簡易檢索 / 詳目顯示

研究生: 林致揚
Lin, Jhih-Yang
論文名稱: 具可靠度及高性能驅動系統於電動載具之設計與實現
Design and Implementation of a Reliable Drive System with High Performance for Electric Scooters
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 故障診斷電子式變速泛用型驅動
外文關鍵詞: universal drive, electric transmission, fault diagnostic
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應全球節能減碳的訴求,本論文以輕型電動載具之驅動系統
    為研究主軸,設計與實現一低成本,且具有可變速比及故障診斷功能之驅動器。首先,本論文分析三相永磁無刷馬達操作於wye結線模式與delta結線模式之不同性能表現,並提出一適用於永磁無刷馬達wye/delta繞組之泛用型驅動架構。其次,設計一組應用於永磁無刷馬達之兩段式電子變速器,以改善傳統機械式變速之效率低、體積大等問題。最後為了有效提升驅動系統之可靠度,本論文特別針對霍爾元件故障、馬達繞組缺相與變頻器缺相等常見之故障進行探討,並提出一種適用於三相永磁無刷馬達之新型無電流感測器缺相診斷法。相較於現行使用電流感測器的診斷技術而言,本論文所提出之缺相診斷架構無須採用電流感測器與繁雜之數學運算,因此非常適用於輕型電動載具等低價位之載具應用場合。由理論分析及實驗結果可驗證本論文所提之相關技術的可行性。

    Due to the energy saving and carbon reduction, this thesis presents the design and implementation of a cost effective drive system with variable speed ratio and fault diagnostic for electric scooters. Firstly, the characteristics comparison of PM brushless motors with wye and delta winding connections are shown by extensive analysis, and a wye/delta universal drive scheme suitable for PM brushless motors is proposed. Secondly, a novel electric two-speed transmission system is designed to improve the efficiency and bulky volume of mechanical transmission. Finally, in order to improve the reliability of the commutation process, this thesis has a discussion on the fault characteristics of hall sensors, windings, and inverter, and also proposes a new diagnostic scheme of open phase fault for three-phase PM brushless motors. By this diagnostic approach, it is very suitable for low cost
    applications, such as electric scooters, due to the reduction of the costly current sensors and the complex calculation in the conventional solution. Theoretical analysis and experiments are conducted to evaluate the
    effectiveness of the presented technique.

    中文摘要……………………………………………………I 英文摘要………………………………………………………………II 誌謝.................................................III 目錄……………………………………………IV 表目錄…………………………………………VII 圖目錄…………………………………………………………VIII 符號表………………………………………………………………XII 第一章 緒論………………………………1 1.1 前言……………………………………………………1 1.2 研究動機與文獻回顧………………………2 1.3 論文架構…………………………………………5 第二章 永磁無刷馬達泛用型驅動器之設計…………………6 2.1 永磁無刷馬達之簡介……………………………………………6 2.2 wye/delta繞組之驅動原理……………………………………8 2.2.1 wye結線繞組之驅動方法………………………………8 2.2.2 delta結線繞組之驅動方法……………………………10 2.3數學模型與控制方塊圖推導………………………………14 2.3.1 wye結線繞組…………………………………………14 2.3.2 delta結線繞組…………………………………………17 2.3.3 wye結線與delta結線之特性比較…………………22 2.4 wye/delta繞組泛用型驅動原理……………………………24 2.5 小結…………………………………………………………27 第三章 電動載具之電子變速器設計………………………………28 3.1 車輛之行車動力需求簡介…………………28 3.2 常見之無減速機構變速方法…………………………30 3.2.1弱磁控制……………………………………………………31 3.2.2調變氣隙大小……………………………………………32 3.2.3調變永久磁鐵等效磁通………………………………….33 3.2.4複激式馬達………………………………………………34 3.2.5繞組變結構………………………………………………35 3.2.6討論與比較………………………………………………40 3.3電子式變速器之設計……………………………………………42 3.3.1 wye/delta繞組切換之架構………………………………42 3.3.2 變速時機之探討……………………………………………43 3.3.3 轉速估測策略………………………………………………44 3.3.4 繞組變結構切換暫態之探討………………………………45 3.5小結………………………………………………………………47 第四章 驅動系統故障診斷與保護機制………………………48 4.1霍爾元件故障診斷與容錯…………………………………48 4.1.1 故障診斷方法………………………………………………49 4.1.2 無感測器驅動之比較……………………………………50 4.1.3 虛擬中性點估測法之原理…………………………………52 4.2永磁無刷馬達無電流感測器之缺相診斷技術…………………56 4.2.1變頻器缺相診斷……………………………………………60 4.2.2 馬達缺相診斷………………………………………………61 4.3 小結……………………………………………………………62 第五章 系統架構與實驗結果……………………………………63 5.1 實驗系統架構 ………………………………………………63 5.1.1微控制器……………………………………………………63 5.1.2變頻器……………………………………………………65 5.1.3故障模擬電路……………………………………………66 5.1.4輪毂馬達…………………………………………………67 5.1.5動力加載量測平台………………………………………68 5.2實驗一: wye/delta泛用型驅動架構之實現……………………69 5.2.1 delta結線之環流負載效應量測…………………………69 5.2.2軟體程式架構…………………………………………72 5.2.3滿載電流量測……………………………………………73 5.3實驗二: 電子式變速器之實現…………………………………74 5.3.1 軟體程式架構……………………………………………74 5.3.2 性能測試…………………………………………………75 5.3.3 切換暫態……………………………………………………76 5.4實驗三: 驅動系統故障診斷與保護機制之實現………………77 5.4.1 霍爾元件之故障診斷與容錯……………………………77 5.4.2 無電流感測器缺相診斷之實現…………………………79 第六章 總結與未來研究建議…………………………84 6.1 總結……………………………………………………84 6.2 未來研究建議…………………………………………………85 參考文獻………………………………………………………86 自述………………………………………………………96

    [1] A. Ramzy, “On the Streets of China, Electric Bikes Are Swarming,” Time Magazine, Vol. 173, No. 24, June, 2009.
    [2] A. R. Munoz, and T. A. Lipo, “Dual Stator Winding Induction Machine Drive,” IEEE Trans. Ind. Applicat., Vol. 36, No. 5, pp. 1369-1379, Sep./Oct. 2000.
    [3] A. G. Jack, B. C. Mecrow, and J. A. Haylock, “A Comparative Study of Permanent Magnet and Switched Reluctance Motors for High-Performance Fault-Tolerant Applications,” IEEE Trans. Ind. Applicat., Vol. 32, No. 4, pp. 889-895, July/Aug. 1996.
    [4] A. Boglietti, M. Lazzari, M. Pastorelli, and W. Viglietti, “Induction Motor Winding Commutation with Direct Field Oriented Control for Wide Constant Power Range Operation,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, San Diego, USA, pp. 551-557, 1996.
    [5] B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, “Fault Tolerant Three-Phase AC Motor Drive Topologies: A Comparison of Features, Cost, and Limitations,” IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 1108-1116, July 2004.
    [6] B. G. Park, T. S. Kim, J. S. Ryu, B. K. Lee, and D. S. Hyun, “Fault Tolerant System under Open Phase Fault for BLDC Motor Drives,” in Proc. of the 37th IEEE PESC’ 06, pp. 1-6, June 2006.
    [7] B. Q. Kou, C. Y. Li, and S. K. Cheng, “A New Flux Weakening Method of Permanent Magnet Synchronous Machine,” in Proc. of the IEEE ICEMS’05, Vol. 1, pp. 500-503, Sept. 2005.
    [8] C. Y. Li, B. Q. Kou, S. K. Cheng, and Y. Liu, “Research on Interpolar Leakage Coefficient of PMSM with Variable Magnetic Reluctance in the Exciting Circuit,” in Proc. of the IEEE VPPC’08, Harbin, China, pp. 1-4, Sept. 2008.
    [9] C. H. Chen and M. Y. Cheng, “A New Cost Effective Sensorless Commutation Method for Brushless DC Motors Without Phase Shift Circuit and Neutral Voltage,” IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 644-653, March 2007.
    [10] C. C. Chan, J. Z. Jiang, W. Xia, and K. T. Chau, “Novel Wide Range Speed Control of Permanent Magnet Brushless Motor Drives,” IEEE Trans. Power Electron., Vol. 10, No. 5, pp. 539-546, Sep. 1995.
    [11] C. H. Chen, and M. Y. Cheng, “Design of a Multispeed Winding for a Brushless DC Motor and Its Sensorless Control,” Proc. of the IEE Electr. Power Applicat., Vol. 153, No. 6, pp. 834-841, 2006.
    [12] C. H. Chen, W. C. Tai, and M. Y. Cheng, “Analysis of a Cost Effective Zero Emission Scooter Drive,” in Proc. of the 25th EPE Conf., Tainan, Taiwan, pp. 1329-1334, Nov. 2004.
    [13] D. Hanselman, Brushless Permanent Magnet Motor Design, The Writers’ Collective, USA, 2003.
    [14] D. Patterson, and R. Spee, “The Design and Development of an Axial Flux Permanent Magnet Brushless DC Motor for Wheel Drive in a Solar Powered Vehicle ,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, Denver, USA, pp. 188-195, 1994.
    [15] D. Hanselman, Brushless Permanent Magnet Motor Design, The Writers’ Collective, USA, 2003.
    [16] “dsPIC30F Family Reference Manual,” DS70046B, Microchip Technology Inc., 2003.
    [17] E. Cengelci, P. N. Enjeti, and J. W. Gray, “A New Modular Motor- Modular Inverter Concept for Medium-Voltage Adjustable- Speed-Drive Systems,” IEEE Trans. Ind. Applicat., Vol. 36, No. 3, pp. 786-796, May/June 2000.
    [18] F. Caricchi, F. Crescimbini, F. G. Capponi, L. Solero, “Permanent-Magnet, Direct-Drive, Starter/Alternator Machine with Weakening Flux Linkage for Constant-Power Operation Over Extremely Wide Speed Range,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, Chicago, USA, pp. 1626-1633, 2001.
    [19] F. Caricchi, F. Crescimbini, F. Mezzetti, and E. Santini, “Multistage Axial-Flux PM Machine for Wheel Direct Drive,” IEEE Trans. Ind. Applicat., Vol. 32, No. 4, pp. 882-88, July./Aug. 1996.
    [20] G. H. Chen, and K. J. Tseng, “Design of a Permanent-Magnet Direct-Driven Wheel Motor Drive for Electric Vehicle,” in Proc. of the IEEE PESC’96, Cambridge, Massachusetts, USA, Vol. 2, pp. 23 -27, June 1996.
    [21] H. Huang, and L. Chang, “Electrical Two-Speed Propulsion by Motor Winding Switching and Its Control Strategies for Electric Vehicles,” IEEE Trans. Vehicular Technology, Vol. 48, No. 2, pp. 607-618, March 1999.
    [22] J. C. Moreira, “Indirect Sensing for Rotor Fux Position of Permanent Magnet AC Motors Operating in a Wide Speed Range,” IEEE Trans. Ind. Applicat., Vol. 32, No. 6, pp. 1394-1401, Nov./Dec. 1996.
    [23] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A Novel Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Fuel Pumps,” IEEE Trans. Ind. Applicat., Vol. 39, No. 6, pp. 1734-1740, Nov./Dec. 2003.
    [24] J. f. Gieras, R. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Kluwer Academic Publishers, Netherlands, 2004.
    [25] J. X. Shen, Z. Q. Zhu, and D. Howe, “Sensorless Flux-Weakening Control of Permanent Magnet Brushless Machines using Third-Harmonic Back-EMF,” IEEE Trans. Ind. Applicat., Vol. 40, No. 6, pp. 1629-1636, Nov./Dec. 2004.
    [26] J. S. Lawler, J. M. Bailey, J. W. Mckeever, J. Pinto, “Limitations of The Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor,” in Proc. of the IEEE SoutheastCon’02, Columbia, pp. 174-179, 2002.
    [27] J. R. Hendershot Jr., and THE Miller, Design of Brushless Permanent-Magnet Motors, Oxford University, Oxford, U.K., 1994.
    [28] J. Shao, and D. Nolan, “Further Improvement of Direct Back EMF Detection for Sensorless Brushless DC (BLDC) Motor Drives,” in Proc. of the 20th Annual IEEE Applied Power Electronics Conf. and Exposition, Austin (Texas), USA, pp. 933-937, 2005.
    [29] J. D. Lee, B. G. Park, T. S. Kim, J. S. Ryu, and D. S. Hyun, “Simple Fault Detection Algorithm of BLDC Motor Based on Operating Characteristic,” in Proc. of the IEEE PESC’ 08, pp. 643-646, June 2008.
    [30] K. Cheng, and Y. Tzou “Design of a Sensorless Commutation IC for BLDC Motors,” IEEE Trans. Power Electron, Vol. 18, No. 6, pp. 1365-1375, Nov. 2003.
    [31] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Trans. Ind. Applicat., Vol. 21, No. 4, pp. 595-601, May/June 1985.
    [32] K. Liang , W. Xuhui, X. Shan, and F. Tao, “The Study of Bypass Hybrid Excitation Synchronous Motors with Extended Field-Weakening Capability,” in Proc. of the IEEE ICEMS’08, Wuhan, China, pp. 3627-3631, Oct. 2008.
    [33] K. Rahman, N. Patel, T. Ward, J. Nagashima, F. Caricchi, and F. Crescimbini, “Application of Direct Drive Wheel Motor for Fuel Cell Electric and Hybrid Electric Vehicle Propulsion System,” in Proc. of the 39th IEEE Ind. Applicat. IAS Annual Meeting, Vol. 3, pp. 1420-1426, Oct. 2004.
    [34] L. Vido, M. Gabsi, M. Lécrivain, Y. Amara, F. Chabot , “Homopolar and Bipolar Hybrid Excitation Synchronous Machines,” in Proc. of the IEEE IEMDC’ 05, San Antonio, USA, pp. 1212-1218, May 2005.
    [35] L. Vido, Y. Amara, M. Gabsi, M. Lécrivain, and F. Chabot, “Compared Performances of Homopolar and Bipolar Hybrid Excitation Synchronous Machines,” in Proc. of the 40th IEEE Ind. Applicat. IAS Annual Meeting, Vol. 3, pp. 1555-1560, Oct. 2005.
    [36] L. Ma, M. Sanada, S. Morimoto, and Y. Takeda, “Advantages of IPMSM with Adjustable PM Armature Flux Linkage in Efficiency Improvement and Operating Range Extension,” in Proc. of PCC 2002, Osaka, Japan, pp. 136-141, 2002.
    [37] L. Solero, O. Honorati, F. Caricchi, and F. Crescimbini, “Nonconventional Three-Wheel Electric Vehicle for Urban Mobility,” IEEE Trans. Vehicular Technology, Vol. 50, No. 4, pp. 1085-1091, July 2001.
    [38] M. C. Tsai, M. C. Chou, and C. L. Chu, “Control of a Variable-Winding Brushless Motor with the Application in Electric Scooters,” in Proc. of the IEEE IEMDC’01, Cambridge, Massachusetts, USA, pp. 922 -925, 2001.
    [39] M. Pausch, and F. Pfeiffer, “Simulation of a Chain Drive CVT as a Mechatronic System,” in Proc. of the COC’97, St. Petersburg, Russia, pp. 391-394, 1997.
    [40] M. Suzuki, D. Wang, “Development of In-Wheel Type Integrated Motor Axle Unit,” NTN Technical Review, No.73, 2005.
    [41] “maxon EC-i 40, electronically commutated internal rotor motors,” Maxon Precision Motor, Inc., http://www.maxonmotor.com.
    [42] N. Bianchi, S. Bolognani, and M. Zigliotto, “High-Performance PM Synchronous Motor Drive for an Electrical Scooter”, IEEE Trans. Ind. Applicat., Vol. 37, No. 5, pp.1348-1355, Sep./Oct. 2001.
    [43] N. Bianchi, S. Bolognani, M. Zigliotto, and M. Zordan, “Innovative Remedial Strategies for Inverter Fault in IPM Synchronous Motor Drives,” IEEE Trans. Energy Conversion, Vol. 18, No. 2, pp. 306-314, June 2003.
    [44] P. Setlur, J. R. Wagner, D. M. Dawson, and B. Samuels, “Nonlinear Control of a Continuously Variable Transmission (CVT),” IEEE Trans. Control Sys. and Tech., Vol. 11, No. 1, pp. 101-108, Jan. 2003.
    [45] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of Algorithms for Velocity Estimation from Discrete Position Versus Time Data,” IEEE Trans. Ind. Electron., Vol.39, No.1, pp.11-19, Feb. 1992.
    [46] R. L. de A. Ribeiro, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “Fault Detection of Open-Switch Damage in Voltage-Fed PWM Motor Drive Systems,” IEEE Trans. Power Electron., Vol. 18, No. 2, pp. 587-593, March 2003.
    [47] R. Speed, and A. K. Wallace, “Remedial Strategies for Brushless DC Drive Failures,” IEEE Trans. Ind. Applicat., Vol. 26, No.2, pp. 259-266, March/April 1990.
    [48] S. J. Chapman, Electric Machinery Fundamentals, 3rd edition, McGraw-Hill, USA, 1999.
    [49] S. Nandi, and H. A. Toliyat, “Condition Monitoring and Fault Diagnosis of Electrical Machines – A Review,” in Proc. of the IEEE Ind. Applicat., Phoenix, USA, Vol. 1, pp.197-204, Oct. 1999.
    [50] S. Wu, L. Song, and S. Cui, “Study on Improving the Performance of Permanent Magnet Wheel Motor for the Electric Vehicle Application,” IEEE Trans. Magnetics, Vol. 43, No. 1, pp. 438-442, Jan. 2007.
    [51] S. Robinson, “Cycle-by-Cycle Current Limiting Eases Design of Motor Drives,” Power Electronics Technology, Nov. 2008.
    [52] T. M. Jahns, “Component Rating Requirements for Wide Constant Power Operation of Interior PM Synchronous Machine Drives,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, Rome, Italy, pp. 1697-1704, 2000.
    [53] T. Kosaka, and N. Matsui, “Hybrid Excitation Machines with Powdered Iron Core for Electrical Traction Drive Applications,” in Proc. of the IEEE ICEMS’08, Wuhan, China, pp. 2974-2979, Oct. 2008.
    [54] T. Kume, T. Iwakane, T. Sawa, T. Yoshida, and I. Nagai, “A Wide Constant Power Range Vector Controlled AC Motor Drive Using Winding Changeover Technique,” IEEE Trans. Ind. Applicat., Vol. 27, No. 5, pp. 934-939, Sep./Oct. 1991.
    [55] T. Kume, M. Swamy, M. Sawamura, K. Yamada, and I. Murokita, “A Quick Transition Electronic Winding Changeover Technique for Extended Speed Ranges,” in Proc. of the 35th IEEE Power Electronics Specialists Conference, Aachen, Germany, pp. 3384-3389, 2004.
    [56] W. Feng, M.Dong, and X. Zhangsui, “A Research about the Temperature Compensation of Hall Sensor,” in Proc. of the IEEE ICEMIC’ 07, pp. 4-131 – 4-134, July/Aug. 2007.
    [57] W. Kim, and G. Vachtsevanos, “Fuzzy Logic Ratio Control for a CVT Hydraulic Module,” in Proc. of 15th IEEE International Sym. On Intelligent Control, Patras, Greece, pp. 151-156, July 2000.
    [58] Y. S. Jeong, S. K. Sul, S. Schulz, and N.Patel, “Fault Detection and Fault Tolerant Control of Interior Permanent Magnet Motor Drive System for Electric Vehicle,” in Proc. of the 38th IEEE Ind. Applicat. IAS Annual Meeting, Vol. 3, pp. 1458-1463, Oct. 2003.
    [59] Y. Amara, L. Vido, M. Gabsi, E. Hoang, M. Lecrivain, and F. Chabot, “Hybrid Excitation Synchronous Machines: Energy-Efficient Solutioln for Vehicle Propulsion,” IEEE Trans. Vehicular Technology, Vol. 58, No.5, pp. 2137-2149, June 2009.
    [60] Y. P. Yang, J. P. Wang, S. W. Wu, Y. P. Luh, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles-Part II: Optimal Current Waveforms and Performance Test,” IEEE Trans. Magnetics, Vol. 40, No. 4, pp. 1883-1891, July 2004.
    [61] Y. P. Yang, Y. P. Luh, C. H. Cheung, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles-Part I: Multiobjective Optimal Design and Analysis,” IEEE Trans. Magnetics, Vol. 40, No. 4, pp. 1873-1882, July 2004.
    [62] Y. P. Yang, and D. S. Chuang, “Optimal Design and Control of a Wheel Motor for Electric Passenger Cars,” IEEE Trans. Magnetics, Vol. 43, No. 1, pp. 51-61, Jan. 2007.
    [63] 申秉宏,永磁無刷馬達之新型無轉軸偵測器定位控制與其應用,國立成功大學機械工程學系碩士論文,2002。
    [64] 李明 編輯,無霍爾電動車控制器技術的突破,中國亳州網,http://www.bozhounet.cn,2008。
    [65] 林穎燦,無刷直流馬達無感測換相控制IC之規劃與設計,國立交通大學電機與控制工程系碩士論文,2001。
    [66] 周明昌,變結構無刷馬達控制在電動機車之應用,國立成功大學機械工程學系碩士論文,2000。
    [67] 陳正虎,戴維志,鄭銘揚,高效能永磁同步馬達驅動電流分析,馬達科技研究中心電子報,第100期,2004。
    [68] 雅達電子有限公司,YD2301/YD2302智能馬達保護控制器使用手冊,雅達電子有限公司,2008。
    [69] 曾仁志,無感測器驅動系統於薄型馬達之設計與實現,國立成功大學機械工程學系碩士論文,2007。
    [70] 蔡明勳,智慧型電子式無段變速器於電動載具之設計與實現,國立成功大學電機工程學系碩士論文,2005。

    無法下載圖示 校內:2108-07-16公開
    校外:2108-07-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE