| 研究生: |
鄭芳如 Cheng, Fang-Ju |
|---|---|
| 論文名稱: |
應用水文地質數值模式進行地下化工程之風險決策告知-以臺南鐵路地下化工程為例 Application of Hydrogeological models for Risk Decision-Making on Underground Excavation -An Example of Underground Railroad in Tainan City |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 210 |
| 中文關鍵詞: | 風險告知決策 、GMS 、MODFLOW 、臺南鐵路地下化 、地下水位 |
| 外文關鍵詞: | RIDM, GMS, MODFLOW, Tainan railway underground project, groundwater level |
| 相關次數: | 點閱:151 下載:34 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要應用三維地下水模擬軟體GMS中MODFLOW模組來建立一套評估臺南鐵路地下化工程對臺南都會區水文環境影響數值分析模式。模擬地下化工程建造前後對地下水流場的影響分析,並利用岩體狀況以設定不同的透水係數(K)值進行敏感性分析,以判斷水位變化之風險情形。
本研究首先蒐集及分析臺南研究區域水文資料,以建立水平衡模式,利用GMS數值運算軟體將地層劃分成網格,設定各地層的水文參數,在輸入觀測井水位資料,並進行各參數之率定。研究率定採用永康(1)、安平(1)、仁和(1)、依仁(1)等四口觀測井的水井資料,率定時間採用2011至2020年,2021至2023年觀測水位與進行驗證,並蒐集中級土壤液化潛勢地圖之水位觀測井的水位資料進行對比。
另外本研究對臺南鐵路地下化四個標案周遭分別選定四口水位觀測井,來代表各四標案的指標井,並以原透水係數100倍與0.01倍之間之水位差來判斷敏感性風險情形,並可用來評估臺南鐵路地下化工程作業之地下水進行高風險、一般情況、低風險等三種風險設定。
研究結果顯示,鐵路地下化工程連續壁建置前後研究區域內等水位線,並無產生太大的差異,判斷其地下水水位主要是受乾濕季降雨入滲所產生影響。而C211標指標井調整水力傳導係數(K)值至100倍其水位差為1.914公尺;調整為0.01倍時,則水位差則為0.479公尺,C212標指標井當調整水力傳導係數(K)值至100倍水位差為1.408公尺調整;為0.01倍時,則水位差則為0.267公尺,C213標指標井調整水力傳導係數(K)值至100倍水位差為0.814公尺;調整為0.01倍時,則水位差為0.125公尺。
根據敏感性分析,2020年1月至2023年6月所觀察到之水位差大多皆位於一般情況與低風險,極少月份達高風險情形,可知過往地下化施工情形中,水位變化對於此工程施工較為安全,而零星高風險於濕季所出現,施作地下化工程時,需多加注意因雨季所產生之水位變化。
In this study, the 3D groundwater modeling software GMS with the MODFLOW module was applied to establish a numerical hydrogeological model for assessment on the impact of the hydrological environment in the Tainan railway underground project in Tainan city. The analysis was focus on the effect on the groundwater flow field before and after the construction of the underground project in terms of retaining structures. Sensitivity analysis was also performed using different hydraulic conductivity (K) values based on rock mass conditions to assess the Risk Decision-Making (RIMD) on water level changes.
In order to establish a numerical hydrogeological model, the hydrological data were firstly collected from the study area and then to understand water flow pattern and water balance. In study area the strata are divided into grids based on GMS numerical calculation software.The hydrological parameters of each stratum are set. The data of observation well water level are input. The parameter calibration was performed. The water well data from four observation wells: Yongkang (1), Anping (1), Renhe (1), and Yiren (1) are selected to calibrate. The calibration period is executed from 2011 to 2020 and verification period is used from 2021 to 2023. The simulation water levels are also compared with those observation well levels from intermediate soil liquefaction potential map observation wells of Taiwan. The results show there have a well consistent.
For the four bid sections(C211, C212, C213 and C214) around the Tainan railway underground project, each representative observation groundwater well for each bid section were selected to evaluate the risk of excavation. Several scenario are provided to assess the risk based on the water level difference in terms between 100 times and 0.01 times of the original hydraulic conductivity. The simulation result indicates that the evaluation settings for the Tainan railway underground project can be categorized by groundwater risks as high-risk, general-risk, or low-risk categories.
The study results show that the contour lines of the water level did not have significant differences either before or after the construction of the continuous wall of the railway underground project in the study area. The groundwater level is mainly affected by rainfall infiltration during wet and dry seasons. For the C211 section, the water level difference is 1.914 meters when the hydraulic conductivity (K) is adjusted to 100 times, and 0.479 meters when adjusted to 0.01 times, respectively. For the C212 section, the water level difference is 1.408 meters when adjusted to 100 times, and 0.267 meters when adjusted to 0.01 times, respectively. For the C213 section, the water level difference is 0.814 meters when adjusted to 100 times, and 0.125 meters when adjusted to 0.01 times, respectively.
Based on the sensitivity analysis, the observed water level differences from January 2020 to June 2023 are mostly in the general-risk and low-risk categories, with few months reaching high-risk categories. It indicates that past underground construction projects have been relatively safe with concerning water level changes. However, isolated high-risk conditions appear during the wet season, requiring close attention to water level changes during the construction of the underground project due to rainfall.
中央地質調查所(2003),嘉南平原南段岩心鑽井資料初步分析,經濟部中央地質調查所。
中央氣象局(2024),https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp,觀測資料查詢系統網站。
水文地質資料庫(2024),https://hydro.geologycloud.tw/map,水文地質資料庫整合查詢平臺
王昭智(2004),工程風險管理,台灣世曦工程顧問股份有限公司知識社群。
交通部鐵改局(2009),臺南市區鐵路地下化計畫綜合規劃報告。
江崇榮、林燕初、陳建良(2011),地下水位與地表高程互動模式之研究。
江樹生譯註(2010),熱蘭遮城日誌(第四冊),台南市政府。
行政院公共工程委員會(2000),台灣地區隧道岩體分類系統暨隧道工程資料庫之建立,第1期,第4冊,工作項C:台灣地區特殊地質狀況之調查。
何春蓀(1975),台灣地質概論,經濟部地質調查所,台北市,台灣。
何春蓀(1994),台灣地質概論第二版-台灣地質圖說明書,經濟部中央地質調查所,台北市,台灣。
吳東錦、陳于高、劉聰桂(1992),臺南台地臺南層之沉積史與新期構造研究,地質第12卷,第2期,第167-184頁。
吳偉競(2007),蘭陽平原整合模式下之MODFLOW地下水模擬研究,國立中正大學地震研究所暨應用地球物理研究所碩士論文。
李振誥、李宏徹、黃崇琅、林碧山(1998),岩體隧道滲流量之預測:以坪林隧道為例,中國土木水利工程學刊,第10卷,第4期,第595-604頁。
李振誥、游保杉、林宏奕、葉信富、李馨慈、葉振峰(2014),氣候變遷下臺灣九大地下水資源區地下水潛能變化之研究,經濟部水利署。
李浩全(2013),應用三維水文地質模型評估隧道開挖湧水及鄰近水文環境影響-以觀音隧道及谷風隧道為例,國立成功大學資源工程學系碩士論文。
李德河、李振誥、羅坤龍、陳福勝、何泰源、柯武德、吳建宏、蔡百祥、蘇中鈺(2008),地下連續壁組閣對地下水流動之影響及對策,地工技術,第118期,第79-86頁。
李德河、許琦(1988),台南都會區地質概況,地工技術雜誌,第22期,第40-55頁。
李德河、鍾廣吉、古志生(2005),新竹、苗栗與台南都會區地下地質與工程環境 調查研究台南都會區,經濟部中央地質調查所。
周飛宏(2007),從全新世沉積層序探討台南地區褶皺-逆衝斷層帶的構造特性,國立臺灣大學地質科學研究所碩士論文。
林昀瑄(2008),泥岩地區廢棄物掩埋場地下水與地震之調查研究,國立成功大學資源工程學系碩士論文。
林朝棨(1957),台灣省通志稿卷-土地志地理篇,台灣省文獻委員會,第 1 冊地形,第363-366頁。
林朝棨(1961),臺灣西南部之貝塚與其地史學意義,國立台灣大學考古人類學刊,第15-16期,第49-44頁。
林朝棨(1963),台灣之第四紀(上)(下),台灣文獻,第14卷,第1、2期,第1-92頁。
林朝棨(1971),臺南地方的第四紀地質,經濟部聯合礦業研究所,第1-29頁。
社團法人地盤工學會(2004),地下水流動保全のための環境影響評価と対策―調査・設計・施工から管理まで。
施國欽(2014),大地工程學(三)工程地質篇,文笙書局。
洪志宇(2008),泥岩地區廢棄物掩埋場設置之地下水調查與數值模擬分析,國立成功大學資源工程學系碩士論文。
洪顯宗(2009),捷運工程風險評估模式之研究 ,國立中央大學營建管理研究所碩士論文。
孫習之(1964),台灣省臺南至高雄間平原區域航照地質之研究,臺灣石油地質,第3號,第39-52頁。
翁淑卿(2002),臺南台地暨鄰近地區之臺南層及其構造運動,國立中央大學應用地質研究所碩士論文。
財團法人成大研究發展基金會(2000),鐵路地下化引致地下水位反應之研究計畫,台灣世曦工程顧問股份有限公司。
國立成功大學公共工程研究中心(2011),臺南鐵路地下化明挖覆蓋工程對地下水流影響之研究及對策期末報告,台灣世曦工程顧問股份有限公司。
張良正、陳宇文、陳文福等人(2016),地下水水文地質與補注模式研究-補注區劃設與資源量評估,經濟部中央地質調查所。
張麗旭(1955),台灣之地層,台灣銀行季刊,第7卷,第2期,第26-49頁。
郭炫佑(1999),後甲里斷層及其附近構造,國立中央大學地球物理研究所碩士論文。
陳于高、劉聰桂、蔡佩珊、汪中和(1994),台南地區台南層年代及其相關問題之 檢討,經濟部中央地質調查所特刊,第八號,第171-180頁。
陳正勳、侯嘉松(2000),山岳隧道受震行為及分析設計模式探討,中華技術,第11-22頁。
陳明君(1997),頭城地區四稜砂岩水文地質及隧道湧水之研究,國立臺灣大學地質科學研究所碩士論文。
陳建州(2023),地下水位變化對台南鐵路地下化及土壤液化影響之研究,國立成功大學土木工程研究所碩士論文。
陳祐誠(2009),氣候變異下流域地下水資源合理使用之研究,國立成功大學資源工程學系研究所碩士論文。
陳尉平(2006),應用河川流量歷線推估台灣地下水補注量,國立成功大學資源工程學系碩博士班博士論文。
辜炳寰、蔡文瀚、蕭富元(2019),運用情境模擬方式推估隧道開挖出水量之研究,第十七屆危機管理暨工業工程與安全管理研討會。
辜炳寰、蔡文瀚、蕭富元、高憲彰(2016),以水文地質模式分析推估隧道開挖出水量研究,2016岩盤工程研討會,高雄,第435-444頁。
黃俊鴻(2001),隧道水文地質調查準則,中華民國隧道協會。
黃健泓(2020),以地下水數值模式研究台南鐵路地下化建置後地下水位及水流變化,國立成功大學土木工程研究所碩士論文。
楊庭雅(2011),關渡平原地下水流動模擬,國立中央大學應用地質研究所碩士論文。
蔣爵光(1991),鐵路工程地質,西南交通大學出版社。
鄭由聖(2012),地下結構物影響地下水流場之研究-以台南市鐵路地下化為例,國立成功大學地球科學系碩博士班碩士論文。
冀樹勇,蔡明欣,高憲彰,邱士恩,趙昌虎,樓漸逵(2009),蓄水壩風險管理-土石壩風險分析案例,地工技術,第119期,第41-52頁。
蕭富元、彭詩容、高憲彰、冀樹勇(2014),水文地質調查與分析在隧道工程中的應用探討,隧道建設,第34卷(增刊),第 6-14 頁。
鍾廣吉(1979),新化丘陵之地質與地形,經濟部中央地質調查所。
Anserson, M.P., and Woessner, W.W., and Hunt, R.J.(2015)., Applied Groundwater Modeling Simulation of Flow and Advective Transport, Academic Press, Massachusetts, America.
Bouwer, H. and Rice, R.C. (1976)., A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428,.
Dagès, C., Paniconi, C., and Sulis, M.(2012)., Analysis of coupling errors in a physically-based integrated surface water–groundwater model. Advances in water resources, 49, 86-96.
Di Nunno, F. and Granata, F.(2020)., Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network, Environmental Research 190, 110062.
Domenico, P. A.(1972)., Concepts and Models in Groundwater Hydrology, Mc-GrawHill, p.405, N.Y., America.
Freeze, R. A. and Cherry J. A.(1979)., Groundwater.Prentice-Hall.
Goodman, R.E., Moye, D.G., Van Schalkwyk, A., Javandel, I.(1965)., Groundwater inflows during tunnel driving. Engineering Geology 2, 39–56.
Harbaugh, A.W.(2005)., The U.S. Geological Survey Modular Ground-Water Model— the Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods, U.S. Geological Survey, Virginia, America.
Hsieh, H. H., Lee, C. H., Ting, C. S., & Chen, J. W.(2010)., Infiltration mechanism simulation of artificial groundwater recharge: a case study at Pingtung Plain, Taiwan. Environmental Earth Sciences, 60(7), 1353-1360.
Hsu, K.-C., C.-H. Wang, K.-C. Chen, C.-T. Chen and K.-W. J. H. J. Ma.(2007)., Climateinduced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan., 15(5): 903-913.
Hubbert(1940), M. K., The theory of ground water motion. J. Geology, 48(8), 785-944.
Hubbert, M.K.(1940)., The Theory of Ground-Water Motion. The Journal of Geology, 48, 785-944.
Hudak, Pual F.(2005)., Principals of Hydrogeology, CRC Press, Boca Raton, Florida.
Hwang, J.H. and Lu, C.C.(2007)., A semi-analytical method for analyzing the tunnel water inflow, Tunneling and Underground Space Technology, 22, 39-46.
Jacob, C.E. and Lohman, S.W.(1952)., Nonsteady flow to a well of constant drawdown in an extensive aquifer, Transaction of the American Geophysical Union, 33(4), 559–569.
Karlsruhe, K.(2001)., Water control when tunneling undwe urban areas in the Olso region. NFF publication, 12(4), 27-33.
Kolymbas, D. and Wagner, P.(2007)., Groundwater ingress to tunnels – The exact analytical solution, Tunnelling and Underground Space Technology 22,23–27.
Lei, S.(1999), An analytical solution for steady flow into a tunnel, Ground Water, 37(1), pp. 23-26.
Lipponen, A.(2007)., Applying GIS to assess the vulnerability of the Paijanne waterconveyance tunnel in Finland. Environ. Geology 53 (3), 493–499.
Lombardi, G.(2002)., Private communication.
Machiwal, D., and Jha, M. K.(2014)., Characterizing rainfall–groundwater dynamics in a hard‐ rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrological Processes, 28(5), 2824-2843.
Molinero, J., Samper, J. and Juanes, R.(2002)., Numerical modelling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks, Engineering Geology, 64, 369-386.
Morris, D.A. and Johnson, A.I. (1967)., Summary of Hydrologic and Physical Propertiesof rock and soil materials as analyzed by the hydrologic laboratory of the U.S. Geological Survey, 1948–1960, Water-Supply Papper, 1839-D, pp. 1-42.
Pan, Y. S.(1968)., Interpretation and Seismic Coordination of the Bouguer Gravity Anomalies Obtained in Southwestern Taiwan, Petroleum Geology Taiwan, No.6, pp.197-208
Perrochet, P.(2005)., A simple solution to tunnel or well discharge under constant drawdown, Hydrogeology Journal, 13, pp. 886-888.
Rat, M.(1973)., Ecoulement et repartition des pressions interstitielles autour des tunnels.Bull.Liaison du Laboratoire des Ponts et Chaussees 68, 109-124.
Schleiss, A. J. (1998)., Design of reinforced concrete-lined pressure tunnels.International Congress of Tunnels and Water, Madrid, Balkema,2, 1127-1133.
Taylor, R. G., M. C. Todd, L. Kongola, L. Maurice, E. Nahozya, H. Sanga and A.M.J.N.C.C.MacDonald. (2013)., Evidence of the dependence of groundwater resources on extreme rainfall in East Africa, 3(4): 374-378.
Theis, C.V. (1935)., The Relation between the Lowering of the Piezometic Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Transactions on American Geophysical Union, Washington DC, 518-524.
Thornthwaite, C. W. & Mather, J. R. (1955).,The Water Balance, Publ. Clim. ,8(3), Lab. Clim., Drexel Inst. Tech., Centerton, 86.
Todd, D.K. (1980)., Groundwater Hydrology. 2nd Edition, John Wiley & Sons, New York.
Yang, F. R., Lee, C. H., W. J., Yeh, H. F. (2008).,The impact of tunneling construction on the hydrogeological environment of "Tseng-Wen Reservoir Transbasin Diversion Project" in Taiwan
Yang, S. Y., and Yeh, H. D. (2007)., A closed-form solution for a confined flow into a tunnel during progressive drilling in a multi-layer groundwater flow system, Geophysical Research Letters, VOL. 34, L07405.
Yu, H.-L. and H.-J. J. J. o. H. Chu. (2010)., Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan., 381(3-4),239-247.