簡易檢索 / 詳目顯示

研究生: 吳怡瑩
Wu, Yi-Ying
論文名稱: 薑黃素多組成奈米支架的製備及其抗菌與傷口癒合特性之研究
The Studies of Curcumin Incorporated Multi Component Nano Scaffold Preparation and Its Enhancing Anti‐bacterial and Wound Healing Properties
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 69
中文關鍵詞: 薑黃素香草醛膠原蛋白幾丁聚醣奈米粒子金黃色葡萄球菌大腸桿菌NIH/3T3
外文關鍵詞: curcumin, vanillin, collagen, chitosan, nanoparticle, NIH/3T3, S. aureus, E. coli.
相關次數: 點閱:63下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傷口癒合是慢性疾病所面臨的主要議題之一,目前對於傷口癒合的治療方法效果普遍不佳,並容易產生副作用,而且價格昂貴。若能開發具有降低成本效益、來源天然且具生物降解的傷口敷料,以減少氧化、發炎和預防細菌感染對傷口癒合帶來的影響,對醫療體系而言將會是一大福音,而這樣的議題目前正被科學家們廣泛的研究。薑黃素有很多的治療用途,如抗氧化、抗菌和抗發炎活性,然而其低溶解度卻限制了薑黃素的臨床應用。在本研究中,薑黃素奈米粒子(Cur NPs)和薑黃素-幾丁聚醣奈米粒子(Cur-Chi NPs)被摻入膠原蛋白-香草醛(Van-Col)支架中,經用冷凍乾燥法來製備兩種含薑黃素多組成奈米複合物(Cur NP + VC和CC + VC),並利用傅立葉轉換紅外線光譜、粉末X射線繞射光譜、奈米粒子粒徑分析儀和掃描式電子顯微鏡對薑黃素多組成奈米複合物進行結構及物性鑑定,進而進行其生物活性及體外傷口癒合之研究。
    藉由體外試驗評估薑黃素藥物的釋放、複合物的抗氧化、抗菌和傷口癒合之研究。發現Cur NP + VC和CC + VC的兩種複合物的藥物釋放實驗顯示,薑黃素會從奈米複合物中慢慢持續地釋放出來。經過24小時後,約64.73%與66.85%的薑黃素分別從Cur NP + VC與CC + VC的複合藥物中釋放出來。利用DPPH試劑來評估含薑黃素奈米複合物的抗氧化活性,發現跟Cur NPs和Cur-Chi NPs奈米複合物相比,Cur NP + VC和CC + VC兩種奈米複合物的抗氧化活性有顯著地增加。以槲皮素作為抗氧化的對照組,發現Cur NP + VC和CC + VC的奈米複合物的抗氧化效力分別為80.56%和82.14%。抗氧化活性實驗數據證實,將薑黃素摻入奈米支架可增加其清除DPPH的能力。實驗利用薑黃素奈米複合物對大腸桿菌和金黃色葡萄球菌之抗菌作用進行了24小時的測試。數據結果顯示,跟單獨Cur NPs奈米藥物相比,Cur NP + VC奈米複合物對大腸桿菌和金黃色葡萄球菌的抗菌活性有顯著地提高。跟Cur-Chi NPs奈米複合物相比,CC + VC奈米複合物在抑制大腸桿菌和金黃色葡萄球菌的生長也有顯著的效果。實驗數據顯示,跟單一的幾丁聚醣、膠原蛋白、香草醛化合物或薑黃素奈米粒子相比,含薑黃素的奈米複合物具有明顯的抗菌活性。進行體外的細胞遷移試驗來分析薑黃素奈米複合物對於傷口的癒合研究,使NIH/3T3細胞單層上產生間隙,再分別用Cur NP + VC和CC + VC奈米複合物來處理,並在0、6、12和24小時監測其細胞遷移,實驗數據顯示,與未經處理的細胞相比,使用含薑黃素奈米複合物處理的細胞有眀顯的細胞遷移和間隙的閉合。發現經24小時後,使用Cur NP + VC奈米複合物和CC + VC奈米複合物處理的細胞傷口其傷口閉合率分別為85%和77%。
    薑黃素的奈米複合物的研究顯示其抗氧化活性、對大腸桿菌和金黃色葡萄球菌的拮抗活性,及促進細胞遷移以增強細胞的傷口癒合皆與薑黃素的可持續釋放有關。薑黃素的奈米複合物的可生物降解及其持續性的局部給藥系統,可作為抗氧化劑、促進傷口癒合和預防細菌感染。薑黃素多組成奈米奈米複合物的有效生物活性特性亦可歸因於幾丁聚醣、膠原蛋白和香草醛的加乘效應。上述的實驗數據顯示本研究所製備的薑黃素奈米複合物出具有治療慢性傷口的創新治療策略。

    Wound healing is one of the major challenges in chronic diseases, the current treatment options have less effective with undesirable side effects, and are expensive. Extensive research has being carried out to develop cost-effective, natural, biodegradable wound dressings that can reduce oxidative stress, inflammation and prevent bacterial infections. Curcumin has plethora of therapeutic applications; however, its low solubility limits its clinical use. In this study curcumin nanoparticles (Cur NPs) and curcumin-chitosan nanoparticles (Cur-Chi NPs) were incorporated into the vanillin-collagen (Van-Col) scaffold, which were further characterized and investigated their potential bioactivity, such as antioxidant and antibacteria, and wound healing properties. The nano scaffolds were prepared by freeze-drying method and were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, nanoparticle tracking analysis and scanning electron microscopy.
    The curcumin drug release, antioxidant, antibacterial and wound healing properties were assessed by in vitro assays. The drug release of Cur NP + VC and CC + VC showed a sustained released with time. Cur NP + VC reached about 64.73% of curcumin releasing, while it is 66.85% of curcumin being released from CC + VC after 24 hours. The antioxidant potential of the curcumin nanoparticle and its nano multiple component (nano scaffolds) were analyzed using DPPH reagent. The nanoparticle multiple of both Cur NP + VC and CC + VC showed significantly increased in antioxidant activity compared to that of Cur NPs and Cur-Chi NPs. Comparing to the antioxidant activity of quercetin being used as control, the antioxidant activity of both Cur NP + VC and CC + VC was 80.56% and 82.14%, respectively. These results suggest that incorporation of curcumin into nano scaffolds increases their DPPH scavenging activities. The curcumin nanoparticles were tested for their antibacterial effect against E. coli and S. aureus for 24 hours. The results clearly showed that the Cur NP + VC shows significantly higher antibacterial activity against E. coli and S. aureus than Cur NPs dies. Likewise, when compared to Cur-Chi NPs, the multiple component particle of CC + VC showed significantly effective in inhibiting the growth of E. coli and S. aureus. These results further demonstrate that encapsulating curcumin or Cur NPs into nano scaffolds has enhanced antibacterial activity compared to individual compounds. An in vitro scratch assay was performed to determine the wound healing properties of the curcumin nano scaffolds. For this assay, a gap was created on the NIH/3T3 cell monolayer and the cell migration in the cells treated with Cur NP + VC and CC + VC were monitored at 0, 6, 12 and 24 hours. According to the results the cells treated with curcumin nano scaffolds exhibited increased cell migration and gap closure after 24 hours compared to the untreated cells. The wound closure percentage of nano scaffold of Cur NP + VC and CC + VC treated cells showed about 85% and 77% wound closure after 24 hours, respectively.
    The curcumin nano scaffolds showed sustained release of curcumin, which shows improving the antioxidant activity, antagonistic activity against E. coli and S. aureus and promote cell migration which enhanced wound healing in murine cell line. The curcumin nano scaffold is biodegradable and effective drug delivery system for topical use that can act as an antioxidant, facilitate wound healing, and prevent bacterial infections. The beneficial properties of the curcumin nano scaffolds can be attributed to the synergistic effect of chitosan, collagen and vanillin. Taken together these data suggest a promising scaffold that can accelerate wound healing and can be used as an innovative therapeutic strategy for treating chronic wounds.

    中文摘要 I Abstract III 致謝 V Table of Contents VI List of Tables IX List of Figures X Abbreviations XIII Chapter 1. Introduction 1 1-1 Wound healing 1 1-2 Curcumin 6 1-3 Nanoformulations of curcumin and encapsulating in natural biomaterials 11 1-4 Biomaterials 14 1-5 Chitosan 17 1-6 Collagen 22 1-7 Vanillin 24 1-8 Motivation of this work 26 Chapter 2. Materials, Methods and Experimental Sections 28 2-1 Materials 28 2-2 Preparation of vanillin-collagen (Van-Col) nano scaffolds 29 2-3 Preparation of curcumin nanoparticles (Cur NPs) 29 2-4 Incorporation of Cur NPs into Van-Col nano scaffolds 30 2-5 Preparation of curcumin-loaded chitosan nanoparticles (Cur-Chi NPs) 30 2-6 Preparation of curcumin-loaded chitosan nanoparticles by incorporating into Van-Col nano scaffolds (CC + VC) 31 2-7 Physical characterization of curcumin nano scaffolds 32 2-8 In vitro drug release study 33 2-9 Antioxidant activity 34 2-10 Antibacterial assay 34 2-11 Wound healing assay 35 2-12 Statistical analysis 36 2-13 Physical methods 36 Nuclear Magnetic Resonance (NMR) spectroscopy 36 Fourier Transform Infrared (FTIR) spectroscopy 36 Particle size, polydispersity index (PDI) and zeta potential (ZP) 37 Ultraviolet–visible (UV-Vis) spectroscopy 37 Powder X-ray Diffraction (PXRD) Analysis 37 Scanning Electron Microscope (SEM) 38 Chapter 3. Results 39 3-1 Preparation for nano scaffolds 39 3-2 Curcumin nano scaffold characterization 43 3-3 Curcumin release from curcumin nano scaffolds 49 3-4 Antioxidant activity of curcumin nano scaffolds 50 3-5 Antibacterial properties of curcumin nano scaffolds 51 3-6 Wound healing properties of curcumin nano scaffolds 53 Chapter 4. Discussion 55 Chapter 5. Conclusions 60 References 61

    (1) Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Systematic Reviews 2017, 6, 1-7.
    (2) Boateng, J. S.; Matthews, K. H.; Stevens, H. N.; Eccleston, G. M. Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences 2008, 97, 2892-2923.
    (3) Han, G.; Ceilley, R. Chronic wound healing: a review of current management and treatments. Advances in Therapy 2017, 34, 599-610.
    (4) Rothe, M.; Falanga, V. Growth factors: their biology and promise in dermatologic diseases and tissue repair. Archives of Dermatology 1989, 125, 1390-1398.
    (5) Shakespeare, P. Burn wound healing and skin substitutes. Burns 2001, 27, 517-522.
    (6) Schultz, G. Molecular regulation of wound healing. Acute and chronic wounds: Nursing management. 2nd edition. St. Louis, MO: Mosby 1999, 413-429.
    (7) Cooper, D. In Tilte1999.
    (8) Ashtikar, M.; Wacker, M. G. Nanopharmaceuticals for wound healing–Lost in translation? Advanced Drug Delivery Reviews 2018, 129, 194-218.
    (9) Braiman-Wiksman, L.; Solomonik, I.; Spira, R.; Tennenbaum, T. Novel insights into wound healing sequence of events. Toxicologic pathology 2007, 35, 767-779.
    (10) Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314-321.
    (11) Kulac, M.; Aktas, C.; Tulubas, F.; Uygur, R.; Kanter, M.; Erboga, M.; Ceber, M.; Topcu, B.; Ozen, O. A. The effects of topical treatment with curcumin on burn wound healing in rats. Journal of Molecular Histology 2013, 44, 83-90.
    (12) Raduly, F. M.; Raditoiu, V.; Raditoiu, A.; Purcar, V. Curcumin: Modern Applications for a Versatile Additive. Coatings 2021, 11, 519-540.
    (13) Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sciences 2014, 116, 1-7.
    (14) Tejada, S.; Manayi, A.; Daglia, M.; F Nabavi, S.; Sureda, A.; Hajheydari, Z.; Gortzi, O.; Pazoki-Toroudi, H.; M Nabavi, S. Wound healing effects of curcumin: A short review. Current Pharmaceutical Biotechnology 2016, 17, 1002-1007.
    (15) Schneider, C.; Gordon, O. N.; Edwards, R. L.; Luis, P. B. Degradation of curcumin: from mechanism to biological implications. Journal of Agricultural and Food Chemistry 2015, 63, 7606-7614.
    (16) Karri, V. V. S. R.; Kuppusamy, G.; Talluri, S. V.; Mannemala, S. S.; Kollipara, R.; Wadhwani, A. D.; Mulukutla, S.; Raju, K. R. S.; Malayandi, R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. International Journal of Biological Macromolecules 2016, 93, 1519-1529.
    (17) Krausz, A. E.; Adler, B. L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R. A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology and Medicine 2015, 11, 195-206.
    (18) Manca, M. L.; Castangia, I.; Zaru, M.; Nácher, A.; Valenti, D.; Fernàndez-Busquets, X.; Fadda, A. M.; Manconi, M. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 2015, 71, 100-109.
    (19) Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377-6387.
    (20) Shankar, S.; Rhim, J.-W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids 2018, 82, 116-123.
    (21) Yaşayan, G.; Karaca, G.; Akgüner, Z. P.; Bal Öztürk, A. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials 2021, 70, 623-635.
    (22) Aramwit, P.: Introduction to biomaterials for wound healing. In Wound Healing Biomaterials; Elsevier, 2016; pp 3-38.
    (23) Lopes, T. D.; Riegel-Vidotti, I. C.; Grein, A.; Tischer, C. A.; de Sousa Faria-Tischer, P. C. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. International Journal of Biological Macromolecules 2014, 67, 401-408.
    (24) Akturk, O.; Tezcaner, A.; Bilgili, H.; Deveci, M. S.; Gecit, M. R.; Keskin, D. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. Journal of Bioscience and Bioengineering 2011, 112, 279-288.
    (25) Angulo, D. E. L.; do Amaral Sobral, P. J. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. International Journal of Biological Macromolecules 2016, 92, 645-653.
    (26) Ueno, H.; Mori, T.; Fujinaga, T. Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews 2001, 52, 105-115.
    (27) Dai, T.; Tanaka, M.; Huang, Y.-Y.; Hamblin, M. R. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Review of Anti-infective Therapy 2011, 9, 857-879.
    (28) Jayakumar, R.; Prabaharan, M.; Kumar, P. S.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances 2011, 29, 322-337.
    (29) Barton, M. J.; Morley, J. W.; Mahns, D. A.; Mawad, D.; Wuhrer, R.; Fania, D.; Frost, S. J.; Loebbe, C.; Lauto, A. Tissue repair strength using chitosan adhesives with different physical‐chemical characteristics. Journal of Biophotonics 2014, 7, 948-955.
    (30) Labrude, P.; Becq, C. Le pharmacien et chimiste Henri Braconnot (Commercy 1780-Nancy 1855). Revue d'Histoire de la Pharmacie 2003, 91, 61-78.
    (31) Yadu Nath, V.; Raghvendra Kumar, M.; Aswathy, V.; Parvathy, P.; Sunija, S.; Neelakandan, M.; Nitheesha, S.; Vishnu, K. Chitosan as promising materials for biomedical application: review. Research & Development in Material Science 2017, 2, 170-185.
    (32) Mokhames, Z.; Rezaie, Z.; Ardeshirylajimi, A.; Basiri, A.; Taheri, M.; Omrani, M. D. Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers. In Vitro Cellular & Developmental Biology-Animal 2020, 56, 313-321.
    (33) Chen, Y.; Lee, K.; Yang, Y.; Kawazoe, N.; Chen, G. PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication 2020, 12, 025027.
    (34) Chattopadhyay, S.; Raines, R. T. Collagen‐based biomaterials for wound healing. Biopolymers 2014, 101, 821-833.
    (35) Fleck, C. A.; Simman, R. Modern collagen wound dressings: function and purpose. The Journal of the American College of Certified Wound Specialists 2010, 2, 50-54.
    (36) Rojas, J.; Bedoya, M.; Ciro, Y. Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellulose-fundamental aspects and current trends 2015, 193-228.
    (37) Fatemi, M. J.; Garahgheshlagh, S. N.; Ghadimi, T.; Jamili, S.; Nourani, M. R.; Sharifi, A. M.; Saberi, M.; Amini, N.; Sarmadi, V. H.; Yazdi-Amirkhiz, S. Y. Investigating the Impact of Collagen-Chitosan Derived from Scomberomorus Guttatus and Shrimp Skin on Second-Degree Burn in Rats Model. Regenerative Therapy 2021, 18, 12-20.
    (38) Zhang, M.-X.; Zhao, W.-Y.; Fang, Q.-Q.; Wang, X.-F.; Chen, C.-Y.; Shi, B.-H.; Zheng, B.; Wang, S.-J.; Tan, W.-Q.; Wu, L.-H. Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays. Journal of Applied Biomaterials & Functional Materials 2021, 19, 1-10.
    (39) Arya, S. S.; Sharma, M. M.; Das, R. K.; Rookes, J.; Cahill, D.; Lenka, S. K. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon 2019, 5, 1-11.
    (40) Arya, S. S.; Sharma, M. M.; Rookes, J. E.; Cahill, D. M.; Lenka, S. K. Vanilla modulates the activity of antibiotics and inhibits efflux pumps in drug-resistant Pseudomonas aeruginosa. Biologia 2021, 76, 781-791.
    (41) de Aragão Tavares, E.; de Medeiros, W. M. T. Q.; de Assis Pontes, T. P.; Barbosa, M. M.; de Araújo, A. A.; de Araújo Jr, R. F.; Figueiredo, J. G.; Leitão, R. C.; da Silva Martins, C.; da Silva, F. O. N. Chitosan membrane modified with a new zinc (II)-vanillin complex improves skin wound healing in diabetic rats. Frontiers in Pharmacology 2019, 9, 1-13.
    (42) Arya, S. S.; Rookes, J. E.; Cahill, D. M.; Lenka, S. K. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Advances in traditional medicine 2021, 21, 1-17.
    (43) Rezaei, M.; Oryan, S.; Nourani, M. R.; Mofid, M.; Mozafari, M. Curcumin nanoparticle-incorporated collagen/chitosan scaffolds for enhanced wound healing. Bioinspired, Biomimetic and Nanobiomaterials 2018, 7, 159-166.
    (44) Rezaii, M.; Oryan, S.; Javeri, A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Materials Science and Engineering: C 2019, 98, 347-357.
    (45) Reddy, D. N.; Huang, F.-Y.; Wang, S.-P.; Kumar, R. Synergistic antioxidant and antibacterial activity of curcumin-C3 encapsulated chitosan nanoparticles. Current Pharmaceutical Design 2020, 26, 5021-5029.
    (46) Basniwal, R. K.; Buttar, H. S.; Jain, V.; Jain, N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. Journal of agricultural and food chemistry 2011, 59, 2056-2061.
    (47) Nair, R. S.; Morris, A.; Billa, N.; Leong, C.-O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech 2019, 20, 1-13.
    (48) Bhoopathy, S.; Inbakandan, D.; Rajendran, T.; Chandrasekaran, K.; Kasilingam, R.; Gopal, D. Curcumin loaded chitosan nanoparticles fortify shrimp feed pellets with enhanced antioxidant activity. Materials Science and Engineering: C 2021, 120, 1-9.
    (49) Azandeh, S. S.; Abbaspour, M.; Khodadadi, A.; Khorsandi, L.; Orazizadeh, M.; Heidari-Moghadam, A. Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iranian Journal of Pharmaceutical Research: IJPR 2017, 16, 868-879.
    (50) Das, R. K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6, 153-160.
    (51) Singh, P. K.; Wani, K.; Kaul-Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances 2014, 4, 60334-60341.
    (52) Bomdyal, R. S.; Shah, M. U.; Doshi, Y. S.; Shah, V. A.; Khirade, S. P. Antibacterial activity of curcumin (turmeric) against periopathogens-An in vitro evaluation. Journal of Advanced Clinical and Research Insights 2017, 4, 175-180.
    (53) Li, F.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. Journal of Biomaterials Applications 2019, 34, 476-486.
    (54) Martinotti, S.; Pellavio, G.; Laforenza, U.; Ranzato, E. Propolis induces AQP3 expression: A possible way of action in wound healing. Molecules 2019, 24, 1544-1555.
    (55) Abbas, M.; Hussain, T.; Arshad, M.; Ansari, A. R.; Irshad, A.; Nisar, J.; Hussain, F.; Masood, N.; Nazir, A.; Iqbal, M. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. International Journal of Biological Macromolecules 2019, 140, 871-876.
    (56) Mohanty, C.; Sahoo, S. K. Curcumin and its topical formulations for wound healing applications. Drug Discovery Today 2017, 22, 1582-1592.
    (57) Jithendra, P.; Rajam, A. M.; Kalaivani, T.; Mandal, A. B.; Rose, C. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Applied Materials & Interfaces 2013, 5, 7291-7298.
    (58) Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Crosslinking of hybrid scaffolds produced from collagen and chitosan. International Journal of Biological Macromolecules 2019, 139, 262-269.
    (59) Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24, 4833-4841.
    (60) Xu, H.; Li, J.; Yang, X.; Li, J.; Cai, J. A novel approach of curcumin loaded chitosan/dextran nanocomposite for the management of complicated abdominal wound dehiscence. Journal of Cluster Science 2020, 31, 823-830.
    (61) Niranjan, R.; Kaushik, M.; Prakash, J.; Venkataprasanna, K.; Arpana, C.; Balashanmugam, P.; Venkatasubbu, G. D. Enhanced wound healing by PVA/Chitosan/Curcumin patches: In vitro and in vivo study. Colloids and Surfaces B: Biointerfaces 2019, 182, 110339.
    (62) Ramasamy, P.; Subhapradha, N.; Shanmugam, V.; Shanmugam, A. Protective effect of chitosan from Sepia kobiensis (Hoyle 1885) cuttlebone against CCl4 induced hepatic injury. International Journal of Biological Macromolecules 2014, 65, 559-563.
    (63) Deka, C.; Aidew, L.; Devi, N.; Buragohain, A.; Kakati, D. Synthesis of curcumin-loaded chitosan phosphate nanoparticle and study of its cytotoxicity and antimicrobial activity. Journal of Biomaterials Science, Polymer Edition 2016, 27, 1659-1673.
    (64) Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S. Z.; Rahim, A.; Rizvi, S. A.; Rehman, I. U. FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews 2018, 53, 703-746.
    (65) Fatoni, A.; Hariani, P. L.; Hermansyah, H.; Lesbani, A. Synthesis and characterization of chitosan linked by methylene bridge and schiff base of 4, 4-Diaminodiphenyl ether-vanillin. Indonesian Journal of Chemistry 2018, 18, 92-101.
    (66) Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F. S.; Kalalinia, F. Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and In Vivo Studies. ACS Biomaterials Science & Engineering 2021, 7, 3886-3897.
    (67) Fernandes, L. L.; Resende, C. X.; Tavares, D. S.; Soares, G. A.; Castro, L. O.; Granjeiro, J. M. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering. Polímeros 2011, 21, 1-6.
    (68) Chaubey, P.; Patel, R. R.; Mishra, B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opinion on Drug Delivery 2014, 11, 1163-1181.
    (69) Gonzalez-Mira, E.; Egea, M.; Souto, E.; Calpena, A.; García, M. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology 2010, 22, 045101.
    (70) Karri, V. V. S. R.; Kuppusamy, G.; Wadhwani, A. D.; Malayandi, R.: Nanohybrid Scaffolds for the Treatment of Diabetic Wounds. In Pressure Injury, Diabetes and Negative Pressure Wound Therapy; Springer, 2017; pp 69-108.
    (71) Kim, Y.; Kim, G. Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities. Journal of Materials Chemistry B 2013, 1, 3185-3194.
    (72) Nguyen, K. T.; Tran, P. H.; Ngo, H. V.; Tran, T. T. Film-Forming Nanogels: Effects of Nanocarriers and Film-Forming Gel on the Sustained Release of Curcumin. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2021, 21, 658-666.
    (73) Mohanty, C.; Pradhan, J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Materials Science and Engineering: C 2020, 111, 110751.
    (74) Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology 2010, 144, 51-63.
    (75) Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS one 2015, 10, e0121313.
    (76) Adamczak, A.; Ożarowski, M.; Karpiński, T. M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 2020, 13, 153.
    (77) Agel, M. R.; Baghdan, E.; Pinnapireddy, S. R.; Lehmann, J.; Schäfer, J.; Bakowsky, U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces 2019, 178, 460-468.
    (78) Chereddy, K. K.; Coco, R.; Memvanga, P. B.; Ucakar, B.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effect of PLGA and curcumin on wound healing activity. Journal of Controlled Release 2013, 171, 208-215.
    (79) Ghaffari, S.; Alihosseini, F.; Sorkhabadi, S. M. R.; Bidgoli, S. A.; Mousavi, S. E.; Haghighat, S.; Nasab, A. A.; Kianvash, N. Nanotechnology in wound healing; semisolid dosage forms containing curcumin-ampicillin solid lipid nanoparticles, in-vitro, ex-vivo and in-vivo characteristics. Advanced Pharmaceutical Bulletin 2018, 8, 395-400.
    (80) Sharma, S.; Rai, V. K.; Narang, R. K.; Markandeywar, T. S. Collagen-based formulations for wound healing: A literature review. Life Sciences 2022, 290, 120096.
    (81) Hunger, M.; Domalik-Pyzik, P.; Chłopek, J. Double crosslinking of chitosan/vanillin as a basis to mechanically strong gradient hydrogel scaffolds for cartilage tissue engineering. Engineering of Biomaterials 2020, 155, 2-11.
    (82) Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W. E. Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews 2010, 62, 59-82.

    下載圖示 校內:2023-06-30公開
    校外:2023-06-30公開
    QR CODE