| 研究生: |
林榮泰 Lin, Rong-Tai |
|---|---|
| 論文名稱: |
應用模糊決策樹分析於研發型專案風險之評估 Using the fuzzy decision tree to analyze the risk assessment of a research and development project |
| 指導教授: |
楊大和
Yang, Taho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 研發型專案 、模糊理論 、專案風險管理 、模糊決策樹 、風險評估 |
| 外文關鍵詞: | Research and Development project, Project risk management, Fuzzy Decision Tree, Fuzzy theory, Risk assessment |
| 相關次數: | 點閱:127 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技快速發展與新技術不斷地創新,且研發工作的營運模式大多是以專案型態進行,而在科技與新產品的快速發展過程中,常因複雜的科技研發過程難以控制,因此公司如何慎選開發專案與辨識風險將會影響著公司營運發展,並使用科學化的方法,盡可能事前預防或降低風險所帶來的衝擊,增加專案完成的機會,以達成專案的目標,使得專案風險管理是專案人員值得思索的課題。
模糊決策樹(Fuzzy Decision Tree)是結合模糊理論與決策樹演算法的新演算法,且近年來也逐漸被討論,並且被廣泛地使用於資料探勘的分類方法論。它的發展是建立在利用模糊集合減少分類不明確,並能自然地表示人們的想法,更穩健地處理認知與觀念上模糊分類的問題。
因此本研究嘗試以降低專案執行風險為目標,根據模糊決策樹的架構,定義出分類項目與衡量指標,採用歸納演算法生成可讀的規則。在研究過程中,探討影響專案風險的構面及風險因子,並透過問卷調查某一研發專案組織對該組織專案風險因子的影響程度,以探討分類專案風險等級及量化其風險值之管理意涵。
本論文提出之風險評估模式,已提供公司在依序執行的研發專案進行風險辨識,使得專案人員可以更清楚掌握關鍵風險因子,且加強對專案風險的概念及對專案目標的影響。執行此風險評估模式後已獲成效,公司在獲利上已有顯著提升,且明顯改善先前經常造成專案失敗的情況。
It is difficult to control the process of scientific and new products development. This is because the development of science and new technology, and operation modes of development are often going with the project. Hence, how the company selects to develop a project and distinguishes risks will influence the company a lot. So, using the scientific method, preventing or reducing the impact that a risk brings as soon as possible and offering more opportunities that a project is successful, are the projects that should be focused on.
Fuzzy decision tree is a new algorithm, which combines the fuzzy theory and the decision tree algorithm. It has been gradually discussed in recent years, and has been widely used the in categorized methodology prospected of material. Fuzzy decision tree is set upon utilizing and gathering fuzzily for reducing and classifying indeterminately. Also, it can express people's idea naturally, which helps to deal with cognition and fuzzy problem more surely.
This research will discuss about reducing risks of the project. Besides, categorized projects and indicators will be defined through the fuzzy decision tree theory and the rule of algorithms. In the process of studying, I’ve discussed the risk factors of the projects, surveyed an organization about how risk factors influence the project, in order to discuss the level of categorized the project risk and the meaning of quantization management risk.
The thesis of risk evaluates which is discussed in this research, has offered the company to distinguish risks when assessing the projects. Also, it enables risk factors easy to be identified, strengthen the concept of the project risk and help to success a project. A company has already obtained more profit, and prevented the failures which it used to face very often before, through assessing the thesis of risk evaluates.
參考文獻
中華專案管理學會網站,Available: http://www.npma.org.tw
104人力銀行網站,Available: http://www.104info.com.tw/comp/89999982000.htm
林信成、彭啟峰,(民83),OH!Fuzzy 模糊理論剖析,第三波文化事業,台北。
張云濤及龔玲,(民96),資料探勘原理與技術,五南圖書出版股份有限公司,台北。
張得隆及洪兆慶,(民84),Fuzzy產品基礎與實例,全華圖書公司,台北。
陳亭羽及賀千盈,(民95),應用決策樹探討適用於電子行銷市場之區隔基礎,管理科學研究,3,1-25。
曾新穆及李建億,(民93),資料探勘,台灣培生教育出版股份有限公司,台北。
管孟忠,(民93),專案管理─策略經論,博頡策略顧問股份有限公司,台北。
熊培霖,范淼,黃哲明,周詳東及陸正平,(民95),專案管理基礎知識與應用實務─專案管理入門寶典,博鴻國際專案管理顧問股份有限公司,台北。
熊培霖、吳俊德及蘇佳慧,(民93),專案管理知識體系指導指南,博頡策略顧問股份有限公司,台北。
鄭燦堂,(民79),風險管理─理論與實務,三民書局,台北。
闕頌廉,(民90),應用模糊數學,科技圖書股份有限公司,台北。
Baloi, D. and Price, A.D.F., 2003, Modeling global risk factors affecting construction cost performance, International Journal of Project Management, 21, 261–269.
Boehm, B.W., 1991, Software risk management: principles and practices. IEEE Software, 8, 32–41.
Baccarini, D. and Archer R., 2001, The risk ranking of projects: a methodology, International Journal of Project Management, 19, 139–145.
Berry, M.J.A. and Linoff, G.., 1997, Data Mining Techniques: For Marketing, Sales, and Customer Support, Wiley, New York.
Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A., 1984, Classification and Regression Trees, Chapman and Hall/CRC, London.
Chapman, C. and Ward, S., 1997, Project Risk Management: Processes, Techniques and Insights, 2nd edition, Wiley, New York.
Cleland, D.I. and Ireland, L.R., 2002, Project Management: Strategic Design and Implementation, 4th edition, McGraw-Hill, singapore.
Duncan, W. R., 2004, A Guide to The Project Management Body of Knowledge, 3th edition, US Project Management Institute, Bethesda Maryland.
Dorofee, A.J., Walker, J.A., Alberts, C.J., Higuera, R.P., Murphy, R.L. and Williams, R.C., 1996, Continuous Risk Management Guidebook, Software Engineering Institute, Pittsburgh: Carnegie Mellon University.
Ding, H. and Wang, X.K., 2002, Research on algorithm of decision tree induction, Proceedings of the first international conference on machine learning and cybermetics, Beijing city, PRC, 1062–1065.
Elkjaer M., 2000, Stochastic Budget Simulation, International Journal of Project Management, 18, 139–147.
Fairley, R., 1994, Risk management for software projects, IEEE Software, 11, 57–67.
Fayyad, U., Piatetsky, G., and Smyth, P., 1996, From data mining to knowledge discovery in databases, AI Magazine, 17, 37–54.
Hillson, D., 2002, Extending the risk process to manage opportunities, International Journal of Project Management, 20, 235–240.
Han, J.and Kamber, M., 2005, Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann Publishers, San Fransisco.
Hastie, T., Tibshirani, R. and Friedman J. H., 2003, The Elements of Statistical Learning, Springer, Berlin.
Huang, S., Lin, C. and Chiu, N., 2006, Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model, Journal of Information Science and Engineering, 22, 297–313.
Hwee,N.G. and Tiong R.L.K., 2002, Model on cash flow forecasting and risk analysis for contracting firms, International Journal of Project Management, 20, 351–363.
Janikow, C.Z., 1998, Fuzzy decision trees: issues and methods, IEEE Transaction on System, Man, and Cyberneticsz─Part B: Cybernetics, 28, 1–14.
Kliem, R.L. and Ludin, I.S., 1997, Reducing Project Risk, Gower, Vermont.
Kass, G.V., 1980, An exploratory technique for investigating large quantities of categorical data, Applied Statistics, 29, 119–127.
Kuchta, D., 2001, Use of fuzzy numbers in project risk (criticality) assessment, International Journal of Project Management, 19, 305–310.
Lee, J.W.T., Sun, J. and Yang, L.Z., 2003, A Fuzzy Matching Method of Fuzzy Decision Trees, Proceedings of the Second International Conference on Machine Learning and Cybernetics, Baoding City, Hebei Province , PRC, 1569–1573.
Muata, K. and Bryson, O., 2004, Evaluation of decision trees: a multi-criteria approach, Computers and Operations Research, 31, 1933–1945.
Patterson, F.D. and Neailey, K., 2002, A risk register database system to aid the management of project risk, International Journal of Project Management, 20, 365–374.
Pyle, D.,1999, Data Preparation for Data Mining, Morgan Kaufmann Publishers, San Fransisco.
Quinlan, J.R., 1986, Induction of decision trees, Machine Learning, 1, 81–106.
Rokach, L. and Maimon, O., 2005, Top-down induction of decision trees classifiers—A survey, IEEE Transactions on Systems, Man and Cybernetics─Part C: Applications and Reviews, 35, 476–487.
Raz, Z., Shenhar, A.J. and Dvir, D., 2002, Risk management, project success and technological uncertainty, R&D Management, 32, 101–109.
Raz, T. and Michael, E., 2001, Use and benefits of tools for project risk management, International Journal of Project Management, 19, 9–17.
Simon, P., Hillson, D. and Newland, K., 1997, Project Risk Analysis and Management(PRAM) Guide, UK: The Association for Project Management, High Wycombe Buckinghamshire.
Umano, M., Okamoto, H., Hatono, I. and Tamura, H., 1994, Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems, Proceedings of the Third IEEE Conference, Orlando, 2113–2118.
Word, S.C., 1999, Assessing and managing important risks, International Journal of Project Management, 17, 331–336.
Wang, X., Chen, B. and Qian, G.., Ye, F., 2000, On the optimization of fuzzy decision trees, Fuzzy Sets and Systems, 112, 117–125.
Yuan, Y. and Shaw, M., 1995, Induction of fuzzy decision tree, Fuzzy Sets and Systems, 69, 125–139.
Yang, I.T., 2005, Impact of Budget Uncertainty on Project Time-Cost Tradeoff, IEEE Transactions on Engineering Management, 52, 167–174.
Zwikael, O. and Sadeh, A., 2007, Planning effort as an effective risk management tool, Journal of Operations Management, 25, 757–767.