簡易檢索 / 詳目顯示

研究生: 劉享諺
Liu, Hsiang-Yen
論文名稱: 用於雷射微共振腔之 CsPbBr3 鈣鈦礦薄膜的氣相成長研究
Vapor-Phase Growth of CsPbBr3 Perovskite Thin Films for Microcavity Laser Applications
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 90
中文關鍵詞: CsPbBr3 單晶薄膜雷射圖案化
外文關鍵詞: CsPbBr3 single crystal film, laser, patterning
相關次數: 點閱:51下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與有機–無機混合型鈣鈦礦材料不同,全無機鹵化物鈣鈦礦(如 CsPbBr3)因具備優異的光電特性,近年來廣受關注,被視為極具潛力的發光二極體(LED)、雷射及其他光電元件材料。本研究中,我們採用化學氣相沉積(Chemical Vapor Deposition, CVD)技術,將 CsPbBr3 薄膜沉積於c-plane藍寶石基板上。然而,在大面積範圍內同時實現高結晶品質與優異均勻性,仍是一項相當具挑戰性的課題。
    為解決此問題,我們系統性地調控晶體生長溫度、載氣流量及持溫時間等關鍵參數,以促進薄膜的連續成長與橫向擴展。透過光學量測分析不同生長條件下的結晶品質與載子壽命,並利用選區電子繞射(Selected-Area Electron Diffraction, SAED)證實薄膜為單晶結構。此外,在 355 nm 脈衝雷射激發下,薄膜展現明顯的雷射行為,顯示其具備優異的光學共振特性,可作為雷射共振腔的有效增益介質。
    進一步地,我們利用聚焦離子束顯微鏡(Focused Ion Beam, FIB)對大面積 CsPbBr3薄膜進行微結構圖案化製作,並透過後續光學分析,初步驗證其作為微型雷射共振腔元件的應用潛力。

    Unlike hybrid organic–inorganic perovskites, all-inorganic halide perovskites such as CsPbBr3 have attracted considerable attention in recent years due to their excellent optoelectronic properties, making them promising candidates for applications in light-emitting diodes (LEDs), lasers, and other optoelectronic devices. In this work, CsPbBr3 thin films were deposited onto c-plane sapphire substrates via chemical vapor deposition (CVD). Nevertheless, achieving large-area CsPbBr3 thin films with high crystallinity and uniformity remains a significant challenge.
    To address this issue, we systematically tuned key growth parameters—including growth temperature, carrier gas flow flux, and keeping time—to promote continuous film growth and lateral expansion. The crystallinity and carrier lifetime under different growth conditions were evaluated through optical characterization, while the single crystallinity of the films was confirmed by selected-area electron diffraction (SAED). Furthermore, under excitation by a 355 nm pulsed laser, the films exhibited distinct lasing behavior, confirming their excellent optical resonance characteristics and suitability as gain media for laser resonators.
    In addition, large-area CsPbBr3 thin films were patterned into microstructures using focused ion beam (FIB) milling. Subsequent optical measurements provided preliminary insights into their potential for integration as micro-laser resonator components.

    摘要 I Abstract II 致謝 III Content IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1 Preface 1 1.2 Historical Review 3 1.2.1 Perovskite 3 1.2.2 Applications of CsPbBr3 large-area films 6 1.3 Motivation 10 Chapter 2. Background theories 11 2.1 Characteristics of Three-dimensional Perovskite 11 2.1.1 Crystal Structure 11 2.2 Lattice constant between substrate and CsPbBr3 13 2.3 Chemical Vapor Deposition Deposition Mechanisms 15 2.4 Relationship between carrier gas flux and crystal growth 16 2.5 Crystal deposition tendency 18 2.6 Photoluminesence 19 2.7 Fabry-Pérot cavity 21 Chapter 3. Experiment Process and Measurement 24 3.1 Preparation of CsPbBr3 thin film 24 3.1.1 Preparation of powder precursors 24 3.1.2 Growth of CsPbBr3 thin films 24 3.2 Preparation of CsPbBr3 microdisk via FIB 25 3.2.1 Scanning Electron Microscope (SEM) 26 3.2.2 Energy-dispersive X-ray spectroscopy (EDS) 27 3.2.3 Automaic Force Microscope (AFM) 29 3.2.4 White Light Interferometry (WLI) 30 3.2.5 X-ray Diffraction (XRD) 31 3.2.6 Micro-Photoluminescence (μ-PL) System 33 3.2.7 Time-Resolved Photoluminescence (TRPL) System 34 Chapter 4. Result and Discussion 37 4.1 The impact of crystal growth parameters on CsPbBr3 thin films 37 4.1.1 Growth temperature 37 4.1.2 Carrier gas flux 40 4.1.3 Growth keeping time 43 4.2 Optical evaluation of growth temperature 45 4.2.1 Growth temperature 45 4.2.2 Carrier gas flux 46 4.3 Surface Morphology and Thickness Characterization of Thin Films 47 4.4 Crystalline Quality Characterization 49 4.4.1 XRD analysis 49 4.4.2 Rocking Curve Analysis 50 4.5 Energy-dispersive X-ray spectroscopy (EDS) analysis 52 4.6 Optical Property Analysis 53 4.6.1 Excitation Power-dependent PL Spectra Analysis 53 4.6.2 Time-Resolved PL Measurement 56 4.6.3 Lasing behavior of CsPbBr3 thin film 57 4.6.4 Fabry-Pérot (F-P) Mode Lasing 58 4.7 Fabrication of CsPbBr3 microstructures via Focused Ion Beam (FIB) Etching 59 Chapter 5. Conclusion and Future Work 64 5.1 Conclusion 64 5.2 Future Work 65 Reference 66 Appendix 75

    1 Park, N. G. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65-72 (2015). https://doi.org:10.1016/j.mattod.2014.07.007

    2 Xing, G. C. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344-347 (2013). https://doi.org:10.1126/science.1243167

    3 Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). https://doi.org:10.1038/s41586-018-0451-1

    4 Pan, W. C. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11, 726-+ (2017). https://doi.org:10.1038/s41566-017-0012-4

    5 Bai, S., Jin, Y., Gao, F., Tiwari, A. & Uzun, L. Organometal halide perovskites for photovoltaic applications. Advanced Functional Materials, 535-566 (2015).

    6 Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155-+ (2020). https://doi.org:10.1126/science.aba3433

    7 He, Y. H. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 15, 36-42 (2021). https://doi.org:10.1038/s41566-020-00727-1

    8 Xu, Q. et al. CsPbBr3 Single Crystal X-ray Detector with Schottky Barrier for X-ray Imaging Application. ACS Appl. Electron. Mater. 2, 879-884 (2020). https://doi.org:10.1021/acsaelm.9b00832

    9 Saidaminov, M. I. et al. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection. Adv. Opt. Mater. 5, 7 (2017). https://doi.org:10.1002/adom.201600704

    10 Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. & Kovalenko, M. V. Solution-Grown CsPbBr3 Perovskite Single Crystals for Photon Detection. Chem. Mat. 28, 8470-8474 (2016). https://doi.org:10.1021/acs.chemmater.6b04298

    11 Protesescu, L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15, 3692-3696 (2015). https://doi.org:10.1021/nl5048779

    12 Xu, J. W. et al. Imbedded Nanocrystals of CsPbBr3 in Cs4PbBr6: Kinetics, Enhanced Oscillator Strength, and Application in Light-Emitting. Adv. Mater. 29, 10 (2017). https://doi.org:10.1002/adma.201703703

    13 Zhang, L. Q. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 8 (2017). https://doi.org:10.1038/ncomms15640

    14 Wang, H. R. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 10 (2019). https://doi.org:10.1038/s41467-019-08425-5

    15 Zhang, D. D., Eaton, S. W., Yu, Y., Dou, L. T. & Yang, P. D. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. J. Am. Chem. Soc. 137, 9230-9233 (2015). https://doi.org:10.1021/jacs.5b05404

    16 Zhang, D. D. et al. Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. J. Am. Chem. Soc. 138, 13155-13158 (2016). https://doi.org:10.1021/jacs.6b08373

    17 Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745-750 (2017). https://doi.org:10.1126/science.aam7093

    18 Gu, Z. K., Huang, Z. D., Li, C., Li, M. Z. & Song, Y. L. A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 4, 8 (2018). https://doi.org:10.1126/sciadv.aat2390

    19 Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. U. S. A. 113, 1993-1998 (2016). https://doi.org:10.1073/pnas.1600789113

    20 Rakita, Y. et al. Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization. Cryst. Growth Des. 16, 5717-5725 (2016). https://doi.org:10.1021/acs.cgd.6b00764

    21 Zhang, H. J. et al. Centimeter-Sized Inorganic Lead Halide Perovskite CsPbBr3 Crystals Grown by an Improved Solution Method. Cryst. Growth Des. 17, 6426-6431 (2017). https://doi.org:10.1021/acs.cgd.7b01086

    22 Yan, K., Peng, H. L., Zhou, Y., Li, H. & Liu, Z. F. Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Lett. 11, 1106-1110 (2011). https://doi.org:10.1021/nl104000b

    23 Li, X. et al. Large-Area Two-Dimensional Layered Hexagonal Boron Nitride Grown on Sapphire by Metalorganic Vapor Phase Epitaxy. Cryst. Growth Des. 16, 3409-3415 (2016). https://doi.org:10.1021/acs.cgd.6b00398

    24 Lan, S. G. et al. Vapor-Phase Growth of CsPbBr3 Microstructures for Highly Efficient Pure Green Light Emission. Adv. Opt. Mater. 7, 8 (2019). https://doi.org:10.1002/adom.201801336

    25 Gao, Y. S. et al. Lead Halide Perovskite Nanostructures for Dynamic Color Display. ACS Nano 12, 8847-8854 (2018). https://doi.org:10.1021/acsnano.8b02425

    26 Harwell, J. et al. Patterning Multicolor Hybrid Perovskite Films via Top-Down Lithography. ACS Nano 13, 3823-3829 (2019). https://doi.org:10.1021/acsnano.8b09592

    27 Huang, C. et al. Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. ACS Nano 12, 3865-3874 (2018). https://doi.org:10.1021/acsnano.8b01206

    28 Engel, M., Steiner, M., Seo, J. W. T., Hersam, M. C. & Avouris, P. Hot Spot Dynamics in Carbon Nanotube Array Devices. Nano Lett. 15, 2127-2131 (2015). https://doi.org:10.1021/acs.nanolett.5b00048

    29 Zhizhchenko, A. et al. Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks. ACS Nano 13, 4140-4147 (2019). https://doi.org:10.1021/acsnano.8b08948

    30 Han, J. W., Hwang, S. H., Seol, M. J. & Kim, S. Y. Recent Patterning Methods for Halide Perovskite Nanoparticles. Adv. Opt. Mater. 10, 23 (2022). https://doi.org:10.1002/adom.202200534

    31 Spicer, W., Chye, P., Garner, C., Lindau, I. & Pianetta, P. The surface electronic structure of 3–5 compounds and the mechanism of Fermi level pinning by oxygen (passivation) and metals (Schottky barriers). Surface Science 86, 763-788 (1979).

    32 Haick, H., Ambrico, M., Ghabboun, J., Ligonzo, T. & Cahen, D. Contacting organic molecules by metal evaporation. Physical Chemistry Chemical Physics 6, 4538-4541 (2004).

    33 Li, W. X. et al. Shaping Organic Microcrystals Using Focused Ion Beam Milling. Cryst. Growth Des. 20, 1583-1589 (2020). https://doi.org:10.1021/acs.cgd.9b01327

    34 Wang, Y., Zhi, M., Chang, Y. Q., Zhang, J. P. & Chan, Y. T. Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr3 Nanoparticles Exhibiting Trion Gain. Nano Lett. 18, 4976-4984 (2018). https://doi.org:10.1021/acs.nanolett.8b01817

    35 He, Y. H. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 8 (2018). https://doi.org:10.1038/s41467-018-04073-3

    36 Song, Z., Zhao, J. & Liu, Q. L. Luminescent perovskites: recent advances in theory and experiments. Inorg. Chem. Front. 6, 2969-3011 (2019). https://doi.org:10.1039/c9qi00777f

    37 Zheng, W. L. et al. Emerging Halide Perovskite Ferroelectrics. Adv. Mater. 35, 21 (2023). https://doi.org:10.1002/adma.202205410

    38 Wei, Q. et al. Recent progress in metal halide perovskite micro‐and nanolasers. Adv. Opt. Mater. 7, 1900080 (2019).

    39 Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature nanotechnology 9, 687-692 (2014).

    40 Heo, S. et al. Electrochemically n-Doped CsPbBr3 Nanocrystal Thin Films. ACS Energy Letters 7, 211-216 (2021).

    41 Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249-253 (2018).

    42 Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics 12, 783-789 (2018).

    43 Lim, J. et al. Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy Environ. Sci. 12, 169-176 (2019). https://doi.org:10.1039/c8ee03395a

    44 Choi, J. W. et al. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange. Nanoscale 10, 13356-13367 (2018). https://doi.org:10.1039/c8nr00806j

    45 Du, X. Y. et al. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat. Commun. 12, 9 (2021). https://doi.org:10.1038/s41467-021-23788-4

    46 Tao, S. X. et al. Absolute energy level positions in tin-and lead-based halide perovskites. Nat. Commun. 10, 10 (2019). https://doi.org:10.1038/s41467-019-10468-7

    47 Akbulatov, A. F. et al. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites. The journal of physical chemistry letters 8, 1211-1218 (2017).

    48 Yuan, M. et al. Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nat. Nanotechnol. 20, 381-387 (2025).

    49 Han, Q. et al. Inorganic perovskite-based active multifunctional integrated photonic devices. Nat. Commun. 15, 9 (2024). https://doi.org:10.1038/s41467-024-45565-9

    50 Zhong, Y. G. et al. Large-Scale Thin CsPbBr3 Single-Crystal Film Grown on Sapphire via Chemical Vapor Deposition: Toward Laser Array Application. ACS Nano 14, 15605-15615 (2020). https://doi.org:10.1021/acsnano.0c06380

    51 Zhao, Y. X. & Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655-689 (2016). https://doi.org:10.1039/c4cs00458b

    52 Chen, Q. et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355-396 (2015).

    53 Docampo, P. & Bein, T. A long-term view on perovskite optoelectronics. Accounts of chemical research 49, 339-346 (2016).

    54 Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506-514 (2014). https://doi.org:10.1038/nphoton.2014.134

    55 Zhang, Q. et al. Advances in small perovskite‐based lasers. Small Methods 1, 1700163 (2017).

    56 Lee, D. et al. Structurally Engineered Stackable and Scalable 3D Titanium-Oxide Switching Devices for High-Density Nanoscale Memory. Adv. Mater. 27, 59-64 (2015). https://doi.org:10.1002/adma.201403675

    57 Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341-344 (2013). https://doi.org:10.1126/science.1243982

    58 Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O. & Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548-4556 (2016). https://doi.org:10.1039/c5sc04845a

    59 Kieslich, G., Sun, S. J. & Cheetham, A. K. An extended Tolerance Factor approach for organic-inorganic perovskites. Chem. Sci. 6, 3430-3433 (2015). https://doi.org:10.1039/c5sc00961h

    60 Burger, S., Ehrenreich, M. & Kieslich, G. Tolerance factors of hybrid organic–inorganic perovskites: recent improvements and current state of research. Journal of Materials Chemistry A 6, 21785-21793 (2018).

    61 Travis, W., Glover, E., Bronstein, H., Scanlon, D. & Palgrave, R. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548-4556 (2016).

    62 Lin, Z. et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2, e1600993 (2016).

    63 Floro, J. et al. The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. Journal of Applied Physics 89, 4886-4897 (2001).

    64 Mo, Y.-W., Savage, D., Swartzentruber, B. & Lagally, M. G. Kinetic pathway in Stranski-Krastanov growth of Ge on Si (001). Physical review letters 65, 1020 (1990).

    65 Teichert, C. Self-organization of nanostructures in semiconductor heteroepitaxy. Physics Reports 365, 335-432 (2002).

    66 Itagaki, N. et al. Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition. Scientific reports 10, 4669 (2020).

    67 Zhang, S. et al. Highly ordered arrays and characterization of WS2 flakes grown by low pressure chemical vapour deposition. Chemical Physics 523, 106-109 (2019).

    68 Zou, C., Li, B., Liu, K., Yang, X. & Li, D. Microstructure and mechanical properties of Si3N4f/BN composites with BN interphase prepared by chemical vapor deposition of borazine. Journal of the European Ceramic Society 40, 1139-1148 (2020).

    69 Katamune, Y., Arikawa, D., Mori, D. & Izumi, A. Formation of phosphorus-incorporated diamond films by hot-filament chemical vapor deposition using organic phosphorus solutions. Thin Solid Films 677, 28-32 (2019).

    70 Madaka, R., Kumari, J., Kanneboina, V., Jha, H. S. & Agarwal, P. Role of chamber pressure on crystallinity and composition of silicon films using silane and methane as precursors in hot-wire chemical vapour deposition technique. Thin Solid Films 682, 126-130 (2019).

    71 Liu, X. et al. Homoepitaxial growth of multiple 4H-SiC wafers assembled in a simple holder via conventional chemical vapor deposition. Journal of Crystal Growth 507, 283-287 (2019).

    72 Gutiérrez-García, C. J. et al. Synthesis of carbon spheres by atmospheric pressure chemical vapor deposition from a serial of aromatic hydrocarbon precursors. Physica E: Low-dimensional Systems and Nanostructures 112, 78-85 (2019).

    73 Arzaee, N. A. et al. Aerosol-assisted chemical vapour deposition of α-Fe2O3 nanoflowers for photoelectrochemical water splitting. Ceramics International 45, 16797-16802 (2019).

    74 Ning, B., Xia, T., Tong, Z.-X. & He, Y.-L. Experimental and numerical studies of tungsten line growth in laser chemical vapor deposition. International Journal of Heat and Mass Transfer 140, 564-578 (2019).

    75 Singh, M., Jha, H. S. & Agarwal, P. Synthesis of vertically aligned carbon nanoflakes by hot-wire chemical vapor deposition: Influence of process pressure and different substrates. Thin Solid Films 678, 26-31 (2019).

    76 Sabzi, M. et al. A review on sustainable manufacturing of ceramic-based thin films by chemical vapor deposition (CVD): reactions kinetics and the deposition mechanisms. Coatings 13, 188 (2023).

    77 Ohring, M. Materials science of thin films: depositon and structure. (Academic press, 2002).

    78 Kolahdouz, M., Salemi, A., Moeen, M., Östling, M. & Radamson, H. H. Kinetic modeling of low temperature epitaxy growth of SiGe using disilane and digermane. Journal of The Electrochemical Society 159, H478 (2012).

    79 Sun, L. et al. Chemical vapour deposition. Nature Reviews Methods Primers 1, 5 (2021).

    80 Kleijn, C., Dorsman, R., Kuijlaars, K., Okkerse, M. & van Santen, H. v. Multi-scale modeling of chemical vapor deposition processes for thin film technology. Journal of crystal growth 303, 362-380 (2007).

    81 Martin, P. M. Handbook of deposition technologies for films and coatings: science, applications and technology. (William Andrew, 2009).

    82 Bahrig, L., Hickey, S. G. & Eychmüller, A. Mesocrystalline materials and the involvement of oriented attachment–a review. CrystEngComm 16, 9408-9424 (2014).

    83 Dandekar, P., Kuvadia, Z. B. & Doherty, M. F. Engineering crystal morphology. Annual Review of Materials Research 43, 359-386 (2013).

    84 Lovette, M. A. et al. Crystal shape engineering. Industrial & engineering chemistry research 47, 9812-9833 (2008).

    85 Burton, W.-K., Cabrera, N. t. & Frank, F. The growth of crystals and the equilibrium structure of their surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 243, 299-358 (1951).

    86 Kossel, W. Zur theorie des kristallwachstums. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 135-143 (1927).

    87 Stranski, I. N. Zur theorie des kristallwachstums. Zeitschrift für physikalische Chemie 136, 259-278 (1928).

    88 Zhang, J. & Nancollas, G. H. Kink density and rate of step movement during growth and dissolution of anABCrystal in a nonstoichiometric solution. Journal of Colloid and Interface Science 200, 131-145 (1998).

    89 Vekilov, P. G. What determines the rate of growth of crystals from solution? Crystal Growth and Design 7, 2796-2810 (2007).

    90 Otálora, F. & García-Ruiz, J. Nucleation and growth of the Naica giant gypsum crystals. Chem. Soc. Rev. 43, 2013-2026 (2014).

    91 Li, J., Tilbury, C. J., Kim, S. H. & Doherty, M. F. A design aid for crystal growth engineering. Progress in Materials Science 82, 1-38 (2016).

    92 Xia, H. et al. Advances in conjugated polymer lasers. Polymers 11, 443 (2019).

    93 Wei, Q. et al. Recent Progress in Metal Halide Perovskite Micro- and Nanolasers. Adv. Opt. Mater. 7, 33 (2019). https://doi.org:10.1002/adom.201900080

    94 Mohammad, E. FABRY-PÉROT INTERFEROMETER PICOSECONDS DISPERSIVE PROPERTIES. (2020).

    95 Zhou, Y. et al. Millimeter-Size All-inorganic Perovskite Crystalline Thin Film Grown by Chemical Vapor Deposition. Adv. Funct. Mater. 31, 11 (2021). https://doi.org:10.1002/adfm.202101058

    96 Xin, B. Synthesis of Nanoporous Ca3Co4O9 Thin Films For Flexible Thermoelectrics. (Linkopings Universitet (Sweden), 2020).

    97 Deng, X. et al. Application of atomic force microscopy in cancer research. Journal of nanobiotechnology 16, 1-15 (2018).

    98 Idell, Y. et al. White-light interferometry for early-stage metal oxide growth characterization. Meas. Sci. Technol. 31, 10 (2020). https://doi.org:10.1088/1361-6501/ab9129

    99 Koenderink, A. F., Tsukanov, R., Enderlein, J., Izeddin, I. & Krachmalnicoff, V. Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics 11, 169-202 (2022).

    100 Meng, F., Morin, S. A., Forticaux, A. & Jin, S. Screw dislocation driven growth of nanomaterials. Accounts of chemical research 46, 1616-1626 (2013).

    101 Hanbücken, M., Futamoto, M. & Venables, J. Nucleation, growth and the intermediate layer in Ag/Si (100) and Ag/Si (111). Surface Science 147, 433-450 (1984).

    102 Ye, J. et al. High-temperature shaping perovskite film crystallization for solar cell fast preparation. Solar energy materials and solar cells 160, 60-66 (2017).

    103 Barua, P. & Hwang, I. Bulk perovskite crystal properties determined by heterogeneous nucleation and growth. Materials 16, 2110 (2023).

    104 King, D. A. The chemical physics of solid surfaces and heterogeneous catalysis. Vol. 5 (Elsevier, 2012).

    105 Lin, X. H. et al. Vapor Phase Growth of Centimeter-Sized Band Gap Engineered Cesium Lead Halide Perovskite Single-Crystal Thin Films with Color-tunable Stimulated Emission. Adv. Funct. Mater. 33, 9 (2023). https://doi.org:10.1002/adfm.202210278

    106 Shi, X. et al. Vapor phase growth of air-stable hybrid perovskite FAPbBr3 single-crystalline nanosheets. Nano Letters 24, 2299-2307 (2024).

    107 Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L. & Joselevich, E. Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano letters 18, 424-433 (2018).

    108 Shoaib, M. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. Journal of the American Chemical Society 139, 15592-15595 (2017).

    109 Wang, Y. L. et al. Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures. Nano Lett. 21, 1454-1460 (2021). https://doi.org:10.1021/acs.nanolett.0c04594

    110 Iftiquar, S. M. & Yi, J. Impact of grain boundary defect on performance of perovskite solar cell. Mater. Sci. Semicond. Process 79, 46-52 (2018). https://doi.org:10.1016/j.mssp.2018.01.022

    111 Subramaniam, M. R., Pramod, A. K., Hevia, S. A. & Batabyal, S. K. Enhanced Photoluminescence Quantum Yield, Lifetime, and Photodetector Responsivity of CsPbBr3 Quantum Dots via Antimony Tribromide Post-Treatment. J. Phys. Chem. C 126, 1462-1470 (2022). https://doi.org:10.1021/acs.jpcc.1c07493

    112 Chen, J. et al. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO3). J. Am. Chem. Soc. 139, 13525-13532 (2017). https://doi.org:10.1021/jacs.7b07506

    113 Schmidt, T., Lischka, K. & Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Physical Review B 45, 8989 (1992).

    114 Li, C. L. et al. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195-202 (2017). https://doi.org:10.1016/j.nanoen.2017.08.013

    115 Alias, M. S. et al. Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications. The journal of physical chemistry letters 7, 137-142 (2016).

    116 Wang, Y. et al. Perovskite–ion beam interactions: toward controllable light emission and lasing. ACS Appl. Mater. Interfaces 11, 15756-15763 (2019).

    117 Roediger, P., Wanzenboeck, H., Waid, S., Hochleitner, G. & Bertagnolli, E. Focused-ion-beam-inflicted surface amorphization and gallium implantation—new insightsand removal by focused-electron-beam-induced etching. Nanotechnology 22, 235302 (2011).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE