簡易檢索 / 詳目顯示

研究生: 石容華
Shi, Rong-Hua
論文名稱: 利用模板中的奈米流體引導蛋白質組裝形成陣列
Arrays of Protein Assemblies Formed by Nanofluids within Colloidal Templates
指導教授: 李介仁
Li, Jie-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 奈米流體分子自組裝蛋白質冠
外文關鍵詞: Nanofluids, Self-assembly, Protein corona
相關次數: 點閱:61下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自然界中,生物體內具有許多高度有序的結構,生物分子可以透過自發性地從無序狀態自組裝成有序結構。近年來,許多研究人員對於分子自組裝產生極大的興趣。因此,我們使用奈米粒子排列形成最密堆積,奈米流體於粒子空隙用來引導蛋白質自組裝。我們使用原子力顯微鏡 (atomic force microscopy, AFM)來分析由不同奈米流體引導的蛋白質組裝陣列。由結果表明具有不同表面特性的奈米球模板會影響奈米顆粒表面與蛋白質之間的相互作用以及蛋白質組裝。由膠體或二氧化矽奈米球模板形成的兩種納米流體系統顯示出不同的蛋白質組裝機制。相對疏水的膠體模板通過蒸發和毛細管力引導蛋白質排列,而親水的二氧化矽奈米球模板會傾向形成蛋白質冠(protein corona),蛋白質會在蒸發和組裝過程中吸附於二氧化矽奈米粒子的表面。此外,我們藉由控制濃度、奈米粒子的直徑、奈米粒子與蛋白質的比例,以製造具有不同形態的各種蛋白質組裝體陣列,例如同心環和週期性奈米纖維結構。在未來,我們希望利用這些蛋白質組裝陣列作為生物界面,模擬生物體內的特殊結構,並應用於生物醫學上。

    In nature, the living organisms have many highly ordered structures. Biomolecules can spontaneously form ordered structures from disordered states through self-assembly. In recent years, many researchers have interests in molecular self-assembly. Hence, we used the nanoparticles that form the close-packed arrangement containing interstitial spaces to produce nanofluids for guiding proteins self-assembly. We used atomic force microscopy (AFM) to analyze the arrays of protein assemblies guided by different nanofluids. The results demonstrate that the colloidal templates with different surface properties would affect the interaction between the nanoparticle surface and the proteins as well as protein assembly. Two nanofluid systems formed with latex or silica colloidal templates show distinct mechanisms to assemble proteins. Relatively hydrophobic latex colloidal templates guide the proteins to arrange by evaporation and capillary forces while the hydrophilic silica colloidal templates prefer forming protein corona that the proteins would absorb on the surfaces of silica nanoparticles during evaporation and assembly process. Additionally, we controlled the concentrations, the diameters of nanoparticles, the volume ratio of nanoparticle-to-protein to fabricate various arrays of protein assemblies with different morphologies, such as concentric rings, and circular nanofibril. In the future, we would like to use those arrays of protein assemblies as biointerrfaces to imitate the special structures inside the living organism for biomedical applications.

    目錄i 圖目錄iii 第一章、緒論1 1.1前言1 1.2牛血清蛋白(Bovine Serum Albumin, BSA)1 1.3第一型膠原蛋白(Type I collagen)2 1.4奈米結構製程技術4 1.5奈米流體(Nanofluids)7 1.6原子力顯微鏡(Atomic Force Microscopy, AFM)8 第二章、藉由不同表面性質的奈米球模板引導牛血清蛋白自組裝11 2.1實驗目的11 2.2實驗部分12 2.2.1 藥品12 2.2.2儀器12 2.2.3實驗步驟13 2.3 結果與討論15 2.3.1比較利用表面性質不同的奈米球所製成的奈米流體對於蛋白質自組裝之差異15 2.3.2奈米球表面性質對蛋白質於奈米流體中的自組裝排列之影響16 2.3.3改變蛋白質濃度、奈米球—蛋白質體積比對其於奈米流體中之自組裝影響19 2.3.4奈米球模板尺寸引導蛋白質自組裝之差異21 2.3.5藉由二氧化矽雙球奈米流體引導蛋白質於表面自組裝排列22 第三章、利用二氧化矽奈米球模板製作奈米流體調控第一型膠原蛋白於表面自組裝24 3.1實驗目的24 3.2實驗部分25 3.2.1 藥品25 3.2.2儀器25 3.2.3實驗步驟26 3.3 結果與討論29 3.3.1不同物種第一型膠原蛋白溶液培育時間及濃度對其在基材上自組裝的影響29 3.3.2奈米球模板移除方法對膠原蛋白自組裝結構之影響30 3.3.3 膠原蛋白培育時間對其二氧化矽奈米球模板之自組裝結構差異31 3.3.4 奈米球模板尺寸差異對不同物種膠原蛋白自組裝的影響32 3.3.5 不同物種膠原蛋白之型態於奈米球模板上之自組裝影響33 第四章、結論與未來方向35 圖附錄37 參考文獻58 附錄61

    1.Jahanban-Esfahlan, A.; Ostadrahimi, A.; Jahanban-Esfahlan, R.; Roufegarinejad, L.; Tabibiazar, M.; Amarowicz, R., Recent developments in the detection of bovine serum albumin. International Journal of Biological Macromolecules 2019, 138, 602-617.
    2.Jahanban-Esfahlan, A.; Panahi-Azar, V.; Sajedi, S., Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers 2015, 103 (11), 638-645.
    3.Roufegarinejad, L.; Amarowicz, R.; Jahanban-Esfahlan, A., Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. Journal of Biomolecular Structure and Dynamics 2019, 37 (11), 2766-2775.
    4.Wang, H., A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers (Basel) 2021, 13 (22), 3868-3887.
    5.Li, C.; Fu, Y.; Dai, H.; Wang, Q.; Gao, R.; Zhang, Y., Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. Food Science and Human Wellness 2022, 11 (2), 218-229.
    6.Fleck, C. A.; Simman, R., Modern Collagen Wound Dressings: Function and Purpose. The Journal of the American College of Certified Wound Specialists 2010, 2 (3), 50-54.
    7.Narayanan, B.; Gilmer, G. H.; Tao, J.; De Yoreo, J. J.; Ciobanu, C. V., Self-Assembly of Collagen on Flat Surfaces: The Interplay of Collagen–Collagen and Collagen–Substrate Interactions. Langmuir 2014, 30 (5), 1343-1350.
    8.Gautieri, A.; Vesentini, S.; Redaelli, A.; Buehler, M. J., Hierarchical Structure and Nanomechanics of Collagen Microfibrils from the Atomistic Scale Up. Nano Letters 2011, 11 (2), 757-766.
    9.Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science 2012, 170 (1), 2-27.
    10.Khanna, V. K., Top-Down Nanofabrication. In Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, Khanna, V. K., Ed. Springer India: New Delhi, 2016, 381-396.
    11.Yu, H.-D.; Regulacio, M. D.; Ye, E.; Han, M.-Y., Chemical routes to top-down nanofabrication. Chemical Society Reviews 2013, 42 (14), 6006-6018.
    12.Khadpekar, A. J.; Khan, M.; Sose, A.; Majumder, A., Low Cost and Lithography-free Stamp fabrication for Microcontact Printing. Scientific Reports 2019, 9 (1), 1024-1031.
    13.Lange, S. A.; Benes, V.; Kern, D. P.; Hörber, J. K. H.; Bernard, A., Microcontact Printing of DNA Molecules. Analytical Chemistry 2004, 76 (6), 1641-1647.
    14.https://www.elveflow.com/microfluidic-reviews/soft-lithography-microfabrication /introduction-about-soft-lithography-and-polymer-molding-for-microfluidic/
    15.Barcelo, S.; Li, Z., Nanoimprint lithography for nanodevice fabrication. Nano Convergence 2016, 3 (1), 21-29.
    16.Li, M.; Chen, Y.; Luo, W.; Cheng, X., Interfacial Interactions during Demolding in Nanoimprint Lithography. Micromachines 2021, 12 (4), 349-370.
    17.Li, J.-R.; Garno, J. C., Nanostructures of Octadecyltrisiloxane Self-Assembled Monolayers Produced on Au(111) Using Particle Lithography. ACS Applied Materials & Interfaces 2009, 1 (4), 969-976.
    18.Ulapane, S. B.; Kamathewatta, N. J. B.; Borkowski, A. K.; Steuart, S. J.; Berrie, C. L., Periodic Silver and Gold Nanodot Array Fabrication on Nanosphere Lithography-Based Patterns Using Electroless Deposition. The Journal of Physical Chemistry C 2020, 124 (28), 15646-15655.
    19.Kim, M. H.; Choi, J. Y.; Choi, H. K.; Yoon, S. M.; Park, O. O.; Yi, D. K.; Choi, S. J.; Shin, H. J., Carbon Nanotube Network Structuring Using Two-Dimensional Colloidal Crystal Templates. Advanced Materials 2008, 20 (3), 457-461.
    20.Wang, L.; Quintard, M., Nanofluids of the Future. In Advances in Transport Phenomena: 2009, Wang, L., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2009, 179-243.
    21.Saidur, R.; Leong, K. Y.; Mohammed, H. A., A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews 2011, 15 (3), 1646-1668.
    22.Duan, C.; Wang, W.; Xie, Q., Review article: Fabrication of nanofluidic devices. Biomicrofluidics 2013, 7 (2), 026501-1-026501-41.
    23.Shen, X.; Ho, C.-M.; Wong, T.-S., Minimal Size of Coffee Ring Structure. The Journal of Physical Chemistry B 2010, 114 (16), 5269-5274.
    24.Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389 (6653), 827-829.
    25.Xia, Y.; Gates, B.; Yin, Y.; Lu, Y., Monodispersed Colloidal Spheres: Old Materials with New Applications. Advanced Materials 2000, 12 (10), 693-713.
    26.Zhong, X.; Crivoi, A.; Duan, F., Sessile nanofluid droplet drying. Advances in Colloid and Interface Science 2015, 217, 13-30.
    27.Chon, C. H.; Paik, S.; Tipton, J. B.; Kihm, K. D., Effect of Nanoparticle Sizes and Number Densities on the Evaporation and Dryout Characteristics for Strongly Pinned Nanofluid Droplets. Langmuir 2007, 23 (6), 2953-2960.
    28.Dufrêne Yves, F., Atomic Force Microscopy, a Powerful Tool in Microbiology. Journal of Bacteriology 2002, 184 (19), 5205-5213.
    29.Yang, H.; Wang, Y.; Lai, S.; An, H.; Li, Y.; Chen, F., Application of Atomic Force Microscopy as a Nanotechnology Tool in Food Science. Journal of Food Science 2007, 72 (4), R65-R75.
    30.Deng, X.; Xiong, F.; Li, X.; Xiang, B.; Li, Z.; Wu, X.; Guo, C.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z., Application of atomic force microscopy in cancer research. Journal of Nanobiotechnology 2018, 16 (1), 102-116.
    31.Christenson, H. K.; Thomson, N. H., The nature of the air-cleaved mica surface. Surface Science Reports 2016, 71 (2), 367-390.
    32.Yamamoto, D.; Uchihashi, T.; Kodera, N.; Yamashita, H.; Nishikori, S.; Ogura, T.; Shibata, M.; Ando, T., Chapter Twenty - High-Speed Atomic Force Microscopy Techniques for Observing Dynamic Biomolecular Processes. In Methods in Enzymology, Walter, N. G., Ed. Academic Press: 2010, 475, 541-564.
    33.Vogel, N.; Zieleniecki, J.; Köper, I., As flat as it gets: ultrasmooth surfaces from template-stripping procedures. Nanoscale 2012, 4 (13), 3820-3832.
    34.Li, J.-R.; Henry, G. C.; Garno, J. C., Fabrication of nanopatterned films of bovine serum albumin and staphylococcal protein A using latex particle lithography. Analyst 2006, 131 (2), 244-250.
    35.Ngunjiri, J. N.; Daniels, S. L.; Li, J.-R.; Serem, W. K.; Garno, J. C., Controlling the surface coverage and arrangement of proteins using particle lithography. Nanomedicine 2008, 3 (4), 529-541.
    36.Bratek-Skicki, A.; Żeliszewska, P.; Adamczyk, Z.; Cieśla, M., Human Fibrinogen Monolayers on Latex Particles: Role of Ionic Strength. Langmuir 2013, 29 (11), 3700-3710.
    37.Żeliszewska, P.; Bratek-Skicki, A.; Adamczyk, Z.; Cieśla, M., Human Fibrinogen Adsorption on Positively Charged Latex Particles. Langmuir 2014, 30 (37), 11165-11174.
    38.Sofińska, K.; Adamczyk, Z.; Kujda, M.; Nattich-Rak, M., Recombinant Albumin Monolayers on Latex Particles. Langmuir 2014, 30 (1), 250-258.
    39.Mahmoudi, M.; Bertrand, N.; Zope, H.; Farokhzad, O. C., Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today 2016, 11 (6), 817-832.
    40.Wheeler, K. E.; Chetwynd, A. J.; Fahy, K. M.; Hong, B. S.; Tochihuitl, J. A.; Foster, L. A.; Lynch, I., Environmental dimensions of the protein corona. Nature Nanotechnology 2021, 16 (6), 617-629.
    41.García-Álvarez, R.; Vallet-Regí, M., Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. Nanomaterials (Basel) 2021, 11 (4), 888-913.
    42.Ren, J.; Andrikopoulos, N.; Velonia, K.; Tang, H.; Cai, R.; Ding, F.; Ke, P. C.; Chen, C., Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society 2022, 144 (21), 9184-9205.
    43.Loo, R. W.; Goh, M. C., Potassium Ion Mediated Collagen Microfibril Assembly on Mica. Langmuir 2008, 24 (23), 13276-13278.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE