簡易檢索 / 詳目顯示

研究生: 林義傑
Lin, Yi-Chieh
論文名稱: 樹脂膜壓印製程中版輥熱變形之數值分析
Numerical Analysis of Thermal Deformation of Die Roller in Resin Film Imprinting Process
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 165
中文關鍵詞: 樹脂膜壓印版輥熱應變參數敏感性分析
外文關鍵詞: Resin film imprinting, Die roller, Thermal deformation, Parameter sensitivity analysis
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Extended Abstract ii 致謝 xxxiii 目錄 xxxiv 表目錄 xxxvi 圖目錄 xxxvii 符號說明 xlii Chapter 1 緒論 1 1.1 研究背景 1 1.2 製程介紹 4 1.3 DR幾何介紹 9 1.4 研究動機與目標 15 1.5 文獻回顧 17 1.6 研究流程 18 1.7 本文架構 21 Chapter 2 實驗方法與結果 23 2.1 實驗量測儀器與校正 25 2.1.1 接觸式熱電偶測溫器 26 2.1.2 線性滑軌 29 2.1.3 水平儀 32 2.1.4 百分表 35 2.2 實驗安裝作業 38 2.3 量測點給定 41 2.4 DR表面溫度量測 44 2.5 DR應變量量測 47 2.6 實驗量測數據 49 Chapter 3 計算模型與統御方程式 52 3.1 DR幾何簡化 54 3.1.1 幾何簡化前 54 3.1.2 幾何簡化後 55 3.2 基本假設 59 3.3 程式計算設定 62 3.3.1 統御方程式 62 3.3.2 邊界條件 63 3.4 材料性質建立 72 3.4.1 流體材料性質 72 3.4.2 固體材料性質 75 Chapter 4 計算方法 79 4.1 數值網格建立 79 4.2 固體區網格獨立性 81 4.3 液體區網格獨立性 96 4.4 邊界層區網格獨立性 102 Chapter 5 結果與討論 109 5.1 溫度數據擬合 112 5.1.1 實驗溫度與模擬溫度之比較 113 5.1.2 比較鎳鉻鋼熱傳導率(k值)對表面溫度之影響 116 5.1.3 比較冷油流速(Vc值)對表面溫度之影響 123 5.1.4 比較端面熱對流係數(h值)對表面溫度之影響 130 5.2 應變量數據擬合 137 5.2.1 實驗位移量與模擬位移量之比較 143 5.2.2 比較熱膨脹係數(α值)對位移量之影響 146 5.2.3 比較Poisson's ratio (ν值)對位移量之影響 153 Chapter 6 結論與未來工作 161 6.1 結論 161 6.2 本文貢獻 161 6.3 未來工作 162 參考文獻 163

    [1] "https://read01.com/zh-tw/3zxKE44.html#.ZEYscHZByUk."
    [2] "https://read01.com/zh-tw/Rnj26k2.html#.ZEYtEnZByUk."
    [3] X. Yu, H. Zhang, and J. Yu, "Luminescence anti‐counterfeiting: from elementary to advanced," Aggregate, vol. 2, no. 1, pp. 20-34, 2021.
    [4] Y. Sun, X. Le, S. Zhou, and T. Chen, "Recent progress in smart polymeric gel‐based information storage for anti‐counterfeiting," Advanced Materials, vol. 34, no. 41, p. 2201262, 2022.
    [5] "https://www.bbc.com/ukchina/simp/vert-fut-40493547."
    [6] "http://ir.lib.cyut.edu.tw:8080/bitstream/310901800/8974/1/060527."
    [7] B. Rundh, "Packaging design: creating competitive advantage with product packaging," British food journal, vol. 111, no. 9, pp. 988-1002, 2009.
    [8] M. Poturak, "Influence of product packaging on purchase decisions," European Journal of Social and Human Sciences, no. 3, pp. 144-150, 2014.
    [9] J. S. Blalock, R. G. Holmes, and F. A. Rueggeberg, "Effect of temperature on unpolymerized composite resin film thickness," The Journal of prosthetic dentistry, vol. 96, no. 6, pp. 424-432, 2006.
    [10] L. L. Vasiliev, "Heat pipes in modern heat exchangers," Applied thermal engineering, vol. 25, no. 1, pp. 1-19, 2005.
    [11] "https://www.central-tech.com.tw/chs/products.php?func=p_detail&p_id=7&pc_parent=."
    [12] "https://www.taiwandaikin.com/products-category/2/%E6%B0%9F%E6%A8%B9%E8%84%82%E8%96%84%E8%86%9C."
    [13] "https://www.shine-chi.com.tw/priceinfo/94?lang=en."
    [14] "https://www.yicheen.com/tw/product_i_tape_slitting_machine.html."
    [15] R. K. Shah, E. C. Subbarao, and R. A. Mashelkar, Heat transfer equipment design. CRC Press, 1988.
    [16] "White, G., Solids: thermal expansion and contraction. Contemporary Physics, 1993. 34(4): p. 193-204."
    [17] J. D. Anderson and J. Wendt, Computational fluid dynamics. Springer, 1995.
    [18] G. Xia and A. Schiefermüller, "The influence of support rollers of continuous casting machines on heat transfer and on stress‐strain of slabs in secondary cooling," steel research international, vol. 81, no. 8, pp. 652-659, 2010.
    [19] J. Park, K. Shin, and C. Lee, "Roll-to-roll coating technology and its applications: A review," International Journal of Precision Engineering and Manufacturing, vol. 17, pp. 537-550, 2016.
    [20] Y. Kang, Y. Jeon, H. Ji, S. Kwon, G. E. Kim, and M. G. Lee, "Optimizing roller design to improve web strain uniformity in roll-to-roll process," Applied Sciences, vol. 10, no. 21, p. 7564, 2020.
    [21] B. Babin, G. Peterson, and D. Wu, "Steady-state modeling and testing of a micro heat pipe," 1990.
    [22] X. Peng, G. Peterson, and B. Wang, "Heat transfer characteristics of water flowing through microchannels," Experimental Heat Transfer An International Journal, vol. 7, no. 4, pp. 265-283, 1994.
    [23] P. Forrest and K. B. Armstrong, "Paper 1: The Thermal Fatigue Resistance of Nickel-Chromium Alloys," in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1963, vol. 178, no. 1: SAGE Publications Sage UK: London, England, pp. 3-1-3-7.
    [24] B. H. Thacker, S. W. Doebling, F. M. Hemez, M. C. Anderson, J. E. Pepin, and E. A. Rodriguez, "Concepts of model verification and validation," 2004.
    [25] "https://reurl.cc/2LmXOE."
    [26] "https://www.researchmfg.com/2021/06/thermocouple/."
    [27] "https://patents.google.com/patent/CN102788651A/zh."
    [28] "https://tw.misumi-ec.com/tech/linear_guides/."
    [29] "https://www.abbalinear.com/zh-tw/technology/support.php."
    [30] " https://www.imynest.com/content/72436.html."
    [31] "https://blog.xuite.net/ping52020/twblog/174101875."
    [32] "https://reurl.cc/VLddEY."
    [33] "https://www.jendow.com.tw/wiki/%E5%8D%83%E5%88%86%E8%A1%A8."
    [34] "https://blog.xuite.net/ping52020/twblog/174101916."
    [35] "https://www.tohatsu.com.tw/Product/Info/1553/?itemid=1791&type=G."
    [36] "https://www.sccssurvey.co.uk/marking-setting-out/station-markers/anchor-station-markers.html."
    [37] S. I. Novikova, "Thermal expansion of solids," Moscow Izdatel Nauka, 1974.
    [38] G. Allaire, Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation. OUP Oxford, 2007.
    [39] G. Park, C. Kim, M. Lee, and C. Choi, "Building geometry simplification for improving mesh quality of numerical analysis model," Applied Sciences, vol. 10, no. 16, p. 5425, 2020.
    [40] J. Wu, Z. Guo, and B. Song, "Application of lagrange equations in heat conduction," Tsinghua Science and Technology, vol. 14, no. S2, pp. 12-16, 2009.
    [41] M. Schäfer and I. Teschauer, "Numerical simulation of coupled fluid–solid problems," Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 28, pp. 3645-3667, 2001.
    [42] D. C. Wilcox, Turbulence modeling for CFD. DCW industries La Canada, CA, 1998.
    [43] F.-K. Benra, H. J. Dohmen, J. Pei, S. Schuster, and B. Wan, "A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions," Journal of applied mathematics, vol. 2011, 2011.
    [44] R. W. Cahn, P. Haasen, and E. J. Kramer, "Materials science and Technology-A comprehensive treatment," International Journal of Materials Research, vol. 84, no. 12, pp. 866-866, 1993.
    [45] D. Durville, "Numerical simulation of entangled materials mechanical properties," Journal of materials science, vol. 40, pp. 5941-5948, 2005.
    [46] "https://www.therminol.com/sites/therminol/files/documents/TF-8725_Therminol_SP.pdf."
    [47] "https://reurl.cc/kXz6ed."
    [48] K. Jin et al., "Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys," Materials & Design, vol. 117, pp. 185-192, 2017.
    [49] T. N. Narasimhan, "Fourier's heat conduction equation: History, influence, and connections," Reviews of Geophysics, vol. 37, no. 1, pp. 151-172, 1999.
    [50] H. Ibach and H. Lüth, Solid-state physics: an introduction to principles of materials science. Springer Science & Business Media, 2009.
    [51] C. Kittel, Introduction to solid state physics. John Wiley & sons, inc, 2005.
    [52] J. F. Thompson, Z. U. Warsi, and C. W. Mastin, Numerical grid generation: foundations and applications. Elsevier North-Holland, Inc., 1985.
    [53] J. Braun and M. Sambridge, "A numerical method for solving partial differential equations on highly irregular evolving grids," Nature, vol. 376, no. 6542, pp. 655-660, 1995.
    [54] J. H. Ferziger, M. Perić, and R. L. Street, Computational methods for fluid dynamics. springer, 2019.
    [55] V. D. Liseikin, Grid generation methods. Springer, 1999.
    [56] M. Lee, G. Park, C. Park, and C. Kim, "Improvement of grid independence test for computational fluid dynamics model of building based on grid resolution," Advances in Civil Engineering, vol. 2020, pp. 1-11, 2020.
    [57] H. Schlichting and J. Kestin, Boundary layer theory. Springer, 1961.
    [58] V. N. Gudivada, D. Rao, and V. V. Raghavan, "Big data driven natural language processing research and applications," in Handbook of statistics, vol. 33: Elsevier, 2015, pp. 203-238.

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE