簡易檢索 / 詳目顯示

研究生: 嚴得綺
Yen, Te-Chi
論文名稱: 以多孔氧化鋁粗化LED表面之研究
Microroughening the Surface of LEDs with Porous Alumina
指導教授: 洪茂峰
Houng, Mau-Phon
王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 73
中文關鍵詞: 多孔氧化鋁表面微粗化陽極氧化
外文關鍵詞: anodization, porous alumina, microroughen
相關次數: 點閱:119下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   外部量子效率在LED的製作上是非常重要的,根據司乃耳定律,傳統LED的外部量子效率被LED內部所發生的全反射給侷限住,而會發生全反射的原因則是因為半導體和空氣間存在著很大的折射細數差異。也因為這樣才會造成內部量子效率和外部量子效率間如此大的差距。因此有許多人致力於提升外部量子效率的工作上,而其中一個方法就是將LED表面給粗化。此外,多孔氧化鋁的折射係數值為1.7,剛好藉於P型磷化鎵與空氣間,因此我們不僅可以利用多孔氧化鋁來當作中間層,更可以利用它的多孔性來粗化LED表面。

      本論文分為兩部份,第一部份介紹多孔氧化鋁的製備以及特性:多孔氧化鋁是由鋁在酸性電解液中氧化而形成,我們可以藉由控制氧化的條件去調整孔洞的間距(由25-80奈米)與直徑(由20-45奈米),進一步去利用這些特性來做不同的應用,像是沉積或是蝕刻光罩。在本文我們則是直接利用其多孔性來達成作粗化LED表面的目的;第二部份則是直在在紅光LED上生成多孔氧化鋁,並在LED製程後量測其電性以及光性,藉由上述的方法,我們使AlGaInP發光二極體的亮度提升了6%。

     As is well known, external quantum efficiency is very important in fabricating LEDs. Accordind to the Snell’s law, the external quantum efficiency of conventional LEDs is limited by the total internal reflection of the generated light due to the large difference in the refractive index between semiconductor and air. Thus a significant gap exists between the internal quantum efficiency and the external quantum efficiency. Therefore, much work has focused on improving the external quantum efficiency. One method is to roughen the upper surface of LEDs. The refractive index of porous alumina is between GaP and air. Not only we can use it as the intermedium but the porosity may microroughen the surface of LEDs.

     There are two parts in this thesis. One is the introduction of the properties and fabrication of porous alumina. The porous alumina is the anodization of aluminum in acid electrolyte. The diameter of the pores(25-80nm) and the interpore distance(20-45nm) can be modulated by changing the anodization parameters. Furthermore, using porous alumina as evaporation and etching mask would be successful by the properties. In this thesis, we directly utilize the alumina to microroughen the surface of LEDs. In the other part of this thesis, the porous alumina formd on the upper surface of red-light LEDs. The optical and electrical measurement can be obtaind after we complete all process. We have demonstrated that there was additional 6% improvement in the luminous intensity of GaAlInP LED by employing the above method.

    第一章 序論.....................................................................................1 1-1 研究背景...........................................................................................1 1-2 研究動機...........................................................................................2 第二章 原理.....................................................................................4 2-1 多孔陽極氧化鋁(Anodic Aluminun Oxide)...................................4 2-1-1有序的自我組成多孔陽極氧化鋁...............................................4 2-1-2 多孔氧化鋁的形成機制.............................................................6 2-1-3 增加多孔氧化鋁的孔洞規則性.................................................8 2-2 LED發光效率與表面粗化...........................................................10 2-2-1 LED發光效率............................................................................11 2-2-2 Fresnel反射................................................................................13 2-2-3 司乃耳定律(Snell’s Law)與表面粗化......................................15 第三章 實驗......................................................................................18 3-1 多孔氧化鋁的製備.........................................................................18 3-1-1 陽極氧化設備、環境與條件.....................................................18 3-1-2 塊鋁的清潔與鋁膜的沉積.......................................................18 3-1-3 鋁膜的完全反應以及孔洞的寬化...........................................19 3-1-4 增加孔洞規則性-二次氧化法..................................................20 3-2 將多孔氧化鋁應用於紅光LED上...............................................21 3-2-1 紅光LED晶片的準備..............................................................21 3-2-2 晶片的清潔與鋁膜的沉積.......................................................21 3-2-3 鋁膜的氧化與寬化...................................................................22 3-2-4 定義電極區與氧化鋁的去除...................................................22 3-2-5 n p型電極的沉積......................................................................23 第四章 多孔陽極氧化鋁之分析.............................................24 4-1 鋁膜的沉積方式比較...................................................................24 4-2 反應時間與消耗鋁膜的厚度.......................................................25 4-3 氧化電壓與孔洞間距的關係.......................................................26 4-4 寬化速率.......................................................................................27 4-5 形成氧化鋁的體積擴張率...........................................................28 4-6 一次氧化鋁的去除.......................................................................28 第五章 以多孔氧化鋁實現LED粗化..............................30 5-1在紅光LED生成多孔氧化鋁.........................................................30 5-2 粗化對LED效率之影響..............................................................31 第六章 結論與未來工作............................................................34 6-1結論..................................................................................................34 6-2未來工作..........................................................................................34 參考文獻................................................................................................36

    [1] S. Nakamura, “InGaN-based violet laser diodes,” Semicond. Sci. Technol., vol. 14, pp. R27-R40, 1999.
    [2] W. N. Carr and G. E. Pittman, “One-watt GaAs p-n junction infrared sensor,” Appl. Phys. Lett., vol. 3, pp. 173-175, 1963.
    [3] M. R. Krames et al., “High-power truncated-inverted-pyramid (Al Ga ) In P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365–2367, 1999.
    [4] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film lightemitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174–2176, 1993.
    [5] R. Windisch et al., “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography,” IEEE Trans. Electron Devices, vol. 47, pp. 1492–1498, July 2000.
    [6] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett., vol. 74, pp. 2256–2258, 1999.
    [7] Shyi-Ming Pan, Ru-Chin Tu, Yu-Mei Fan, Ruey-Chyn Yeh, and Jung-Tsung Hsu,“Improvement of InGaN–GaN Light-Emitting Diodes With Surface-Textured Indium–Tin–Oxide Transparent Ohmic Contacts,” IEEE Photonics Technology letters, vol. 15, pp. 649–651, 2003.
    [8] D. AlMawlawi, N. Coombs, and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size,” J. Appl. Phys. Vol. 70, pp. 4421–4425, 1991.
    [9]H. Masuda and K. Fukuda, Science 268, 1466 (1995).
    [10] H. Masuda, F. Hasegwa, and S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution,” J. Electrochem. Soc. vol. 144, pp. L127-L130. 1997.
    [11] H. Masuda, K. Yada, and A. Osaka, “Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution,” Jpn. J. Appl. Phys., Part 2 vol. 37, pp. L1340-L1342, 1998.
    [12] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, J. Appl. Phys. vol. 84, pp. 6023–6026, 1998
    [13] D. Crouse,Yu-Hwa Lo, A. E. Miller and M. Crouse, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer,” Appl. Phys. Lett., vol. 76, pp. 49–51, 2000.
    [14] C. H. Martin, “Membrane-Based Synthesis of Nanomaterials,” Chem.Mater. vol. 8, pp. 1739-1746, 1996.
    [15] X. Bao, F. Li, and R. M. Metzger, “Activation volume of a-Fe particles in alumite films,” J. Appl. Phys. 81, pp. 3806–3808, 1997.
    [16] Masashi NAKAO, Satoshi OKU, Toshiaki TAMAMURA, Kenshi YASUI and Hideki MASUDA, “GaAs and InP Nanohole Arrays Fabricated by Reactive Beam Etching Using Highly Ordered Alumina Membranes,” Jpn. J. Appl. Phys vol. 38, pp. 1052-1055, 1999.
    [17] C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. vol. 85, pp. 3476-3479, 2000.
    [18] Y. D. Wang,S. J. Chuaa, M. S. Sander, P. Chen,S. Tripathy and C. G. Fonstad, ”Fabrication and properties of nanoporous GaN films,” Appl. Phys. Lett., vol. 85, pp. 816–818, 2004.
    [19] Hidetaka Asoh, Mamoru Matsuo, Megumi Yoshihama, and Sachiko Ono, “Transfer of nanoporous pattern of anodic porous alumina into Si substrate,” Appl. Phys. Lett., vol. 83, pp. 4408–4410, 2003
    [20] H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys., Part 2 vol. 35, pp. L126-L129, 1996.
    [21] M.S. Sander , L.-S. Tan,” Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Templates,” Adv.Funct.Master. vol. 13, pp. 393-397, 2003
    [22] Setoh, S. Miyata, A., Sci. Pap. Inst. Phys. Chem. Res., Tokyo, pp. 2772. 1932
    [23] J. P. O’Sullivan, G. C. Wood, Proc. R. Soc. Lond., Ser. A317, pp. 511, 1970.
    [24] J. Siejka and C. Ortega, J. Electrochem. Soc. vol. 124, pp. 883, 1977.
    [25] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. vol. 72, pp. 1173–1175, 1998.
    [26] V. P. Parkhutik, Corros. Sci. 26, pp. 295, 1986.
    [27] G. E. Thompson, R. C. Furneaux, and G. C. Wood, Nature vol. 272, pp. 433, 1978.
    [28] V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. vol. 25, pp. 1258, 1992.
    [29] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. vol. 10, pp. 2470-2480, 1998.
    [30] Y. Kanamoria,K. Hane, H. Sai,H. Yugami,” 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask”, Appl. Phys. Lett. vol. 78, 2001
    [31] Y. Du et al., Appl. Phys. Lett. 20, 2951 (1999).
    [32] Hideki Masuda,Haruki Yamada, Masahiro Satoh, and Hidetaka Asoh,” Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett. vol. 71 ,pp. 2770-2772, 1997.
    [33] Hidetaka Asoh, Kazuyuki Nishio, Masashi Nakao, Toshiaki Tamamura, and Hideki Masudaa, “Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al,”J. Electrochem. Soc. vol. 148, pp. B152-B156, 2001.
    [34] Hideki Masuda, Masato Yotsuya, Mari Asano, and Kazuyuki Nishio, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. vol. 78, pp. 826-828, 2001.
    [35] C. Y. Liu, A. Datta, and Y. L. Wanga, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. vol. 78, pp. 120-122, 2001.
    [36] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface” J. Appl. Phys. vol. 93, pp. 9383-9385, 2003.

    下載圖示 校內:2006-07-21公開
    校外:2006-07-21公開
    QR CODE