| 研究生: |
方健升 Fang, Jian-sheng |
|---|---|
| 論文名稱: |
添加PEI界面活性劑對固態反應法合成鈦酸鋇粉末之影響 Effect of PEI Addition on the Solid-State Synthesis of BaTiO3 Powders |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 固態反應法 、鈦酸鋇 、PEI |
| 外文關鍵詞: | Solid-state reaction, BaTiO3, PEI |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
BaTiO3粉體由於具有優異的鐵電性質及高介電常數,已被廣泛應用於積層陶瓷電容器中。工業上量產BaTiO3粉末仍是以固態反應法為主,然而至目前為止,其反應的機構仍不是非常明確;另外一方面,為了製得奈米尺寸之BaTiO3粉末且防止粉末的凝聚,降低固態製程中的熱處理溫度為目前熱門的研究方向。本研究利用添加界面活性劑PEI於BaCO3與TiO2的固態反應系統中,建立BaTiO3粉末之固態合成機制。此外,利用適當之合成條件,嘗試於較低的溫度下合成出奈米BaTiO3粉末。實驗結果顯示,添加界面活性劑PEI 可以有效地提升BaCO3與TiO2之混合均勻度,促進BaCO3與TiO2界面反應的發生,另一方面,添加PEI延後了BaCO3於熱處理過程中之分解。BaCO3的延後分解,推測可避免Ba2+離子的擴散,因此阻止了Ba2TiO4的產生,進而促進純相BaTiO3產物之生成。本研究成功於800°C的低溫下製備出接近純相之奈米級BaTiO3粉末,其粒徑約為50nm,c/a為1.0011。
Barium titanate powder is widely used in the multilayer ceramic capacitor (MLCC) due to the superior ferroelectric and dielectric properties. At present, barium titanate powder is mainly mass-produced using a conventional solid-state reaction. However, the conflicting literature reports and inadequate support for either mechanism clearly show that the mechanism involved in solid-state reaction is still not well understood. Beside, synthesize of nano-sized barium titanate powders with reduced agglomeration by a solid-state reaction method at a low calcination temperature has become an increasingly important research topic. In this study, the effect of addition of PEI on the formation of BaTiO3 by solid-state reaction was investigated using XRD, DTA and TEM. The results indicate that the addition of PEI promotes the mixing homogeneity of BaCO3 and TiO2, which enhanced the interfacial reaction between BaCO3 and TiO2. In addition, the addition of PEI delays the decomposition of BaCO3, which prevented the formation of intermediate phase, Ba2TiO4, induced by the diffusion of Ba2+ across the BaTiO3 layer. Therefore, a nano-sized BaTiO3 powder with a particle size of 50 nm and c/a~1.001 can be successfully prepared by adding PEI using a solid-state reaction at 800oC.
1. E. Luybrechts, K. Ishizaki and M. Taikata, “Review-The Positive Temperature Coefficient of Resisteivity in Barium Titanate,” J. Mat. Sci., 30 2463-2474 (1995).
2. H. A. Sauer and J. R. Fisher, “Processing of Positive Temperature Coefficient Thermistors,” J. Am. Ceram. Soc., 43 [9] 297-301 (1960).
3. P. P. Phule and S. H. Risbud, “Review Low-temperature Synthesis and Processing of Electronic Materials in the BaO-TiO2 system,” J. Mat. Sci., 1169-1183 (1990).
4. A. J. Moulson and J. M. Herbert, “Electroceramics,” Chapman and Hall, 1990.
5. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics,” John Wiley and Sons, New York, (1976).
6. J. Nowotny, “Electronic Ceramic Materials,” (1991).
7. 邱碧秀, 電子陶瓷材料, (1988).
8. B. Jaffe, W. R. Cook. Jr, and H. Jaffe, “Piezoelectric Ceramics,” William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., (1971).
9. R. Yanagawa, M. Senna, C. Ando, H. Chazono, and H. Kishi, “ Preparation of 200 nm BaTiO3 Particles with their Tetragonality 1.010 via a Solid-State Reaction Preceded by Agglomeration-Free Mechanical Activation,” J. Am. Ceram. Soc., 90 [3] 809-14 (2007).
10. M. T. Buscaglia, M. Bassoli, and V. Buscaglia, “Solid-State Synthesis of Ultrafine BaTiO3 Powder from Nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., 88 [9] 2374-79 (2005).
11. C. Ando, R. Yanagawa, H. Chazono, H. Kishi, and M. Senna, “Nuclei-Growth Optimization for Fine-Grained BaTiO3 by Precision-Controlled Mechanical Pretreatment of Starting Powder Mixture,” J. Mater. Res., 19 [12] 3592-99 (2004).
12. C. Ando, H. Kishi, H. Oguchi, and M. Senna, “Effects of Bovine Serum Albumin on the Low Temperature Synthesis of Barium Titanate Microparticles via a Solid State Route,” J. Am. Ceram. Soc., 89 [5] 1709-12 (2006).
13. M. T. Buscaglia, V. Buscaglia, and R. Alessio, “Coating of BaCO3 Crystals with TiO2: Versatile Approach to the Synthesis of BaTiO3 Tetragonal Nanoparticles,” Chem. Mater., 19 711-18 (2007).
14. S. S. Ryu, and D. H. Yoon, “Solid-State Synthesis of Nano-Sized BaTiO3 Powder with High Tetragonality,” J. Mater. Sci., 42 7093-99 (2007).
15. H. Yamamura, A. Watanabe, S. Shirasaki, Y. Moriyoshi and M. Tanada, “Preparation of Barium Titanate by Oxalate Method in Ethanol Solution,” Ceram. Int., 11 17-22 (1985).
16. P. P. Phule and S. H. Risbud, “Low Temperature Synthesis and Dielectric Properties of Ceramics Derived from Amorphous Barium Titanate Gels and Crystalline Powders,” Materials Science and Engineering, B3 241-47 (1989).
17. M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitors,” U. S. Pat. No. 3330697, 11 (1967).
18. M. Vetith, S. Mathur, N. Lecerf, V. Huch and T. Decker, “Sol-Gel Synthesis of Nano-Scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 Oxides via Single-Source Alkoxide Precursors and Semi-Alkoxide Routes,” Journal of Sol-Gel Science and Technology, 15 145-158 (2000).
19. Z. H. Michael, E. Andrew, J. Claudia and D. R. Rodeny, “Wet-Chemical Synthesis of Monodispersed Barium Titanate Particles Hydrothermal Conversion of TiO2 Microspheres to Nanocrystalline BaTiO3,” Powder Technology, 3 2-14 (2000).
20. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powder,” Ceram. Bolletin, 67 10 (1988).
21. S. F. Liu, I. R. Abothu and S. Komarneni, “Barium Titanate Ceramics Prepared from Conventional and Microwave Hydrothermal Powders,” Mater. Letters, 38 344-350 (1999).
22. P. Pinceloup, C. Courtois, A. Leriche and B. Thierry, “Hydrothermal Synthesis of Nanometer-Sized Barium Titanate Powders,” J. Am. Ceram., 82 [11] 3049-3056 (1999).
23. M. Viviani, M. T. Buscaglia, A. Testino, V. Buscaglia, P. Bowen and P. Nanni, “The influence of Concentration on the Formation of BaTiO3 by Direct Reaction of TiCl4 with Ba(OH)2 in Aqueous Solution,” Journal of the European Ceramic Society, 23 1383-1390 (2003).
24. C. Pithan, D. Hennings, and R. Waser, “Progress in the Synthesis of Nanocrystalline BaTiO3 Powder for MLCC,” Int. J. Appl. Ceram. Technol., 2 [1] 1-14 (2005).
25. D. H. Yoon, “Tetragonality of Barium Titanate Powder for a Ceramic Capacitor Application,” J. Ceram. Process. Res., 7 [4] 343-354 (2006).
26. H. Xu, L. Gao, “Tetragonal Nanocrystalline Barium Titanate Powder: Prepartation, Characterization, and Dielectric Properties,” J. Am. Ceram. Soc., 86 [1] 203-205 (2003).
27. A. Beauger, J. C. Mutin, J. C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3, Part 1 Effect of the Gaseous Atmosphere upon the Thermal Evolution of the System BaCO3-TiO2,” J. Mat. Sci., 18 3041-3046 (1983).
28. A. Beauger, J. C. Mutin, J. C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3, Part 2 Study of Solid-Solid Reaction Interfaces,” J. Mat. Sci., 18 3543-3550 (1983).
29. 王正雄, 環境檢驗雜誌, (2002).
30. D. Horn, Polyethylenimine – Physicochemical Properties and Applications, In: Goethals Ej, editor, Polymeric amines and ammonium salts, Oxford, Pergamon Press, 333-355 (1979).
31. C. R. Dick and G. E. Ham, “Characterization of Polyethylenimine,” J. Macromol Sci. Chem., A4:1301-14 (1970).
32. X. W. Zhu, F. Q. Tang, T. S. Suzuki, and Y. Sakka, “Role of the Initial Degree of Ionization of Polyethylenimine in the Dispersion of Silicon Carbide Nanoparticles,” J. Am. Ceram. Soc., 86 [1] 189-91 (2003).
33. S. Mathur and B. M. Moudgil, “Adsorption Mechanism(s) of Poly(ethylene Oxide) on Oxide Surface,” J. Colloid and interface science, 196 92-98 (1997).
34. J. Wang and L. Gao, “Adsorption of Polyethylenimine on Nanosized Zirconia Particles in Aqueous Suspensions,” J. Colloid Interface Sci., 216 436-9 (1999).
35. A. Lotnyk, S. Senz, and D. Hesse, “ Formation of BaTiO3 Thin Film from (110) TiO2 Rutile Single Crystals and BaCO3 by Solid State Reactions,” Solid State Ionics, 177 429-36 (2006).
36. Y. L. Chang, H. I. Hsiang, and M.T. Liang, “Phase Evolution During Formation of SrAl2O4 from SrCO3 and α–Al2O3/AlOOH,” J. Am. Ceram. Soc., 90 [9] 2759-65 (2007).
37. L. K. Templeton and J. A. Pask, “Formation of BaTiO3 form BaCO3 and TiO2 in Air and in CO2,” J. Am. Ceram. Soc., 42[5] 212-216 (1959).