| 研究生: |
林維信 Lin, Wei-Xin |
|---|---|
| 論文名稱: |
具不同親疏水性二氧化矽粒子在氣液界面行為及其薄膜結構之研究 The study on the behavior of nano-particles on the gas/liquid interface and its deposition onto solid substrate. |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 單分子層 、表面改質 、二氧化矽 |
| 外文關鍵詞: | silica, monolayer, modification, Langmuir-Blogett |
| 相關次數: | 點閱:64 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用四碳醇、八碳醇及十二碳醇進行二氧化矽表面酯化反應,以製備出不同親疏水特性的粒子,並以其來探討奈米粒子單分子膜在氣液界面的行為及粒子LB膜的特性。結果顯示經八碳醇及十二碳醇改質的粒子具有較大的疏水性,其單分子膜具有類似的特性,膜壓-面積(π-A)等溫線的起始面積(lift-off point)較大,單分子膜具有較大的可壓縮性,薄膜崩潰時在阻隔棒附近有摺皺現象(folding),而經四碳醇改質粒子的親水性大,等溫線的起始面積較小,曲線較陡,薄膜崩潰時無摺皺現象。此外,對於疏水性較強的粒子,由於在氣液界面上的凡得瓦吸引力較強,單分子膜受壓縮後的再分散性不佳,因此遲滯現象較明顯,但對親水性較佳的粒子,由於粒子與水分子間的作用力大,故再分散性佳。而實驗中亦發現粒子薄膜的均勻性主要受到粒子在溶液中的均一分散影響。經四碳醇改質之粒子其薄膜可以觀察到許多3-D聚集體,而八碳醇及十二碳醇改質之粒子薄膜則無此現象,判斷這些3-D結構即是粒子在溶液中分散不均勻所致。
將粒子單分子膜轉移至玻璃基板上以製備LB膜,並以SEM觀察其表面型態。實驗結果發現經四碳醇改質之粒子LB膜表面有較大的覆蓋率,此可歸因於粒子在水面上的較佳分散性,但粒子的親水性較強,在分散液中的分散性較差,故其LB膜上有較多的粒子聚集結構。相反的對八碳醇及十二碳醇改質過的粒子,其LB膜上的聚集結構較少,但因粒子間的凡得瓦吸引力大於水分子對其之分散力,LB膜上呈現有二維的聚集區,並有空洞產生。
Silica particles with different surface wettabilities were prepared by surface esterification with butanol, octanol, and dodecanol. Such silica particles were dispersed in chloroform and spread on the air/water interface to prepare the particle monolayer. The effects of surface wettability on the behavior of the particle monolayer and the characteristic of corresponding Langmuir-Blodgett film were studied. The results show that the particles modified by octanol and dodecanol have higher hydrophobicility than that modified by butanol. The monolyer of particles with higher hydrophobicility show the characteristics of large lift-off point, higher compressibility, and significant hysteresis. The LB films prepared by the more hydrophobic particles exhibit 2-dimentional (2D) aggregative domains with low ratio of surface coverage. Such properties can be attributed to the higher Van der Waals attraction among the particles comparing with the interaction between the particles and water subphase. The monolayer prepared by butanol-modified silica particles shows a contrary behavior due to the higher interaction of silica particles with water. The LB films of butanol-modified silica particles exhibit a more uniform morphology without 2D aggregative domains. However, 3D aggregative structure can be inspected on the LB film, which is probably due to the less dispersion condition of these particles in chloroform.
Ahmed, A., Gallei, E., and Unger, K. “An infrared study of surface hydrolysis of alcohol bonded silica” Ber. Bunsen-Ges. Phys. Chem. 79, 66, 1975
Armstrong, A. J., Mockler, R. C., and O’Sullivan, W. J., “Isothermal-expansion melting of two-dimensional colloidal monolayers on the surface of water,” J. Phys. Condens. Matter 1, 1707, 1989
Aveyard, R., Binks, B. P., Fletcher, P. D. I., and Rutherford, C. E., “Measurement of contact angles of spherical monodisperse particles with surfactant solutions,” Colloid and Surfaces A 83, 89, 1994
Aveyard, R., Clint, J. H., Nees, D., and Paunov, V. N., “Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces,” Langmuir 16, 1969, 2000
Badley, R. D., Ford, W. T., McEnroe, F. J., and Assink, R. A., “Surface modification of colloid silica,” Langmuir 6, 792, 1990
Ballard, C. C., Broge, E. C., Iler, R. K., John, D. S. St.,
and McWhorter, J. R., “Esterification of the Surface of amorphous Silica,” J. phys. chem. 65, 20, 1960
Bertone, J. F., Jiang, P., Hwang, K. S., Mittelman, D. M., and Colvin, V. L., “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83, 300, 1999
Braun, P. V., Zehner, R. W., White, C. A., Weldon, M. K., Kloc, C., Patel, S. S., and Wiltzius P., “Epitaxial growth of high dielectric contrast three-dimensional photonic crystals,” Adv. Mater. 13, 721, 2001
Cao, L. Wan, H., Huo, L., and Xi, J., “A novel method for preparing ordered sno2/tio2 alternate nanoparticulate films,” J. Colloid Interfaces Sci. 244, 97, 2001
Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R., and Yeh, M. C., “Effect of water content in solvent on the critical temperature in the formation of self-asembled hexadeyltrichlorosilane monolayers on mica,” Chemical Physics Letters 346, 241, 2001
Clint, J. H., and Taylor, S. P., “Particle size and interparticle forces of overbased detergents: a Langmuir trough study,” Colloid and surfaces 65, 61, 1992
Collier, C. P., Saykally, R. J., Shiang, J. J., Henrich, S. E., and Heath, J. R., “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978, 1997
Colvin, V. L., “From opals to optics: colloidal photonic crystals,” MRS Bull 26, 637, 2001
de Hoog, E. H. A., de Jong-van Steensel, L. I., Snel, M. M. E., van der Eerden, J. P. J. M., and Lekkerkerker, H. N. W., “Preparation of a colloidal crystal at a wall characterized with AFM,” Langmuir 17, 5486, 2001
Denkov, N., Velev, O., Kralchevski, P., Ivanov, I., Yoshimura, H., Nagayama, K., “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3138, 1992
Dimitrov, A. S., and Nagayama, K., “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12, 1303, 1996
Dimitrov, A. S., Miwa, T., and Nagayama, K., “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15, 5257, 1999
Dushkin, C. D., Nagayama, K., Miwa, T., and Kralchevsky P. A., “ Colored multilayers from transparent submicrometer spheres,” Langmuir 9, 3695, 1993
Gates, B., Quin, D., and Xia, Y., “Assembly of nanoparticles into opaline structures over large areas,” Adv. mater. 11, 466, 1999
Ghezzi, F., Earnshaw, J. C., Finnis, M., and McCluney, M., “Pattern formation in colloidal monolayers at the air–water interface,” J. Colloid Interface Sci. 238, 433, 2001
Goodwin, J. W., Ottewill, R. H., and Parentich, A. , “Optical examination of strutured colloidal dispersions,” J. Phys. Chem. 84, 1580, 1980
Grier, D. G., “When like charges attract: interactions and dynamics in charge-stabilized colloidal suspensions,” J. Phys. Condens. Matter 12, 85, 2000
Hayashi, H., Kumamoto, Y., Suzuki, T., and Hirai, T. , “Imaging by polystyrene latex particles,” J. Colloid Interfaces Sci. 144, 538, 1991
Hinz, P., and dislich, H., “Anti-reflecting light-scatting coatings via the sol-gel-procedue,” J. Non-Cryst Solids 82, 411, 1986
Horvolgyi, Z., Nemeth, S., and Fendler, J. H., “Monoparticulate layers of silanized glass spheres at the water-air interface: particle-particle and particle-subphase interactions,” Langmuir 12, 997, 1996
Horozov, T. S., Aveyard, R. Clint, J. H., and Binks, B. P., “Oder-disorder transition in monolayers of modified monodisperse silica particles at the octane-water interface,” Langmuir 19, 2822, 2003
Huang, Z., Thiagarajan, V. S., Lyngberg, O. K., Scriven, L. E.,and Flickinger, M. C., “Microstructure evolution in polymer latex coatings for whole-cell biocatalyst application,” J. Colloid Interface Sci. 215, 226, 1999
Hurd, A. J., and Schaeffer, D. W., “Diffusion-limited aggregation in two dimensions,” Phys. Rev. Lett. 54, 1043, 1985
Iakovenko, S. A. Trifonov, A. S., Mamedov, A., Nagesha, D. K., Hanin, V. V., Soldatov, E. C., and Kotov, N. A., “One- and two-dimensional arrays of magnetic nanoparticles by the Langmuir-Blodgett technique,” Adv. Mater. 11, 388, 1999
Jesionowski, T., and Krysztafkiewicz, A., “Influence of silane coupling agents on surface properties of precipitated silica,” Applied Surface Science 172, 18, 2001
Jiang, P., Cizeron, J., Bertone, J. F., and Colvin, V. L., “Preparation of macroporous metal films from colloidal crystals,” J. Am. Chem. Soc. 121, 7957, 1999
Jiang, P., Ostijic, G. N., Narat, R., Mittelman, D. M., and Colvin, V. L., “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389, 2001
Jiang, P., Bertone, J. F., and Colvin, V. L., “A lost-wax approach to monodisperse colloids and their crystals,” Science 291, 453, 2001
Kampes, A., and Tieke, B., “Self-assembly of carboxylaed latex particles at charged surfaces: influences of preparation conditions on the state of order of the monolayers,” Materials Science and Engineering C 8-9, 195, 1999
Kiselev, A. V. Kolloidn. Zh. 2, 17, 1936
Kondo, M., Shinozaki, K., Bergstrom, L., and Mizutani, N., “Preparation of colloidal monolayers of alkoxylated silica particles at the air-liquid interface,” Langmuir 11, 394. 1995
Krasnoslobodtsev, A. V., and Smirnov, S. N., “Effect of water on silanization of silica by trimethoxysilanes,” Langmuir 18, 3181, 2002
Kurth, D. G., Lehmann, P., and Lesser, C., “Engineering
the surface chemical properties of semiconductor nanoparticles: surfactant-encapsulated CdTe-clusters,” Chem. Commun. P.949-950
Lin, S. Y. et al., “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251, 1998
Lu, Y., Yin, Y., Gates, B., and Xia, Y., “Growth of Large Crystals of Monodispersed Spherical Colloids in Fluidic Cells Fabricated Using Non-photolithographic Methods,” Langmuir 17, 6344, 2000
Martínez-López, F., Cabrerizo-Vílchez, M. A., and Hidalgo-Álvarez, R., “Colloidal interaction at the air–liquid interface,” J. Colloid Interfaces Sci. 232, 303, 2000
Mate, M., Zrinyi, M., and Horvolgyi, Z., “Structure formation and interaction of silanized glass beads at water-fluid interfaces: a redispersability study,” Colloids and Surfaces A 108, 147, 1996
Mate, M., Fendler, J. H., Ramsden, J. J., Szalma, J., and Horvolgyi, Z., “Eliminating surface pressure gradient effects in contact angle determination of nano- and microparticles using a film balance,” Langmuir 14, 6501, 1998
McGovern, M. E., Kallury, K. M. R., and Thompson, M., “Role of solvent on the silanization of glass with octadecyltrichlorosilane,” Langmuir 10, 3607, 1994
Mertens, G., and Fripiat, J. J., “The methanol-silica gel system,” J. Colloid Interfaces Sci. 42, 169, 1973
Miguez, H., Meseguer, F., Lopez, C., Holgado, M., Andreasen, G., Mifsud, A., and Fornes, V., “Germanium fcc structure from a colloidal crystal template,” Langmuir 16, 4405, 2000
Muramatsu, K., Takahashi, M., Tajima, K., and Kobayashi, K., “Two-dimensional assemblies of colloidal sio2 and tio2 particles prepared by the Langmuir–Blodgett technique,” J. Colloid Interfaces Sci. 242, 127, 2001
Nakahama, K., Kawaguchi, H., and Fujimoto, K., “A novel preparation of nonsymmetrical microspheres using the langmuir-blodgett technique,” Langmuir 16, 7882, 2000
Noda, S. et al., “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604, 2000
Norris, D. J., and Vlasov, Y. A., “Chemical approaches to three-dimensional semiconductor photonic crystals,” Adv. Mater. 13, 371, 2001
Onoda, G. Y., “Direct observation of two-dimensional, dynamic clustering and ordering with colloids,” Phys. Rev. Lett. 55, 226, 1985
Ossenkamp, G. C., Kemmitt, T.,and Johnston, J. H., “New approaches to surface-alkoxylated silica with increased hydrolytic stability,” Chem. Mater. 13, 3975, 2001
Ossenkamp, G. C., Kemmitt, T., and Johnston, J. H., “Toward functionalized surfaces through surface esterification of silica,” Langmuir 18, 5749, 2002
Paunov, V. N., “Novel method for determining the three-phase contact angle of colloid particles adsorbed at air-water and oil-water interfaces,” Langmuir 19, 7970, 2003
Plueddeman, E. P., Silane coupling agents, Plenum Press: New York, 1991
Rengarajan, R., Jiang, P., Colvin, V., Mittleman, D., “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517, 2000
Robinson, D. J., and Earnshaw, J. C., “Experimental study of colloidal aggregation in two dimensions. I. Structural aspects,” Phys. Rev. A. 46, 2045, 1992
Robinson, D. J., and Earnshaw, J. C., “Experimental study of colloidal aggregation in two dimensions. II. Kinetic aspects,” Phys. Rev. A. 46, 2055, 1992
Robinson, D. J., and Earnshaw, J. C., “Experimental study of colloidal aggregation in two dimensions. III. Structural dynamics,” Phys. Rev. A. 46, 2065, 1992
Robinson, D. J., and Earnshaw, J. C., “Initiation of aggregation in colloidal particle monolayers,” Langmuir 9, 1436, 1993
Shimizu, Y., Kawanabe, K., Takao, Y., and Egashira, M., “Monolayer packing of submicrometer ceramic spheres by employing a langmuir-blodgett film of dicarboxylic acid,” J. Am. Ceram. Soc. 84, 301, 2001
Stober, W., and Fink, A., “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interfaces Sci. 26, 62, 1968
Sun, J., and Stirner, T., “Molecular dynamics simulation of the surface pressure of colloidal monolayers,” Langmuir 17, 3103, 2001
Szekeres, M. K. et al., “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir-Blodgett method,” J. Mater. Chem. 12, 3268, 2002
Tieke, B., Fulda, K. U., and Kampes, A., Mono- and Multilayers of Spherical Polymer Particles Prepared by Langmuir-Blodgett and Self-Assembly Techniques,University of cologne, Germany
Tolnai, Gy., Csempesz, F., Kabai-Faix, M., Kalman, E., Keresztes, Zs., Kovacs, A. L., Ramsden, J. J., and Horvolgyi, Z., “Preparation and characterization of surface-modified silica-nanoparticles,” Langmuir 17, 2683, 2001
Utsugi, H., Horikoshi, H., and Matsuzawa, T., “Machanism of esterification of alcohols with surface silanols and hydrolysis of surface esters on silica gels,” J. Colloid Interfaces Sci. 50, 154, 1975
Vallant, T., Kattner, J., Brunner, H., and Hoffmann, H., “Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using in situ attenuated total reflection infrared spectroscopy,” Langmuir 15, 5339, 2002
Van Duffel, Bart - Ras, Robin H. A. - De Schryver, Frans C. - Schoonheydt, Robert A., “Langmuir-Blodgett deposition and optical diffraction of two-dimensional opal,” J. Mater. Chem. 11, 3333, 2002
Vansant, E. F., Van Der Voort, P., and Vrancken, K. C., Characterization and chemical modification of the silica surface, Elsevier: Amsterdam, 1995
Velikov, K. P., Christova, C. G., Dullens, R. P. A., and van Blaaderen, A., “Layer-by-layer growth of binary colloidal crystals,” Science 296, 106, 2002
Wang, C. Zhang, Y., Dong, L., Fu, L., Bai, Y., Li, T., Xu, J., and Wei, Y., “Two-dimensional ordered arrays of silica nanoparticles,” Chem. Mater. 12, 3662, 2000
Wijnhoven, J. E. G. J., and Vos, W. L., “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802, 1998
Yamasaki, T., Tsutsui, T., “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916, 1999
Yi, G. R., Moon, J. H., and Yang, S. M., “Ordered macroporous particles by colloidal templating,” Chem. Mater. 13, 2613, 2001.
Yoldas, BE, and Partlow, D. P., “Wide spectrum antireflective coating for fused silica and other glasses,” Appl Opt 23, 1418, 1984.
Zhan, J. H., Zhan, P., Wang, Z. L., Zhang, W. Y., and Ming, N. B., “Preparation of monodisperse silica paricles with controllable size and shape,” J. Mater. Res. 18, 649, 2003.