簡易檢索 / 詳目顯示

研究生: 趙怡婷
Chao, Yi-Ting
論文名稱: 渠道中藻霉味物質質量平衡模型
Mass Balance Modeling for 2-Methylisoborneol in Canal
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 134
中文關鍵詞: 藍綠菌臭味物質2-MIB質量平衡模型一維延散平流方程式
外文關鍵詞: Cyanobacteria, 2-Methylisoborneol (2-MIB), Mass Balance Model, One Dimensional Advection Dispersion Equation
相關次數: 點閱:51下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藻霉味物質二甲基冰片2-methylisoborneol (2‑MIB)為用水水源中常出現的臭味物質,一般人對該物質的嗅覺閾值低(約2至20 ng/L),且傳統淨水程序對2‑MIB去除效果不佳,常會成為民眾抱怨的原因。目前雖已經有許多關於2-MIB的監測與處理研究。然而,對於2-MIB的模式模擬研究卻很少,尤其缺乏對於渠道是水源的模擬及應用。
    本研究收集文獻、並回顧2-MIB在河道中的生成與消失機制,進而以一維平流延散方程式為主軸,建立出2-MIB在渠道中的質量平衡模型,並應用Crank-Nicolson法來建立一維平流延散方程式的數值解。研究中在台灣南部三處渠道採集底泥與水樣,以調查渠道中2-MIB臭味事件及渠道中的藻類組成;並透過調整模擬參數之輸入,使用參數敏感性分析來評估敏感度較大的參數,從而確定對2-MIB濃度流布影響大的因素。最後並使用2018年南韓北漢江臭味事件案例分析來評估此模型之應用性。
    本研究建立了連續式輸入與脈衝式/階梯式輸入兩種污染物輸入形式。參數敏感性分析結果顯示,在這兩種輸入模式中,流速是對模型輸出結果影響最大的參數,因此在獲取流速參數時必須謹慎,避免因誤差導致模型產生較大偏差。在南韓漢江的案例分析中,與Kang等人(2023)所使用的2D流體動力模型EFDC-NIER相比,本研究能以較簡單模式,獲得與該研究相當的模擬準確度。

    2-Methylisoborneol (2-MIB) is a common taste and odor (T&O) compound in water sources, known for its distinctive earthy-musty odor. It has a low odor threshold, ranging from approximately 2 to 20 ng/L, making it easily detectable even at low concentrations. Traditional water treatment processes often struggle to remove 2-MIB effectively, leading to frequent complaints, particularly during cyanobacterial blooms. While there has been extensive research on monitoring and treating 2-MIB, studies on modeling its behavior are relatively scarce. Existing models primarily focus on reservoirs, leaving a gap in understanding the dynamics of 2-MIB in channels.
    This study aims to address this gap by reviewing the mechanisms of 2-MIB generation and degradation in rivers and developing a mass balance model for 2-MIB in channels using a one-dimensional advection-dispersion equation. The Crank-Nicolson method was employed to numerically solve this equation. Fieldwork was conducted at three channels in southern Taiwan, where sediment and water samples were collected to investigate 2-MIB-related odor events and cyanobacterial composition. A parameter sensitivity analysis was also performed by adjusting model input parameters to identify the factors most significantly affecting 2-MIB concentration distributions. Additionally, the model’s applicability was assessed using a case study of an odor event in the North Han River, South Korea, in 2018.
    The study considered two input scenarios: continuous and pulse/step inputs. Sensitivity analysis revealed that flow velocity was the most influential parameter in both scenarios, necessitating careful acquisition of this parameter to minimize model deviation. In the case study of the Han River in South Korea, the model developed in this study achieved accuracy comparable to the 2D hydrodynamic model EFDC-NIER used by Kang et al. (2023), while employing a more simplified approach.

    中文摘要 i Extended Abstract iii 誌謝 viii 目錄 ix 表目錄 xiii 圖目錄 xiv 符號表 xvii Chapter 1 前言 1 1.1 研究源起與動機 1 1.2 研究目的 2 Chapter 2 文獻回顧 3 2.1 藍綠菌介紹 3 2.2 2-MIB介紹 7 2.2.1 2-MIB生合成 9 2.2.2 2-MIB與傳統淨水程序 14 2.3 模擬模型介紹 17 2.4 一維平流延散模型介紹 22 Chapter 3 材料與方法 26 3.1 研究架構 26 3.2 一維平流延散方程式之數值解 27 3.3 參數敏感性分析 30 3.4 2-MIB分析 32 3.4.1 一般水樣分析 32 3.4.2 底泥中2-MIB 32 3.4.3 實驗試劑 33 3.4.4 實驗設備 33 3.5 藻類計數 35 3.5.1 實驗試劑與設備 35 3.5.2 實驗步驟 36 3.5.3 細胞計數與結果分析 37 3.6 參數實驗 38 3.6.1 渠道場址描述 38 3.6.2 底泥2-MIB釋出實驗 40 3.6.2.1 實驗試劑與設備 40 3.6.2.2 實驗步驟 40 3.6.3 懸浮藻類生成與生物降解 42 3.6.3.1 實驗試劑與設備 42 3.6.3.2 實驗步驟 42 Chapter 4 結果與討論 44 4.1 參數文獻調查結果 44 4.1.1 一維延散係數(Longitudinal Dispersion Coefficient) 44 4.1.2 2-MIB生成機制 50 4.1.3 2-MIB消失機制 51 4.1.3.1 光解 51 4.1.3.2 生物降解 55 4.1.3.3 揮發 58 4.1.3.4 降解機制討論 63 4.1.4 2-MIB 吸附(Sorption)係數 64 4.2 各項生成與消失機制參數實驗結果 67 4.2.1.1 底泥中2-MIB生成 67 4.2.1.2 懸浮藻類生成2-MIB與其生物降解 68 4.3 參數調查結果 71 4.4 一維平流延散模型 73 4.4.1 連續式輸入(Continuous input) 73 4.4.2 脈衝式輸入(Pulse input)與階梯式輸入(Step input) 76 4.4.3 綜合討論:2-MIB生物降解動力參數 81 4.5 參數敏感性分析 83 4.6 案例分析-南韓漢江 88 Chapter 5 結論與建議 93 5.1 結論 93 5.2 建議 94 Chapter 6 附錄 95 6.1 渠道中2-MIB濃度調查 95 6.2 Python Code 98 6.2.1 Water_Viscosity 98 6.2.2 數值解 100 參考資料 104

    Adams, B. A. (1929). Odours in the water of the Nile River. Water and Water Engineering 31, 309-314.
    Alizadeh, M. J. (2018). Discussion on “Gene expression models for prediction of longitudinal dispersion coefficient in streams” by Sattar, A.M.A., Gharabaghi, B., 2015. Journal of Hydrology 524, 587–596. Journal of Hydrology, 567, 821-823. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.01.007
    Bahadur, R., Monteith, M. C., & Samuels, W. B. (2021). Comparative review of longitudinal dispersion coefficient equations in rivers. Journal of Environmental Engineering, 147(9), 04021030.
    Bai, J., Xiao, R., Cui, B., Zhang, K., Wang, Q., Liu, X., Gao, H., & Huang, L. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environmental Pollution, 159(3), 817-824. https://doi.org/https://doi.org/10.1016/j.envpol.2010.11.004
    Baowan, D., Cox, B. J., Hilder, T. A., Hill, J. M., & Thamwattana, N. (2017). Chapter 2 - Mathematical Preliminaries. In D. Baowan, B. J. Cox, T. A. Hilder, J. M. Hill, & N. Thamwattana (Eds.), Modelling and Mechanics of Carbon-Based Nanostructured Materials (pp. 35-58). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-812463-5.00002-9
    Bentley, R., & Meganathan, R. (1981). Geosmin and methylisoborneol biosynthesis in streptomycetes. FEBS Letters, 125(2), 220-222. https://doi.org/10.1016/0014-5793(81)80723-5
    Briggs, G. (1973). A simple relationship between soil adsorption of organic chemicals and their octanol/water partition coefficients.
    Bruder, S., Babbar-Sebens, M., Tedesco, L., & Soyeux, E. (2014). Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environmental Monitoring and Assessment, 186(3), 1525-1545. https://doi.org/10.1007/s10661-013-3471-1
    Butterwick, C., Heaney, S., & Talling, J. (2005). Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology, 50(2), 291-300.
    Byun, J.-H., Hwang, S.-J., Kim, B.-H., Park, J.-R., Lee, J.-K., & Lim, B.-J. (2015). Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean Journal of Ecology and Environment, 48(4), 263-271.
    Camuffo, D., della Valle, A., Giorio, R., Rizzi, F., Barucco, P., Suma, M., Ahmed, J., Chabbi, A., Shaker, O., & Sheehan, P. (2024). Microclimate Analysis of Outdoor Showcases in Tropical Climate—Two Case Studies in Al Ain, Abu Dhabi, United Arab Emirates. Climate, 12(1), 6.
    Carter, M. C., Weber Jr, W. J., & Olmstead, K. P. (1992). Effects of background dissolved organic matter on TCE adsorption by GAC. Journal‐American Water Works Association, 84(8), 81-91.
    Catherine, Q., Susanna, W., Isidora, E.-S., Mark, H., Aurélie, V., & Jean-François, H. (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria – Ecology, toxin production and risk management. Water Research, 47(15), 5464-5479. https://doi.org/https://doi.org/10.1016/j.watres.2013.06.042
    CCALA, Culture collection of autotrophic organisms. https://ccala.butbn.cas.cz/
    Chapra, S. C. (2008). Surface water-quality modeling. Waveland press.
    Chen, G., Dussert, B. W., & Suffet, I. H. (1997). Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water. Water Research, 31(5), 1155-1163. https://doi.org/https://doi.org/10.1016/S0043-1354(96)00362-4
    Chen, Y.-c. C., Chun-pin; Lin, Shin-hwei; Shun, Ming-du. (2001). 不同材質灌溉排水渠道之研究. 水土保持學報, 33卷, 頁67-80.
    Chen, Y.-M., Hobson, P., Burch, M. D., & Lin, T.-F. (2010). In situ measurement of odor compound production by benthic cyanobacteria. Journal of Environmental Monitoring, 12(3), 769-775.
    Chiu, Y.-T., Yen, H.-K., & Lin, T.-F. (2016). An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Environmental Research, 151, 618-627.
    Clercin, N. A., Druschel, G. K., & Gray, M. (2021). Occurrences of 2-methylisoborneol and geosmin –degrading bacteria in a eutrophic reservoir and the role of cell-bound versus dissolved fractions. Journal of Environmental Management, 297, 113304. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113304
    Cook, D., Newcombe, G., & Sztajnbok, P. (2001). The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters. Water Research, 35(5), 1325-1333.
    Cowan, W. L. (1956). Estimating hydraulic roughness coefficients. Agricultural engineering, 37(7), 473-475.
    Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical proceedings of the Cambridge philosophical society,
    Crick, M. J., & Hill, M. D. (1987). The role of sensitivity analysis in assessing uncertainty. Organisation for economic co-operation and development. http://inis.iaea.org/search/search.aspx?orig_q=RN:19056093
    Cyanophyceae: Nostocales: Oscillatoriaceae. http://protist.i.hosei.ac.jp/PDB/Images/Prokaryotes/Oscillatoriaceae/Oscillatoria/sp_43.html
    Devi, A., Chiu, Y.-T., Hsueh, H.-T., & Lin, T.-F. (2021). Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Research, 188, 116478. https://doi.org/https://doi.org/10.1016/j.watres.2020.116478
    Dzialowski, A. R., Smith, V. H., Huggins, D. G., deNoyelles, F., Lim, N.-C., Baker, D. S., & Beury, J. H. (2009). Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Research, 43(11), 2829-2840. https://doi.org/https://doi.org/10.1016/j.watres.2009.04.001
    Elder, J. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of fluid mechanics, 5(4), 544-560.
    Elhadi, S. L., Huck, P. M., & Slawson, R. M. (2006). Factors affecting the removal of geosmin and MIB in drinking water biofilters. Journal‐American Water Works Association, 98(8), 108-119.
    ERDC. (2014). CE-QUAL-W2. US Army Corps of Engineers
    Engineer Research and Development Center Website. https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/554171/ce-qual-w2/
    Farzadkhoo, M., Keshavarzi, A., Hamidifar, H., & Javan, M. (2018). A comparative study of longitudinal dispersion models in rigid vegetated compound meandering channels. Journal of Environmental Management, 217, 78-89.
    Flynn, K. F., Chapra, S. C., & Suplee, M. W. (2013). Modeling the lateral variation of bottom-attached algae in rivers. Ecological Modelling, 267, 11-25. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2013.07.011
    Freshwater Algae Culture Collection at the Institute of Hydrobiology. https://algae.ihb.ac.cn/
    Fuller, E. N., Ensley, K., & Giddings, J. C. (1969). Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections. The Journal of Physical Chemistry, 73(11), 3679-3685.
    Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry, 58(5), 18-27.
    Gaget, V., Almuhtaram, H., Kibuye, F., Hobson, P., Zamyadi, A., Wert, E., & Brookes, J. D. (2022). Benthic cyanobacteria: A utility-centred field study. Harmful Algae, 113, 102185. https://doi.org/https://doi.org/10.1016/j.hal.2022.102185
    Gaget, V., Hobson, P., Keulen, A., Newton, K., Monis, P., Humpage, A. R., Weyrich, L. S., & Brookes, J. D. (2020). Toolbox for the sampling and monitoring of benthic cyanobacteria. Water Research, 169, 115222.
    Gallon, J. (1992). Reconciling the incompatible: N2 fixation and O2. Tansley Review No. 44. New Phytol, 122, 571-609.
    Garstecki, B., & Wells, S. (2023). Modeling Cyanotoxin Production, Fate, and Transport in Surface Water Bodies Using CE-QUAL-W2. Environments, 10(7), 122.
    Gerald, C. F., & Wheatley, P. O. (2004). Applied Numerical Analysis. Pearson/Addison-Wesley. https://books.google.com.tw/books?id=BiOZQgAACAAJ
    Gerber, N. N. (1969). A VOLATILE METABOLITE OF ACTINOMYCETES, 2-METHYLISOBORNEOL. The Journal of Antibiotics, 22(10), 508-509. https://doi.org/10.7164/antibiotics.22.508
    Glaze, W. H., Schep, R., Chauncey, W., Ruth, E. C., Zarnoch, J. J., Aieta, E. M., Tate, C. H., & McGuire, M. J. (1990). Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply. Journal‐American Water Works Association, 82(5), 79-84.
    Grady, C., Jr. (1985). Biodegradation: its measurement and microbiological basis.
    Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135-154. https://doi.org/10.1007/BF00547132
    Hayduk, W., & Laudie, H. (1974). Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE journal, 20(3), 611-615.
    Heath, M. W., Wood, S. A., & Ryan, K. G. (2011). Spatial and temporal variability in Phormidium mats and associated anatoxin-a and homoanatoxin-a in two New Zealand rivers. Aquatic Microbial Ecology, 64(1), 69-79.
    Ho, L., Hoefel, D., Bock, F., Saint, C. P., & Newcombe, G. (2007). Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere, 66(11), 2210-2218.
    Hobson, P., Fazekas, C., House, J., Daly, R., Kildea, T., Giglio, S., Burch, M., Lin, T.-F., & Chen, Y. M. (2010). Taste and odours in reservoirs. Research Report No 73.
    Huai, W., Hu, Y., Zeng, Y., & Han, J. (2012). Velocity distribution for open channel flows with suspended vegetation. Advances in Water Resources, 49, 56-61.
    Huang, I. S., & Zimba, P. V. (2019). Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae, 86, 139-209. https://doi.org/https://doi.org/10.1016/j.hal.2019.05.001
    Hwan, J., Byun, Kim, H. N., Kang, T. G., Kim, B.-H., & Byeon, M.-S. (2023). Study of the cause of the generation of odor compounds (geosmin and 2-methylisoborneol) in the Han River system, the drinking water source, Republic of Korea. Water Supply, 23(3), 1081-1093.
    Jüttner, F. (1995). Physiology and biochemistry of odorous compounds from freshwater cyanobacteria and algae. Water Science and Technology, 31(11), 69-78. https://doi.org/https://doi.org/10.1016/0273-1223(95)00458-Y
    Jüttner, F., & Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol, 73(14), 4395-4406. https://doi.org/10.1128/aem.02250-06
    Kang, M., Kim, D.-W., Park, M., Kim, K., & Min, J.-H. (2023). Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea. Water, 15(23), 4107. https://www.mdpi.com/2073-4441/15/23/4107
    Kao, S.-J., Shiah, F.-K., Wang, C.-H., & Liu, K.-K. (2006). Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan. Continental Shelf Research, 26(20), 2520-2537.
    Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13(3), 241-248.
    Khalilzadeh Poshtegal, M., & Mirbagheri, S. A. (2023). Simulation and modelling of heavy metals and water quality parameters in the river. Scientific Reports, 13(1), 3020. https://doi.org/10.1038/s41598-023-29878-1
    Kile, D. E., Chiou, C. T., Zhou, H., Li, H., & Xu, O. (1995). Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environmental Science & Technology, 29(5), 1401-1406.
    Kim, J., Lee, T., & Seo, D. (2017). Algal bloom prediction of the lower Han River, Korea using the EFDC hydrodynamic and water quality model. Ecological Modelling, 366, 27-36. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2017.10.015
    Kim, K.-M., & Ahn, J.-H. (2022). Machine learning predictions of chlorophyll-a in the Han river basin, Korea. Journal of Environmental Management, 318, 115636. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115636
    Kim, T.-K., Moon, B.-R., Kim, T., Kim, M.-K., & Zoh, K.-D. (2016). Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions. Chemosphere, 162, 157-164. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.07.079
    Koester, K. (2011). Measuring and modeling geosmin removal from Horsetooth Reservoir water by powdered activated carbon for selected contact times. Masters Abstracts International,
    Komatsu, M., Tsuda, M., Ōmura, S., Oikawa, H., & Ikeda, H. (2008). Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proceedings of the National Academy of Sciences, 105(21), 7422-7427. https://doi.org/10.1073/pnas.0802312105
    Krieger, T. J., Durston, C., & Albright, D. C. (1978). Statistical determination of effective variables in sensitivity analysis. Transactions of the American Nuclear Society, 515-516. http://inis.iaea.org/search/search.aspx?orig_q=RN:09418038
    Kutschera, K., Börnick, H., & Worch, E. (2009). Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light. Water Research, 43(8), 2224-2232.
    Lürling, M., Van Oosterhout, F., & Faassen, E. (2017). Eutrophication and warming boost cyanobacterial biomass and microcystins. Toxins, 9(2), 64.
    Lambert, S. M. (1967). Functional relation between sorption in soil and chemical structure. Journal of agricultural and food chemistry, 15(4), 572-576.
    Lees, M. J., Camacho, L. A., & Chapra, S. (2000). On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water resources research, 36(1), 213-224.
    Lewis, W. K., & Whitman, W. G. (1924). Principles of gas absorption. Industrial & Engineering Chemistry, 16(12), 1215-1220.
    Li, D., Kim, M., Shim, W. J., Yim, U. H., Oh, J.-R., & Kwon, Y.-J. (2004). Seasonal flux of nonylphenol in Han River, Korea. Chemosphere, 56(1), 1-6. https://doi.org/https://doi.org/10.1016/j.chemosphere.2004.01.034
    Li, L., Yang, S., Yu, S., & Zhang, Y. (2019). Variation and removal of 2-MIB in full-scale treatment plants with source water from Lake Tai, China. Water Research, 162, 180-189. https://doi.org/https://doi.org/10.1016/j.watres.2019.06.066
    Li, Z., Hobson, P., An, W., Burch, M. D., House, J., & Yang, M. (2012). Earthy odor compounds production and loss in three cyanobacterial cultures. Water Research, 46(16), 5165-5173.
    Liang, C., Wang, D., Chen, J., Zhu, L., & Yang, M. (2007). Kinetics analysis on the ozonation of MIB and geosmin. Ozone: Science and Engineering, 29(3), 185-189.
    Lin, B., Liu, Z., Eglinton, T. I., Kandasamy, S., Blattmann, T. M., Haghipour, N., Huang, K.-F., & You, C.-F. (2020). Island-wide variation in provenance of riverine sedimentary organic carbon: A case study from Taiwan. Earth and Planetary Science Letters, 539, 116238.
    Lin, T.-F., Liu, C.-L., Yang, F.-C., & Hung, H.-W. (2003). Effect of residual chlorine on the analysis of geosmin, 2-MIB and MTBE in drinking water using the SPME technique. Water Research, 37(1), 21-26. https://doi.org/https://doi.org/10.1016/S0043-1354(02)00251-8
    Lin, T.-F., Wong, J.-Y., & Kao, H.-P. (2002). Correlation of musty odor and 2-MIB in two drinking water treatment plants in South Taiwan. Science of The Total Environment, 289(1), 225-235. https://doi.org/https://doi.org/10.1016/S0048-9697(01)01049-X
    Liss, P. S., & Slater, P. (1974). Flux of gases across the air-sea interface. Nature, 247(5438), 181-184.
    Liu, Z., Lin, T.-F., & Burch, M. (2019). Management of T&O in source water. In (pp. 211-233): IWA Publishing, London, UK.
    Ma, L., Wang, C., Li, H., Peng, F., & Yang, Z. (2018). Degradation of geosmin and 2-methylisoborneol in water with UV/chlorine: Influencing factors, reactive species, and possible pathways. Chemosphere, 211, 1166-1175.
    Mackay, D. (1975). Leinonen: Rate of low solubility contaminants from water bodies ot atmosphere. Environ. Sci. Technol, 9, 1178-1180.
    Medsker, L. L., Jenkins, D., Thomas, J. F., & Koch, C. (1969). Odorous compounds in natural waters. 2-Exo-hydroxy-2-methylbornane, the major odorous compound produced by several actinomycetes. Environmental Science & Technology, 3(5), 476-477.
    Mez, K., Beattie, K. A., Codd, G. A., Hanselmann, K., Hauser, B., Naegeli, H., & Preisig, H. R. (1997). Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. European Journal of Phycology, 32(2), 111-117.
    Mill, T., Hendry, D. G., & Richardson, H. (1980). Free-radical oxidants in natural waters. Science, 207(4433), 886-887.
    MOH, M. o. H. o. T. P. s. R. o. C., Standardization Administration of The People's Republic of China (SAC). (2006). GB 5749-2006 Standards for Drinking Water Quality. In. Beijing: Ministry of Health of The People's Republic of China (MOH), Standardization Administration of The People's Republic of China (SAC).
    Mollocana Lara, J. G., Quezada Espinosa, E. S., & Vizcaino Angamarca, J. M. (2021). Prediction of trophic state of San Marcos Lagoon based on aquatox eutrophication model. Innovation and Research: A Driving Force for Socio-Econo-Technological Development 1st,
    Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenutti, B., Moeller, R., & Queimalinos, C. (1995). The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography, 40(8), 1381-1391.
    Mustapha, S., Tijani, J., Ndamitso, M., Abdulkareem, A., Shuaib, D., & Mohammed, A. (2021). A critical review on geosmin and 2-methylisoborneol in water: sources, effects, detection, and removal techniques. Environmental Monitoring and Assessment, 193, 1-34.
    Nadella, A., Maulik, D., & Sen, D. (2023). One-dimensional numerical model for unsteady solute transport in open channels under multi-point loading. Journal of Hydrology, 616, 128830. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.128830
    Nogare, M. A., & Bauer, B. O. (2022). A Field-Based Evaluation of the Reliability of Empirical Formulae for Quantifying the Longitudinal Dispersion Coefficient in Small Channels. Geosciences, 12(7), 281.
    Othmer, D. F., & Thakar, M. S. (1953). Correlating diffusion coefficient in liquids. Industrial & Engineering Chemistry, 45(3), 589-593.
    Pang, M., Song, W., Liu, Y., & Pang, Y. (2021). Simulation of the Parameters Effecting the Water Quality Evolution of Xuanwu Lake, China. Int J Environ Res Public Health, 18(11). https://doi.org/10.3390/ijerph18115757
    Partington, J. R. (1949). An advanced treatise on physical chemistry (Vol. 3). Longmans, Green.
    Pathak, B., Singh, V. N., & Singh, P. (1981). Measurement of binary diffusion coefficient of gases and organic vapours by chromatography. The Canadian Journal of Chemical Engineering, 59(3), 362-365.
    Persson, F., Heinicke, G., Hedberg, T., Hermansson, M., & Uhl, W. (2007). Removal of geosmin and MIB by biofiltration-an investigation discriminating between adsorption and biodegradation. Environmental technology, 28(1), 95-104.
    Persson, P.-E. (1980). Sensory properties and analysis of two muddy odour compounds, geosmin and 2-methylisoborneol, in water and fish. Water Research, 14(8), 1113-1118. https://doi.org/https://doi.org/10.1016/0043-1354(80)90161-X
    Persson, P. (1974). On flavour tainting of fish, with special reference to the Oulu sea area (Bothnian Bay). Rep. Nat. Bd Wat. Finl, 65, 1-262.
    Piriou, P., Devesa, R., Lalande, M., & Glucina, K. (2009). European reassessment of MIB and geosmin perception in drinking water. Journal of Water Supply Research and Technology-aqua - J WATER SUPPLY RES TECHNOL-AQ, 58. https://doi.org/10.2166/aqua.2009.124
    Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). Properties of Gases and Liquids (5th Edition ed.). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780070116825
    Price, G. D., Badger, M. R., Woodger, F. J., & Long, B. M. (2008). Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot, 59(7), 1441-1461. https://doi.org/10.1093/jxb/erm112
    Radha, R., Singh, R. K., & Singh, M. K. (2022). Contaminant transport analysis under non-linear sorption in a heterogeneous groundwater system. Applied Mathematics in Science and Engineering, 30(1), 736-761.
    Rathbun, R. (2000). Transport, behavior, and fate of volatile organic compounds in streams. Critical Reviews in Environmental Science and Technology, 30(2), 129-295.
    Rittmann, B. (1995). Biological treatment to control tadte-and-odor compounds in drinking water treatment. Advances in taste-and-odor treatment and control, 203-240.
    Robarts, R. D., & Zohary, T. (1987). Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand journal of marine and freshwater research, 21(3), 391-399.
    Sahay, R. R. (2011). Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environmental Fluid Mechanics, 11, 247-261.
    Sastri, S., Mohanty, S., & Rao, K. (1996). Liquid volume at normal boiling point. The Canadian Journal of Chemical Engineering, 74(1), 170-172.
    Sattar, A. M., & Gharabaghi, B. (2015). Gene expression models for prediction of longitudinal dispersion coefficient in streams. Journal of Hydrology, 524, 587-596.
    Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8(8), 275-279. https://doi.org/https://doi.org/10.1016/0169-5347(93)90254-M
    Scheibel, E. G. (1954). Correspondence. Liquid Diffusivities. Viscosity of Gases. Industrial & Engineering Chemistry, 46(9), 2007-2008.
    Sharma, D., & Kansal, A. (2013). Assessment of river quality models: a review. Reviews in Environmental Science and Bio/Technology, 12, 285-311.
    Shen, F., Tang, R., Sun, X., & Liu, D. (2019). Simple methods for satellite identification of algal blooms and species using 10-year time series data from the East China Sea. Remote Sensing of Environment, 235, 111484. https://doi.org/https://doi.org/10.1016/j.rse.2019.111484
    Sherwood, T. K., & Reid, R. C. (1958). The properties of gases and liquids: their estimation and correlation. McGraw-Hill.
    Silvey, J., & Roach, A. (1964). Studies on microbiotic cycles in surface waters. Journal‐American Water Works Association, 56(1), 60-72.
    Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131(1), 1-32.
    StoryStudio. (2020). 圳流百年:嘉南大圳的過去與未來 真正改變臺灣這塊土地的現在進行式. 方寸文創.
    Streeter, H. W., & Phelps, E. B. (1925). A study of the pollution and natural purification of the Ohio River. United States Public Health Service.
    Su, M., Zhu, Y., Jia, Z., Liu, T., Yu, J., Burch, M., & Yang, M. (2021). Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Water Research, 192, 116848. https://doi.org/https://doi.org/10.1016/j.watres.2021.116848
    Tabachek, J.-A. L., & Yurkowski, M. (1976). Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manitoba. Journal of the Fisheries Board of Canada, 33(1), 25-35.
    Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 219(1137), 186-203.
    Taylor, G. I. (1954). The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1155), 446-468.
    Tett, P. (1987). The ecophysiology of exceptional blooms. Rapport et Proces-verbaux des Reunions. Conseil international pour l’Exploration de la Mer, 187, 47-60.
    Thaysen, A., & Pentelow, F. (1936). The origin of an earthy or muddy taint in fish: II. The effect on fish of the taint produced by an odoriferous species of actinomyces. Annals of applied Biology, 23(1), 105-109.
    TJ, S. (1997). Bloom dynamics: physiology, behavior, trophic effects. Limnol. Oceanogr, 42, 1132-1136.
    Trudgill, P. (1984). Microbial degradation of the alicyclic ring. Structural relationships and metabolic pathways [Crude petroleum extraction]. Microbiology Series, 13.
    Umeorah, N., & Mashele, P. (2019). A Crank-Nicolson finite difference approach on the numerical estimation of rebate barrier option prices. Cogent Economics & Finance.
    Van Genuchten, M. T. (1981). Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. Journal of Hydrology, 49(3), 213-233. https://doi.org/https://doi.org/10.1016/0022-1694(81)90214-6
    Vilalta, E., Guasch, H., Muñoz, I., Romani, A., Valero, F., Rodriguez, J., Alcaraz, R., & Sabater, S. (2004). Nuisance odours produced by benthic cyanobacteria in a Mediterranean river. Water Science and Technology, 49(9), 25-31.
    Voice, T. C., & Weber Jr, W. J. (1983). Sorption of hydrophobic compounds by sediments, soils and suspended solids—I. Theory and background. Water Research, 17(10), 1433-1441.
    Walsby, A. E. (1969). The permeability of blue-green algal gas-vacuole membranes to gas. Proceedings of the Royal Society of London. Series B. Biological Sciences, 173(1031), 235-255. https://doi.org/10.1098/rspb.1969.0049
    Wang, H., Li, L., Cheng, S., Chen, L., Zhang, H., & Zhang, X. (2024). Production and release of 2-MIB in Pseudanabaena: Effects of growth phases on cell characteristics and 2-MIB yield. Ecotoxicology and Environmental Safety, 274, 116198. https://doi.org/https://doi.org/10.1016/j.ecoenv.2024.116198
    Wang, Q., Li, S., Jia, P., Qi, C., & Ding, F. (2013). A review of surface water quality models. The Scientific World Journal, 2013(1), 231768.
    Wang, Y.-F., Huai, W.-X., & Wang, W.-J. (2017). Physically sound formula for longitudinal dispersion coefficients of natural rivers. Journal of Hydrology, 544, 511-523. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.11.058
    Wang, Y.-L., Fang, M.-D., Chien, L.-C., Lin, C.-C., & Hsi, H.-C. (2019). Distribution of mercury and methylmercury in surface water and surface sediment of river, irrigation canal, reservoir, and wetland in Taiwan. Environmental Science and Pollution Research, 26, 17762-17773.
    Westerhoff, P., Rodriguez-Hernandez, M., Baker, L., & Sommerfeld, M. (2005). Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Research, 39(20), 4899-4912.
    Whipple, G. C. (1927). The microscopy of drinking water. J. Wiley.
    Whitacre, D. M. (2008). Reviews of environmental contamination and toxicology (Vol. 202). Springer.
    Whitton, B., & Potts, M. (2002). The Ecology of Cyanobacteria: Their Diversity in Time and Space. https://doi.org/10.1007/0-306-46855-7
    Wilke, C., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE journal, 1(2), 264-270.
    Wool, T. A., Ambrose Jr, R., & Martin, J. (2015). WASP8 Multiple Algae-Model Theory and User's Guide. US EPA, Region, 4.
    World Meteorological Organization, W. (2023). State of Global Water Resources report 2022 (W. M. Organization, Ed.) [Digital]. WMO. https://library.wmo.int/idurl/4/68473
    Xie, P., Ma, J., Liu, W., Zou, J., Yue, S., Li, X., Wiesner, M. R., & Fang, J. (2015). Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Research, 69, 223-233.
    Yih, S. M., & Davidson, B. (1975). Identification in nonlinear, distributed parameter water quality models. Water resources research, 11(5), 693-704.
    You, K.-A., Byeon, M.-S., Youn, S.-J., Hwang, S.-J., & Rhew, D.-H. (2013). Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North-Han River, Korea. Korean Journal of Ecology and Environment, 46(1), 135-144.
    Young, W. F., Horth, H., Crane, R., Ogden, T., & Arnott, M. (1996). Taste and odour threshold concentrations of potential potable water contaminants. Water Research, 30(2), 331-340. https://doi.org/https://doi.org/10.1016/0043-1354(95)00173-5
    Zamyadi, A., Glover, C. M., Yasir, A., Stuetz, R., Newcombe, G., Crosbie, N. D., Lin, T.-F., & Henderson, R. (2021). Toxic cyanobacteria in water supply systems: data analysis to map global challenges and demonstrate the benefits of multi-barrier treatment approaches. H2Open Journal, 4(1), 47-62.
    Zamyadi, A., Henderson, R., Stuetz, R., Hofmann, R., Ho, L., & Newcombe, G. (2015). Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Water Research, 83, 171-183. https://doi.org/https://doi.org/10.1016/j.watres.2015.06.038
    Zepp, R. G., & Cline, D. M. (1977). Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 11(4), 359-366.
    方, 獻. (2023). 烏山頭水庫灌溉放淤成效之探討 國立嘉義大學]. 臺灣博碩士論文知識加值系統. 嘉義市. https://hdl.handle.net/11296/z8346g
    何, 明. 黃., 國倉; 王,仁俊. (2013). 臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究. 內政部建築研究所. https://books.google.com.tw/books?id=7Dr8jgEACAAJ
    李, 紹. (2017). 利用生物降解水中 MIB 可行性之研究: 降解菌分離及降解效率比較
    林, 財., 顏, 宏., 林, 秀., 邱, 宜., & 李, 紹. (2016). 公共給水有害藻類及代謝物監測與緊急應變處理技術之研究.
    高雄市政府水利局. (2021). 高雄市岡山區田厝、潭底及潭底小排水系統檢討成果報告.
    張, 克. 嚴., 偉倫; 劉,家維. (2016). 國內2004-2013年間經典氣象年之日射量調查分析. Journal of Taiwan Energy, Volume 3, No. 1, pp. 89-101.
    陳, 怡. (2023). 以分子生物技術分析底泥中產2-MIB藍綠菌及其菌種組成之研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/2thehz
    童, 慶. (2007). 環境永續性評價與管理: 環境承載力, 累積性衝擊評量及政策環評與總量管制之相關性研究-子計畫三: 水資源面向環境承載力, 累積性衝擊評量及政策環評與總量管制之相關性研究 (III).
    環境部. (2011). In 環境影響評估河川水質評估模式技術規範 (Vol. 環署綜字第1000104517B號令, pp. 91).
    薛, 志. 賴., 頌仁; 張,玉玲; 王,姍莉; 張,凱迪. (2019). 傳統淨水處理程序因應原水中微囊藻毒處理策略之研究.
    顏呈仰, & 許少華. (2022). 以灌溉放淤作為烏山頭水庫永續防淤策略之探討研究 [Utilizing Irrigation Operation as a Desilting Strategy in Wushantou Reservoir for Sustainability]. 農業工程學報, 68(1), 56-70. https://doi.org/10.29974/jtae.202203_68(1).0005

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE