簡易檢索 / 詳目顯示

研究生: 李俊毅
Lee, Jyun-yi
論文名稱: 蘭摩爾探針電漿量測系統之研發
Development of Langmuir Probe System for Plasma Measurement
指導教授: 陳秋榮
Cheng, Chio-Zong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 45
中文關鍵詞: 電漿磁鏡系統飄移波蘭摩爾探針
外文關鍵詞: Langmuir probe, plasma, magnetic mirror machine, drift wave
相關次數: 點閱:193下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成功大學電漿與太空科學中心的磁鏡系統是台灣第一座磁化電漿儀器,此系統是用來進行關於核融合及太空電漿基礎物理的實驗。這個系統組成元件包含真空腔與抽氣系統、磁場線圈、電漿發射源、量測系統和磁電管振盪器。電漿發射源正在進行測試中,可產生最高達0.2 T 的磁場線圈也已經送達,測試也已經開始。

    本論文的研究目的是研發蘭摩爾探針陣列量測系統,用來量測磁鏡系統的基本電漿參數,並研究由漂移波及其相關的亂流引起的電漿傳輸現象。此蘭摩爾探針系統組成元件包含探針頭、量測電路、隔離放大器、資料擷取系統。這個設計必須滿足量測磁鏡系統的飄移波的需求,如頻率、訊號強度、對電漿的影響。此系統的截止頻率是42 kHz,符合我們的需求。

    這個蘭摩爾探針系統已在這個磁鏡系統進行過測試,但由於電漿發射源仍未正確運作導致測試並未真正開始,我們將繼續修正。

    在今年暑假磁線圈安裝完畢後,完整的實驗就會馬上開始。蘭摩爾探針系統會先用來量測電漿基本參數,如電子密度、溫度和電漿電位。飄移波的辨認及亂流的研究也會緊接著展開。

    The magnetic mirror machine at the Plasma Space Science Center, National Cheng Kung University is the first magnetized plasma device in Taiwan. It is developed for magnetized plasma experiments relevant to fusion and space plasma physics. This system is composed of a vacuum chamber and a pumping system, magnetic field coils, a plasma emitter, diagnostic instruments and a magnetron for electron heating. The plasma emitter was designed and is under test now. The magnet system which can generate magnetic field strength of 0.2 T was already delivered and its test has been initiated.

    The purpose of this thesis is to develop Langmuir probe array as the diagnostic instrument for the measurement of basic plasma parameters of the magnetic mirror machine and the study of plasma transport caused by drift instability and its associated turbulence. Langmuir probe system (LPS) is composed of a sensor head, a detection circuit, an isolation amplifier, and data acquisition device. It was designed and made to satisfy the requirements for diagnosing drift modes in the magnetic mirror machine such as frequency response, signal level and influence on plasma. Benchmark test using a current source shows that cut off frequency of the whole system is 42 kHz which meets our requirement.

    The LPS was applied to the first plasma emitter test. However we could not test the LPS due to the plasma emitter problem which indicates the need of modification of the plasma emitter.

    The full experiment will start soon after installation of magnetic field coils. The LPS is to be applied to measurement of basic plasma parameters such as electron density, temperature and space potential first. After that, identification of drift wave and turbulence study will be initiated subsequently.

    摘要...1 Abstract...2 誌謝...3 Content...4 List of Tables...6 List of Figures...7 Chapter 1 Introduction...9 1.1 What is Fusion...9 1.2 Fusion as a New Energy Resource...10 1.3 Status of Fusion Research...13 1.4 Importance of Turbulence in Fusion Research...17 1.5 Purpose of This Thesis...18 Chapter 2 Development of Magnetic Mirror Machine at PSSC, NCKU...19 2.1 Vacuum Chamber and Pumping System...19 2.2 Magnetic Coil...20 2.3 Plasma Emitter...22 2.4 Magnetron Oscillator System...23 Chapter 3 Principles of Dissipative Drift and Interchange Instability...25 3.1 Dissipative Drift Instability...25 3.2 Interchange Instability...28 3.3 Estimate Frequency of Instabilities...29 Chapter 4 Development of Langmuir Probe System...30 4.1 Principle of Langmuir Probe...30 4.2 Design and Construction of Langmuir Probe System...35 4.2.1 Probe Head...36 4.2.2 Current Voltage Converter...37 4.2.3 Voltage Divider...38 4.2.4 Isolation Amplifier...39 4.2.5 Data Acquisition System...40 4.2.6 Poloidal Langmuir Probe Array...40 4.3 Preliminary Test of Langmuir Probe System...41 4.4 Summary...43 Chapter 5 Summary...44 References...45

    [1] K. Scherer, H. Fichtner, B. Heber, U. Mall, “Space Weather: The Physics Behind a Slogan”, Springer (2005)
    [2] A. Dinklage, T. Klinger, G.Marx, L. Schweikhard, “Plasma Physics: Confinement, Transport and Collective Effects”, Springer (2005)
    [3] http://en.wikipedia.org/wiki/Sun
    [4] http://www.iter.org/sci/Pages/WhatisFusion.aspx
    [5] http://www.eia.doe.gov/pub/international/iealf/table18.xls
    [6] http://www.energywatchgroup.org/fileadmin/global/pdf/EWG_Report_Uranium_3-12
    -2006ms.pdf
    [7] http://en.wikipedia.org/wiki/Tokamak
    [8] http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/tayu/ACT97E/02/0203.htm
    [9] https://www.usiter.org/images/iter_full.jpg
    [10] C. Z. Cheng and H. Okuda, Phys. Rev. Lett., 38,708-711 (1977)
    [11] C. Z. Cheng and H. Okuda, Nuclear Fusion, 18, 587-607 (1978)
    [12] L. Chen and C. Z. Cheng, Phys. Fluids, 23, 2242-2249 (1980)
    [13] C. Z. Cheng, L. Chen, and M. S. Chance, Nuclear Fusion, 22, 293-296 (1982)
    [14] C. Z. Cheng and H. Okuda, Phys. Rev. Lett., 41, 1116-1119 (1978)
    [15] C. Z. Cheng and K. T. Tsang, Nuclear Fusion, 21, 643-650 (1981)
    [16] J, Glanz, Science, 274, 5293, 1600 (1996)
    [17] D. E. Baldwin, M. N. Rosenbluth, et al., Science, 275, 5298, 289-292 (1997)
    [18] P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Control. Fusion, 47, R35 (2005)
    [19] F. Wagner, Phys. Rev. Lett., 49, 1408 (1989)
    [20] K. C. Shaing, Phys. Rev. Lett., 63, 2369 (1989)
    [21] A. Fujisawa et al., Phys. Rev. Lett., 93, 16, id. 165002 (2004)
    [22] M. G. Shats and W. M. Solomon, Phys. Rev. Lett., 88, 4, id. 045001 (2002)
    [23] M. G. Shats and W. M. Solomon,Phys. Rev. Lett. 88, 045001 (2002)
    [24] E. Mazzucato, Phys. Rev. Lett., 101, 0750012008 (2008)
    [25] J. Q. Li and Y. Kishimoto, Phys. Rev. Lett., 89, 115002 (2002)
    [26] K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett. 37, 37 (1980)

    下載圖示 校內:立即公開
    校外:2009-07-14公開
    QR CODE