| 研究生: |
洪旭文 Hung, Hsu-Wen |
|---|---|
| 論文名稱: |
吸附劑材質透水性處理牆處理受甲基第三丁基醚污染地下水之研究 Remediation of MTBE-contaminated Groundwater Using Adsorbent-based Permeable Reactive Barriers |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 地下水 、吸附 、甲基第三丁基醚 、透水性反應牆 、整治 、平衡 、動力 |
| 外文關鍵詞: | Resin, GAC, Competition, Remediation, PRB, MTBE, Groundwater, NOM, Adsorption, Zeolite, SCAM-EBC model |
| 相關次數: | 點閱:101 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲基第三丁基醚 (methy1 tert-buty1 ether,MTBE) 是目前全世界廣泛使用的汽油添加劑,以提高油品之辛烷值與燃燒效率,減低臭氧和一氧化碳之排放。由於MTBE具有高度水溶解度、低亨利係數值、不易被土壤及含水層物質吸附及生物難以分解等特性,一旦洩漏在環境系統中,將隨著地下水流在地下環境中擴散流動,污染地下水,造成極大的危害。吸附劑材質透水性反應牆 (adsorbent-based PRBs) 由於整合吸附技術之快速、便利、高去除率,和現地處理 (in-situ treatment) 之低成本、沒有廢水排放問題之優點,對於處理難分解污染物,例如MTBE,具有很大發展潛力。
為瞭解吸附劑材質透水性反應牆,處理受MTBE污染地下水之效能,研究針對不同吸附劑在不同類型之天然水中,進行平衡、動力吸附及管柱實驗。研究使用三種不同類型之吸附劑,包括活性碳 (F600、F400、F300、Unicarb)、樹脂 (Ambersorb 572、Ambersorb 563) 及沸石 (mordenite、HiSiv 1000)。天然水部份,包括台灣三條崙地下水、鳳山水庫原水和東港溪河水;德國卡爾斯魯 (Karlsruhe) 地下水、萊茵河 (Rhine) 河水。實驗結果顯示,活性碳和樹脂吸附劑在天然水中之MTBE平衡吸附量,會由於天然有機物質 (NOM) 之競爭吸附,低於吸附劑在去離子水中之MTBE吸附量。由於NOM之競爭吸附效應,會進一步導致活性碳和樹脂在天然水之吸附等溫線,隨著污染物之初始濃度高低而變化。天然水吸附系統中,較低污染物初始濃度之等溫吸附線,會比高初始濃度之等溫吸附線,有較大程度之NOM吸附競爭,導致較大程度之吸附量降低。另一方面,吸附劑特性和NOM的分子量分布,也會影響MTBE之吸附效能和NOM競爭程度。較高分子量之NOM和適當孔徑之吸附劑,可以藉由分子篩效應 (molecular sieve effect),減輕NOM之競爭吸附。例如在mordenite/天然水和Ambersorb 563/三條崙地下水吸附系統中,沒有明顯之競爭吸附發生。由於NOM之競爭吸附行為,本研究提出SCAM-EBC 模式,以描述及預測MTBE和NOM在不同吸附劑、初始濃度條件下之平衡吸附行為,作為後續吸附劑材質之PRBs設計基準參考。SCAM-EBC模式係結合等背景化合物 (EBC) 和簡化競爭吸附模式 (SCAM) 所產生。藉由所獲得之EBC參數值,SCAM-EBC 模式成功地預測不同類型活性碳及樹脂,在不同天然水之不同初始濃度MTBE等溫吸附線。此外,SCAM-EBC模式也可以應用在不同種類之污染物,例如高吸附強度污染物 (TCP、atrazine、chloroform) 和土臭味化合物 (MIB、geosmin)。另一方面,SCAM-EBC模式也可以描述粉狀活性碳 (PAC) 處理系統中常見之等溫吸附線彎曲效應 (isotherm curvature)。結果顯示,當relative adsorptivity大於critical relative adsorptivity 時,會有明顯之彎曲效應產生。
動力實驗結果顯示,表面擴散 (SDM) 和孔隙擴散 (PDM) 結合SCAM-EBC平衡模式,皆可以模擬不同實驗條件下,MTBE在吸附劑活性碳、樹脂和沸石顆粒之傳輸行為。模式所獲得之表面或是孔隙擴散係數值,與MTBE之初始濃度和吸附劑添加劑量無關。活性碳和樹脂兩種吸附劑,在去離子水和天然水中之表面或是孔隙擴散係數幾乎相同,顯示NOM對於MTBE傳輸沒有顯著之妨礙或是曲折效應。然而,mordenite 沸石卻具有明顯緩慢之動力傳輸結果。
最後,進行迷你管柱試驗 (RSSCTs) 模擬透水性反應牆在現地場址之處理效能。結果顯示,和去離子水之吸附系統相比,天然水中所獲得之貫穿曲線 (BTCs) 較為陡峭,且具有較低之吸附容量。推測其原因,與批次平衡實驗相同,皆為NOM和MTBE競爭吸附所導致。管柱進流MTBE濃度高低,對於管柱之MTBE吸附容量和BTCs形狀分佈有一定程度之影響。愈低進流MTBE濃度,會造成較大程度之NOM競爭吸附,導致吸附容量變小及較寬胖形狀之BTCs。固定床之表面擴散模式結合SCAM-EBC,成功地預測不同空床接觸時間 (EBCTs) 時,不同進流MTBE濃度與天然水之RSSCTs管柱MTBE吸附容量與BCTs。SDM-SCAM-EBC模式之輸入參數,是由批次平衡/動力實驗和質量傳輸經驗式所獲得,並沒有調整任何參數,顯示模式之可預測性。基於平衡、動力和管柱實驗與模式分析成果顯示,研究所提出之SDM-SCAM-EBC模式,可以藉由一組等溫吸附線和動力實驗,獲得EBC參數值,合理預測不同實驗條件下之PRBs操作效能,以估算現地處理之PRB使用年限及處理效能評估。
Methyl tert-butyl ether (MTBE) is the most common oxygenated fuel additive used to increase the octane rating and to enhance the combustion efficiency of gasoline. As a consequence of widespread use of MTBE, it has been found to be a ubiquitous and recalcitrant contaminant in groundwater and surface water due to its physicochemical properties. To remediate MTBE-contaminated groundwater, the passive in-situ permeable reactive barriers (PRBs) with different types of adsorbing media including granular activated carbon (GAC), carbonaceous resin and zeolite were used in this study. Although this research focuses mainly on simplified natural and engineering environmental systems, the results may provide useful information and insights for more complex large-scale experimental systems and for field applications.
To evaluate the performances of the adsorbent-based PRBs for treating MTBE-contaminated groundwater, equilibrium and kinetic adsorption of MTBE onto the adsorbent pellets of activated carbons (F600, F400, F300, Unicarb and WPH), carbonaceous resins (Ambersorb 563 and 572) and zeolites (mordenite and HiSiv 1000) in different natural waters located in Taiwan and Germany were first explored. The experimental results revealed that adsorption isotherms of MTBE for the activated carbons and carbonaceous resins in natural waters were different than those in deionized water. It was suggested that natural organic matter (NOM) competed with MTBE for the adsorption sites of the adsorbents tested. The initial concentration of MTBE has great influence on the equilibrium capacity for the activated carbons and resins in the presence of NOM. The lower the applied initial concentration, the higher the extent of competition was founded. Additionally, the NOM fraction of low-molecular weight and adsorbent properties, such as pore size distribution, aperture size and the SiO2/Al2O3 ratio for zeolite, have considerable influences on the equilibrium capacity of MTBE for the adsorbents tested in different water matrix. No competitive adsorption of NOM and MTBE was observed for mordenite whose aperture size is highly uniform and concentrated due to molecular sieve effect.
A predictive method, called the SCAM-EBC approach, based on the well-known equivalent background compound (EBC) and simplified competitive adsorption model (SCAM) was developed to describe the competitive adsorption of NOM. The results revealed that the SCAM-EBC approach has excellent predictive ability of the isotherms at different initial concentrations for all the activated carbons/carbonaceous resins/natural water systems. Besides MTBE, several other pollutants, including strongly adsorbing compounds (TCP, atrazine, and chloroform) and two taste and odor causing compounds (MIB and geosmin) onto different activated carbons in natural and artificial groundwaters, were tested to verify the SCAM-EBC approach. Moreover, the relative adsorptivity based on the SCAM-EBC approach was proposed to quantify and predict the extent of isotherm curvature occurred at lower applying absorbent dosage. The marked isotherm curvature was found when the relative adsorptivity is larger than 2.0 to 4.0, called critical relative adsorptivity, for all the systems tested.
The transport of MTBE onto those three types of adsorbent pellets in different water matrixes was simulated by intraparticle surface diffusion model (SDM) and pore diffusion model (PDM) combined with either the SCAM-EBC approach or IAST-EBC model. Both the intraparticle diffusion models fit the experimental kinetic data fairly well and successfully predicted the transport of MTBE within all of the adsorbents under different experimental conditions. The intraparticle surface and pore diffusivities showed different in deionized water and natural water systems and were attributed to the hindering effect and tortuous pathways. The results indicated that NOM seems to have no obvious impact on the transport of MTBE onto the activated carbons and resins. For mordenite, NOM may, however, block the surface opening aperture and hinder the diffusional paths of MTBE, causing slower adsorption kinetics.
Finally, laboratory column experiments of the GACs, the rapid small scale column tests (RSSCTs), were conducted to simulate the transport of MTBE through the PRBs. Steeper breakthrough curves (BTCs) and smaller integrated column capacities of the RSSCTs for F600 and F300 GACs in groundwaters and river waters were found compared with those in deionized water. Like the batch adsorption systems for the activated carbons and resins used, both initial concentration effect and competitive adsorption between NOM and MTBE were found in the RSSCT column studies. The influent MTBE concentrations have great influences on the integrated column capacities as well as the spreading of BTCs for the RSSCTs under different empty bed contact times (EBCTs). A fixed-bed model based on a combination of the SDM and the SCAM-EBC approach was employed to simulate the experimental BTCs. The model predictions were compared with the BTCs of RSSCTs under different conditions. No adjustable parameters were required in modeling the fixed-bed BTCs. All the model input parameters were either extracted from the batch equilibrium and kinetic experiments or calculated from empirical correlations. The models successfully predicted the experimental BTCs at different EBCTs and influent concentrations of MTBE. Although the conditions tested in this study are simplified, the elucidation of clean up mechanisms and interactions taking place between the adsorbent media and MTBE plumes in this study should be informative enough to give a useful perspective when attempting to remediate MTBE-contaminated groundwater using adsorbent-based permeable reactive barriers (PRBs).
Achten, C. and Puttmann, W., Determination of methyl tert-butyl ether in surface water by use of solid-phase microextration. Environ. Sci. Technol., 34 (7), 1359-1364 (2000).
Al-Degs, Y., Khraisheh, M. A. M. and Tutunji, M. F., Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res., 35 (15), 3724-3728 (2001).
Anderson, M. A., Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites. Environ. Sci. Technol., 34 (4), 725-727 (2000).
Baker, R. J., Suffet, I. H. and Yohe, T. L., Frontal chromatographic concepts to study competitive adsorption: humic substances and halogenated organic substances in drinking water. In: Aquatic humic substances: influence on fate and treatment of pollutants, Suffet, I. H. and MacCarthy, P. (Eds.), Advances in Chemistry Serious 219, American Washington, DC, USA (1989).
Baus, C., Hung, H. W., Sacher, F., Fleig, M. and Brauch, H.-J., MTBE in drinking water production - occurrence and efficiency of treatment technologies. Acta Hydrochim. Hydrobiol., 33 (2), 118-132 (2005).
BSMI (Bureau of Standards, Metrology and Inspection), http:// www. cnsonline. com.tw/ ecns/index.html, Ministry of Economic Affairs, Taiwan (2005).
Chen, G., Dussert, B. W. and Suffet, I. H., Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water. Water Res., 31 (5), 1155-1163 (1997).
Chiou, T. C., Partition and adsorption of organic contaminants in environmental systems, John Wiley & Sons, New York, USA (2002).
Cripka, O. A., Windfuhr, C., Bitch, G., Granozow, S., Scholz-Muramatsu, H. and Kobus, H., Microbial reductive dechlorination in large-scale sandbox model. J. Environ. Eng., 125 (9), 861-869 (1999).
Crittenden, J. C., Luft, P. and Hand, D. W., Prediction of multicomponent adsorption equilibria in background mixtures of unknown composition. Water Res., 19 (12), 1537-1548 (1985a).
Crittenden, J. C., Luft, P., Hand, D. W., Oravitz, J. L., Loper, S. W. and Ari, M., Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory. Environ. Sci. Technol., 19 (11), 1037-1043 (1985b).
Crittenden, J. C., Berrigan, J. K. and Hand, D. W., Design of rapid small-scale adsorption tests for a constant diffusivity. J. Water Pollut. Control Fed., 58 (4), 312-319 (1986a).
Crittenden, J. C., Hutzler, N. J. and Geyer, D. G., Transport of organic compounds with saturated groundwater flow: model development and parameter sensitivity. Water Res., 22 (3), 271-284 (1986b).
Crittenden, J. C., Berrigan, J. K., Hand, D. W. and Lykins, B., Design of rapid fixed-bed adsorption tests for nonconstant diffusivities. J. Environ. Eng., 113 (2), 243-259 (1987a).
Crittenden, J. C., Hand, D. W., Arora, H. and Lykins, B. W., Design considerations for GAC treatment of organic chemicals. J. Am. Water Works Assoc., 79 (1), 74-81 (1987b).
Crittenden, J. C., Reddy, P. S., Arora, H., Trynoski, J., Hand, D. W, Perram, D. L. and Summers, R. S., Predicting GAC performance with rapid small-scale column tests. J. Am. Water Works Assoc., 83 (1), 77-87 (1991).
Crittenden, J. C., Vaitheeswaran, K., Hand, D. W., Howe, E. W., Aieta, E. M., Tate, C. H., Mcguire, M. J. and Davis, M. K., Removal of dissolved organic carbon using granular activated carbon. Water Res., 27 (4), 715-721 (1993).
Davis, S. W. and Powers, S. E., Alternative sorbents for removing MTBE from gasoline-contaminated ground water. J. Environ. Eng., 126 (4), 354-360 (2000).
DiGiano, F. A., Baldauf, G., Frick, B. and Sontheimer, H., A simplified competitive equilibrium adsorption model. Chem. Engng Sci., 33 (12), 1667-1673 (1978).
Energy Council, http://www.moeaboe.gov.tw/07/940705-6月份已核發經營許可執照之汽車加油站統計表.htm, Ministry of Economic Affairs, Taiwan (2005).
Flanigen, E. M., Bennett, J. M., Grose, R. W., Cohen, J. P., Patton, R. L., Kirchner, R. M. and Smith, J. V., Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 271 (5645), 512-516 (1978).
Frick, B., Bartz, R., Sontheimer, H. and DiGiano, F. A., Predicting competitive adsorption effects in granular activated carbon filters. In: Activated carbon adsorption of organics from the aqueous phase, Vol. 1, Suffet, I. H. and McGuire, M. J. (Eds.), Ann Arbor Science, Ann Arbor, Michigan, USA (1980).
Friedman, G., Mathematical modeling of multicomponent adsorption in batch and fixed-bed reactors. Master’s Thesis. Department of Chemical Engineering, Michigan Technological University, University Microfilms, Ann Arbor, Michigan, USA (1984).
Gillogly, T. E. T., Snoeyink, V. L., Elarde, J. R., Wilson, C. M. and Royal, E. P., 14C-MIB adsorption on PAC in natural water. J. Am. Water Works Assoc., 90 (1), 98-108 (1998).
Graham, M. R., Summers, R. S., Simpson, M. R. and Macleod, B. W., Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters. Water Res., 34 (8), 2291-2300 (2000).
Greene, B. E., Snoeyink, V. L. and Pogge, F. W., Adsorption of pesticides by powdered activated carbon, American Water Works Research Foundation, Denver, CO, USA (1994).
Gullick, R. W. and LeChevallier, M. W., Occurrence of MTBE in drinking water sources. J. Am. Water Works Assoc., 92 (1), 100-113 (2000).
Hand, D. W., Herlevich, J. A., Perram, D. L. and Crittenden, J. C., Synthetic adsorbent versus GAC for TCE removal. J. Am. Water Works Assoc., 86 (8), 64-72 (1994).
Huang, C., VanBenschoten, J. E. and Jensen, J. N., Adsorption kinetics of MIB and Geosmin. J. Am. Water Works Assoc., 88 (4), 116-128 (1996).
Jellali, S., Muntzer, P., Razakarisoa, O. and Schäfer G., Large scale experiment on transport of trichloroethylene in a controlled aquifer. Transp. Porous Media, 44 (1), 145-163 (2001).
Johnson, R., Pankow, J., Bender, D., Price, C. and Zogorski, J., MTBE - To what extent will past releases contaminate community water supply wells?. Environ. Sci. Technol., 34 (9), 210A-217A (2000).
Keller, A. A., Sandall, O. C., Rinker, R. G., Mitani, M. M., Bierwagen, B. and Snodgrass, M. J., An evaluation of physicochemical treatment technologies for water contaminated with MTBE. Ground Water Monit. Remediat., 20 (4), 114-126 (2000).
Klinger, J., Stieler, C., Sacher, F. and Brauch, H. J., MTBE (methyl tertiary-butyl ether) in groundwaters: monitoring results from Germany. J. Environ. Monit., 4 (2), 276-279 (2002).
Knappe, D. R. U., Predicting the removal of atrazine by powdered activated carbon and granular activated carbon. Doctoral Thesis. Department of Environmental Engineering, University of Illinois, Urbana, IL, USA (1996).
Knappe, D. R. U., Matsui, Y., Snoeyink, V. L., Roche, P., Prados, M. J. and Bourbigot, M. M., Predicting the capacity of powdered activated carbon for trace organic compounds in natural waters. Environ. Sci. Technol., 32 (11), 1694-1698 (1998).
Kobus, H., Barczewski, B. and Koschitzky, H.-P. (Eds.), Groundwater and subsurface remediation: research strategies for in-situ technologies. Springer-Verlag, Berlin, Germany (1996).
Lai, W. L., The control of biodegradable organic matter and disinfection by-product by various water treatment processes. Doctoral Thesis. Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan (2002). (In Chinese)
Li, Y. S., The use of waste basic oxygen furnace slag and hydrogen peroxide to degrade 4-chlorophenol. Waste Manage., 19 (7-8), 495-502 (1999).
Li, F., Yuasa, A., Chiharada, H. and Matsui, Y., Storm impacts upon the composition of organic matrices in Nagara river– a study based on molecular weight and activated carbon adsorbability. Water Res., 37 (16), 4027-4037 (2003a).
Li, S., Tuan, V. A., Noble, R. D. and Falconer, J. L., MTBE adsorption on all-silica beta zeolite. Environ. Sci. Technol., 37 (17), 4007-4010 (2003b).
Li, Q. L., Snoeyink, V. L., Marinas, B. J. and Campos, C., Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res., 37 (4) 773-784 (2003c).
Li, Q. L., Snoeyink, V. L., Marinas, B. J. and Campos, C., Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight. Water Res., 37 (20), 4863-4872 (2003d).
Li, Q., Marinas, B. J., Snoeyink, V. L. and Campos, C., Three-component competitive adsorption model for flow-through PAC systems. 2. model application to a PAC/membrane system. Environ. Sci. Technol., 37 (13), 3005-3011 (2003e).
Liang, S., Palencia, L. S., Yates, R. S., Davis, M. K., Bruno, J.-M. and Wolfe, R. L., Oxidation of MTBE by ozone and peroxone processes. J. Am. Water Works Assoc., 91 (6), 104-114 (1996).
Lin, T. F. and Wu, J. K., Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res., 35 (8), 2049-2057 (2001).
Logan, B. E. and Jiang, Q., Molecular size distributions of dissolved organic matter. J. Environ. Eng., 116 (6) 1046-1062 (1990).
Lowell, S. and Shields, J. E., Powder surface area and porosity. John Wiley & Sons, 2nd ed. New York, USA (1984).
Luft, P. J., Modeling of multicomponent adsorption onto granular carbon in mixtures of known and unknown composition. Master’s Thesis. Department of Chemical Engineering, Michigan Technological University, University Microfilms, Ann Arbor, Michigan, USA (1984).
Mackay, D. M. and Cherry, J. A., Groundwater contamination: pump-and-treat remediation. Environ. Sci. Technol, 23 (6), 630-636 (1989).
Matsui, Y., Yuasa, A. and Li, F. S., Overall adsorption isotherm of natural organic matter. J. Environ. Eng., 124 (11), 1099-1107 (1998).
Matsui, Y., Colas, F. and Yuasa, A., Removal of a synthetic organic chemical by PAC-UF systems. II: model application. Water Res., 35 (2), 467-470 (2001).
Matsui, Y., Knappe, D. R. U. and Takagi, R., Pesticide adsorption by granular activated carbon adsorbers. 1. Effect of natural organic matter preloading on removal rates and model simplification. Environ. Sci. Technol., 36 (15), 3426-3431 (2002).
Matsui, Y., Fukuda, Y., Inoue, T. and Matsushita, T., Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption. Water Res., 37 (18), 4413-4424 (2003).
McKinnon, R. J. and Dyksen, J. E., Removing organics from groundwater through aeration plus GAC. J. Am. Water Works Assoc., 76 (5), 42-47 (1984).
Najm, I. N., Snoeyink, V. L. and Richard, Y., Effect of initial concentration of a SOC in natural water on its adsorption by activated carbon. J. Am. Water Works Assoc., 83 (8), 57-63 (1991).
Newcombe, G., Morrison, J. and Hepplewhite, C., Simultaneous adsorption of MIB and NOM onto activated carbon I. characterisation of the system and NOM adsorption. Carbon, 40 (12), 2135-2146 (2002a).
Newcombe, G., Morrison, J., Hepplewhite, C. and Knappe, D. R. U., Simultaneous adsorption of MIB and NOM onto activated carbon II. competitive effects. Carbon, 40 (12) 2147-2156 (2002b).
Newsam, J. M., The zeolite cage structure. Science, 231 (4742), 1093-1099 (1986).
Nyer, E. K., Palmer, P. L., Carman, E. P., Boettcher, G., Bedessem, J. M., Lenzo, F., Crossman, T. L., Rorech, G. J. and Kidd, D. F. (Editor), In situ treatment technology, 2nd ed., Lewis Publishers, New York, USA (2001).
OEHHA (Office of Environmental Health Hazard Assessment), Public health goal for methyl tertiary butyl ether (MTBE) in drinking water. Pesticide and Environmental Toxicology Section, California EPA, Oakland, USA (1999).
Parker, G. R., Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. Adsorption, 1 (1), 113-132 (1995).
Pelekani, C. and Snoeyink, V. L., Competitive adsorption in natural water: role of activated carbon pore size. Water Res., 33 (5), 1209-1219 (1999).
Qi, S., Adham, S. S., Snoeyink, V. L. and Lykins, B. W., Prediction and verification of atrazine adsorption by PAC. J. Environ. Eng., 120 (1), 202-218. (1994).
Rael, J., Shelton, S. and Dayaye, R., Permeable barriers to remove benzene: candidate media evaluation. J. Environ. Eng., 121 (5), 411-415 (1995).
Radke, C. J. and Prausnitz, J. M., Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J., 18 (4), 761-768. (1972).
Ramakrishnan, B., Sorial, G. A., Speth, T. F., Clark, P., Zaffiro, A., Patterson, C. and Hand, D. W., Remediation of MTBE from drinking water: air stripping followed by off-gas adsorption. J. Air. & Waste Manage. Assoc., 54 (5), 529-539 (2004).
Randtke, S. J. and Snoeyink, V. L., Evaluation GAC adsorption capacity. J. Am. Water Works Assoc., 75 (8), 406-413 (1983).
Ruthven, D. M., Principles of adsorption and adsorption processes, John Wiley & Sons, New York, USA (1984).
Scherer, M. M., Richter, S., Valentine, R. L. and Alvarez, P. J. J., Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol., 30 (3), 363-411 (2000).
Schirmer, M., MTBE sources in the environment and the behaviour in groundwater. The Fist European Conference on MTBE, Dresden, Germany, 8-9 September (2003).
Schmidt, T. C., Morgenroth, E. Schirmer, M., Effenberger, M. and Haderlein, S. B., Use and occurrence of fuel oxygenates in Europe. In Oxygenates in Gasoline: Environmental Aspects; Diaz, A. F., Drogos, D. L., Eds., ACS Symposium Serious 799, American Chemical Society, Washington D. C., USA (2001).
Shih, T. C., Wangpaichitr, M. and Suffet, M., Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water. Water Res., 37 (2), 375-385 (2003).
Shih, T., Rong, Y., Harmon, T. and Suffet, M., Evaluation of the impact of fuel hydrocarbons and oxygenates on groundwater resources. Environ. Sci. Technol., 38 (1), 42-48 (2004).
Simon, F. G., Meggyes, T. and Tünnermeier, T., Groundwater remediation using active and passive process. In Advanced groundwater remediation: active and passive technologies; Simon, F. G., Meggyes, T., McDonald, C., (Eds.), Thomas Telford Services Ltd, London, Great Britain (2002).
Simon, F. G., Meggyes, T., McDonald, C., (Eds.), Groundwater remediation using active and passive process. In Advanced Groundwater remediation: active and passive technologies, Thomas Telford Services Ltd, London, Great Britain (2002).
Sontheimer, H., Crittenden, J. C. and Summers, R. S., Activated carbon for water treatment, 2nd ed., DVGW-Forschungsstelle, Engler-Bunte-Institut, University of Karlsruhe, Karlsruhe, Germany (1988).
Speth, T. F. and Miltner, R. J., Technical note: adsorption capacity of GAC for synthetic organics. J. Am. Water Works Assoc., 82 (2), 72-75 (1990).
Squillace, P. J., Zogorski, J. S., Wilber, W. G. and Price, C. V., Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-94. Environ. Sci. Technol., 30 (5), 1721-1730 (1996).
Starr, R. C. and Cherry, J. A., In situ remediation of contaminated ground water: the funnel-and-gate system. Ground Water, 32 (3), 465-476 (1994).
Stocking, A. J., Suffet, I. H., McGuire, M. J. and Kavanaugh, M. C., Implications of an MTBE odor study for setting drinking water standards. J. Am. Water Works Assoc., 93 (3), 95-105 (2001).
Suffet, I. H. and McGuire, M. J. (Editor), Activated carbon adsorption of organics from the aqueous phase, Vol. 1, Ann Arbor Science, Ann Arbor, Michigan, USA (1980).
Sutherland, J., Adams, C. and Kekobad, J., Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: technical and economic comparison for five groundwaters. Water Res., 38 (1), 193-205 (2004).
Tien, C., Adsorption calculations and modeling, Butterworth-Heinemann, Boston, USA (1994).
TWEPA (Taiwan Environmental Protection Administration), The project of the risk assessment due to the exposure to MTBE (Second year). Environmental Protection Administration, EPA-92-J103-02-206, Taiwan (2004). (In Chinese)
UOP Corp. HiSiv 1000. Adsorbents product information, Product Bulletin, USA (1995).
USEPA (United States Environmental Protection Agency), Field applications of in situ remediation technologies: permeable reactive barriers. Office of Solid Waste and Emergency Response, EPA 542-R-99-002, USA (1999).
Wang, G. S., Removal of atrazine from drinking water by activated carbon adsorption, Doctoral Thesis, State University of New York, Albany, USA (1994).
Weber, W. J. and van Vliet, B. M., Synthetic adsorbents and activated carbons for water treatment: overview and experimental comparisons. J. Am. Water Works Assoc., 73 (8), 420-426 (1981).
Weber, W. J., McGinley, P. M. and Katz, L. E., Sorption phenomena in subsurface systems: concepts, model and effects on contaminant fate and transport. Water Res., 25 (5), 499-528 (1991).
Weber, W. J. and DiGiano, F. A., Process dynamics in environmental systems, John Wiley & Sons, New York, USA (1996).
Wilhelm, M. J., Adams, V. D., Curtis, J. G. and Middlebrooks, E. J., Carbon adsorption and air-stripping removal of MTBE from river water. J. Environ. Eng., 128 (9), 813-823 (2002).
Yang, F. C., Applying Powdered activated carbon to remove 2-MIB in raw water. Master’s Thesis. Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan (2001). (In Chinese)
Young, W. F., Horth, H., Crane, R., Ogden, T. and Arnott, M., Taste and odour threshold concentrations of potential potable water contaminants. Water Res., 30 (2), 331-340 (1996)