Glass Transition Temperatures of Poly(methyl methacrylate) Prepared by Free Radical Initiators, J. Polym. Sci. Part A-Polymer Chem. - J Polym Sci A-Polym Chem. 47 (2009) 315–317.
[53] X. Wang, X. Hao, Y. Xia, Y. Liang, X. Xia, J. Tu, A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries, J. Memb. Sci. 582 (2019).
[54] X. Cui, H. Feng, D. Lei, J. Jing, Y. Liang, Application of Lithium Oxalate Borate of a Preformed the Solid-state Interface in Lithium ion Batteries, IOP Conf. Ser. Earth Environ. Sci. 199 (2018) 52054.
[55] E.H. Immergut, H.F. Mark, Principles of Plasticization, (1965) 1–26.
[56] K. Pandey, N. Asthana, M.M. Dwivedi, S.K. Chaturvedi, Effect of Plasticizers on Structural and Dielectric Behaviour of [PEO+(NH4)2C4H8(COO)2] Polymer Electrolyte , J. Polym. 2013 (2013) 1–12.
[57] S. Choudhury, Z. Tu, A. Nijamudheen, M.J. Zachman, S. Stalin, Y. Deng, Q. Zhao, D. Vu, L.F. Kourkoutis, J.L. Mendoza-Cortes, L.A. Archer, Stabilizing polymer electrolytes in high-voltage lithium batteries, Nat. Commun. 10 (2019) 1–11.
[58] R. Khurana, J.L. Schaefer, L.A. Archer, G.W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries, J. Am. Chem. Soc. 136 (2014)
[59] E.T. Röchow, M. Coeler, D. Pospiech, O. Kobsch, E. Mechtaeva, R. Vogel, B. Voit, K. Nikolowski, M. Wolter, In situ preparation of crosslinked polymer electrolytes for lithium ion batteries: A comparison of monomer systems, Polymers. 12 (2020).
[60] X. Jin, L. Li, R. xu, Q. Liu, L. Ding, Y. Pan, C. Wang, W. Hung, K. Lee, T. Wang, Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile, Polymers (Basel). 10 (2018) 539.
[61] D. Mantzavinos, R. Hellenbrand, A.G. Livingston, I.S. Metcalfe, Catalytic wet air oxidation of polyethylene glycol, Appl. Catal. B Environ. 11 (1996) 99–119.
[62] J. Yuan, M. Antonietti, Poly(ionic liquid)s: Polymers expanding classical property profiles, Polymer. 52 (2011) 1469–1482.
[63] P. Dean, J. Pringle, D. MacFarlane, Structural analysis of low melting organic salts: Perspectives on ionic liquids, Phys. Chem. Chem. Phys. 12 (2010) 9144–9153.
[64] M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices, Chem. Rev. 117 (2017) 7190–7239.
[65] J. Rick, B.J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A. 1 (2013) 2719–2743.
[66] A. Eftekhari, T. Saito, Synthesis and Properties of Polymerized Ionic Liquids, Eur. Polym. J. 90 (2017).
[67] K. Yin, Z. Zhang, X. Li, L. Yang, K. Tachibana, S.I. Hirano, Polymer electrolytes based on dicationic polymeric ionic liquids: Application in lithium metal batteries, J. Mater. Chem. A. 3 (2015) 170–178.
[68] W. Qian, J. Texter, F. Yan, Frontiers in poly(ionic liquid)s: Syntheses and applications, Chem. Soc. Rev. 46 (2017).
[69] S.-Y. Zhang, Q. Zhuang, M. Zhang, H. Wang, Z. Gao, J.-K. Sun, J. Yuan, Poly(ionic liquid) composites, Chem. Soc. Rev. 49 (2020).
[70] L. Chen, J. Fu, Q. Lu, L. Shi, M. Li, L. Dong, Y. Xu, R. Jia, Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization, Chem. Eng. J. 378 (2019).
[71] L. Li, S. Li, Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries, Chem. Commun. 54 (2018) 6648–6661.
[72] J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A. 42 (1990) 7355–7367.
[73] Y. Lu, S.K. Das, S.S. Moganty, L.A. Archer, Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries, Adv. Mater. 24 (2012) 4430–4435.
[74] B. Yu, F. Zhou, C. Wang, W. Liu, A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide, Eur. Polym. J. 43 (2007) 2699–2707.
[75] L. Porcarelli, A.S. Shaplov, M. Salsamendi, J.R. Nair, Y.S. Vygodskii, D. Mecerreyes, C. Gerbaldi, Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries, ACS Appl. Mater. Interfaces. 8 (2016) 10350–10359.
[76] A.S. Shaplov, P.S. Vlasov, E.I. Lozinskaya, D.O. Ponkratov, I.A. Malyshkina, F. Vidal, O. V Okatova, G.M. Pavlov, C. Wandrey, A. Bhide, M. Schönhoff, Y.S. Vygodskii, Polymeric Ionic Liquids: Comparison of Polycations and Polyanions, Macromolecules. 44 (2011) 9792–9803.
[77] D. Lin, W. Liu, Y. Liu, H.R. Lee, P.-C. Hsu, K. Liu, Y. Cui, High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide), Nano Lett. 16 (2016) 459–465.
[78] X.L. Wang, A. Mei, M. Li, Y.H. Lin, C.W. Nan, Polymer composite electrolytes containing ionically active mesoporous SiO2 particles, J. Appl. Phys. 102 (2007) 5–11.
[79] Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu, Z. Chen, A review of composite solid-state electrolytes for lithium batteries: fundamentals{,} key materials and advanced structures, Chem. Soc. Rev. 49 (2020) 8790–8839.
[80] S. Liu, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J. Yang, Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li, J. Power Sources. 195 (2010) 6847–6853.
[81] N. Boaretto, L. Meabe, M. Martinez-Ibañez, M. Armand, H. Zhang, Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid, J. Electrochem. Soc. 167 (2020) 070524.
[82] A. Singh, Experimental Methodologies for the Characterization of Nanoparticles, in: 2016: pp. 125–170.
[83] S. Lothar, T. Gerd, S. Robert, B. Herfriend, G. Christoph, Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, in: Mod. Röntgenbeugung, Vieweg+Teubner Verlag, 2009.
[84] M. Sepe, Dynamic Mechanical Analysis for Plastics Engineering, William Andrew Publishing, 1998.
[85] T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J.M. Kim, M.-S. Park, W.-S. Yoon, Applications of Voltammetry in Lithium Ion Battery Research, J. Electrochem. Sci. Technol. 11 (2020) 14–25.
[86] P. Vadhva, J. Hu, M.J. Johnson, R. Stocker, M. Braglia, D.J.L. Brett, A.J.E. Rettie, Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook, ChemElectroChem. (2021) 1–19.
[87] Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries, Nat. Energy. 4 (2019) 365–373.
[88] S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, J. Sci. Adv. Mater. Devices. 3 (2018) 1–17.
[89] J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li, Y. Huang, Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid-State Lithium Metal Batteries, Adv. Energy Mater. 9 (2019) 1–8.
[90] D. Zhang, X. Xu, Y. Qin, S. Ji, Y. Huo, Z. Wang, Z. Liu, J. Shen, J. Liu, Recent Progress in Organic–Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries, Chem. - A Eur. J. 26 (2020) 1720–1736.
[91] P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, X. Liu, Review on Polymer-Based Composite Electrolytes for Lithium Batteries, Front. Chem. 7 (2019) 522.
[92] C.C.S. L. Chancelier, O. Boyron, T. Gutel, Thermal stability of imidazolium-based ionic liquids, French-Ukrainian J. Chem. 04 (2016) 51–64.
[93] Y. Ye, Y.A. Elabd, Anion exchanged polymerized ionic liquids: High free volume single ion conductors, Polymer (Guildf). 52 (2011) 1309–1317.
[94] B. Sun, J. Mindemark, E. V. Morozov, L.T. Costa, M. Bergman, P. Johansson, Y. Fang, I. Furó, D. Brandell, Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations, Phys. Chem. Chem. Phys. 18 (2016) 9504–9513.
[95] F. Harun, C.H. Chan, Q. Guo, Rheology and Microscopic Heterogeneity of Poly(ethylene oxide) Solid Polymer Electrolytes, Macromol. Symp. 376 (2017) 1–8.
[96] T. Himalaya, D. Company, Viscoelastic Properties and Rheological Characterization of Topical Herbal Formulations, (2018) 1840–1854.
[97] S.H. Hsiang, High Retention Quasi-solid-state Electrolyte based on Imidazolium-containing Poly(ionic liquid-co-ethylene glycol) for Lithium-metal Batteries, National Cheng Kung University, 2020.
[98] Z. Cheng, T. Liu, B. Zhao, F. Shen, H. Jin, X. Han, Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries, Energy Storage Mater. 34 (2021) 388–416.
[99] W. Zhai, Y. Zhang, L. Wang, F. Cai, X. Liu, Y. Shi, H. Yang, Study of nano-TiO2 composite polymer electrolyte incorporating ionic liquid PP12O1TFSI for lithium battery, Solid State Ionics. 286 (2016) 111–116.
[100] S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review, Prog. Nat. Sci. Mater. Int. 28 (2018) 653–666.
[101] A. Pesaran, S. Santhanagopalan, G.-H. Kim, Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications, in: Proc. 30th Int. Batter. Semin. Ft. Lauderdale, Florida, 2013.
[102] J. Liu, Charge and Discharge Characterization of Lithium-ion Electrode Materials Through Coin Cell Testing, Ohio State University, 2015.
[103] Y. Zhou, Y. Yang, N. Zhou, R. Li, Y. Zhou, W. Yan, Four-armed branching and thermally integrated imidazolium-based polymerized ionic liquid as an all-solid-state polymer electrolyte for lithium metal battery, Electrochim. Acta. 324 (2019) 134827.
[104] X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci. 3 (2015) 1–20.