| 研究生: |
黃世明 Huang, Shr-Ming |
|---|---|
| 論文名稱: |
以熱燈絲化學氣相沉積法成長鑽石及奈米鑽石薄膜 Growths of Diamond and Nanodiamond Films by Hot-Filament Chemical Vapor Deposition |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 鑽石薄膜 、奈米鑽石薄膜 、熱燈絲化學氣相沉積法 |
| 外文關鍵詞: | Diamond films, Hot-filament chemical vapor deposition, Nanodiamond films |
| 相關次數: | 點閱:218 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為三大部分,第一部份為高平整度鑽石薄膜背面之製備。第二部份為無基板半球形鑽石膜之製備。第三部份為奈米鑽石薄膜之成長。
在高平整度鑽石薄膜背面之製備方面,本實驗主要是將製備高平整度鑽石膜背面,因此在成核階段,必須增加鑽石於Si基板上的成核密度與速度。因此本實驗除利用含鑽石粉末溶液超音波震盪處理矽基板,來提高成核密度外,並於成長鑽石膜時,於基板施加一正偏壓以吸引電子轟擊基板,來提高鑽石的成核密度及速度。而在本實驗系統中,當以電子轟擊(基板電流為0.8 A/cm2 , CH4濃度為4.5%)來成長鑽石薄膜時,因可提高成核密度與速度,因此可製備出高平整度鑽石薄膜背面,其鑽石膜背面之表面粗糙度由未施加偏壓(CH4濃度為4.5%)時的10nm降至5nm,且其成長速率亦較未施加偏壓(CH4濃度為4.5%)時的0.6μm/hr提升至1.4μm/hr。
在無基板半球形鑽石膜之製備方面,首先將石墨基板在一懸浮的鑽石溶液中進行前處理,之後再使用熱燈絲化學氣相沉積法於石墨基板上成長鑽石膜,藉由鑽石薄膜與石墨基板間彼此附著力差,如此鑽石膜將可與石墨基板分開,進而可穩定地製備出直徑為25mm、中心高度5mm且切線弧角大約45°的無基板半球形鑽石膜。
在成長奈米鑽石薄膜方面,本論文將使用三種不同方法來成長奈米鑽石膜,其所使用之方法分別為: (1)以熱燈絲化學氣相沉積法成長奈米鑽石薄膜,(2)以正偏壓輔助熱燈絲化學氣相沉積法成長奈米鑽石薄膜,(3)以負偏壓輔助熱燈絲化學氣相沉積法成長奈米鑽石薄膜,並探討此三種方法對薄膜的表面型態、結構型態、硬度……之影響。
在以熱燈絲化學氣相沉積法成長奈米鑽石薄膜方面,本實驗主要將藉由探討氣相壓力、碳源濃度及基板溫度等實驗參數之改變以成長出高硬度、高表面平整度且高透光度之奈米鑽石薄膜於石英玻璃上。當氣相壓力為5 Torr、CH4濃度為12~14%且基板溫度為650℃時,所成長出奈米鑽石膜較接近本實驗所設定之目標。在此成長條件下可成長出表面粗糙度13~14nm且硬度63~65GPa的高透光度奈米鑽石薄膜,其在波長700nm的透光度高達75%(膜厚約1.2μm);此外,其成長速率亦可達約0.8μm/hr。
而在以正偏壓輔助熱燈絲化學氣相沉積法成長奈米鑽石薄膜方面,本實驗主要將藉由探討氣相壓力及碳源濃度等實驗參數之改變以成長出高硬度、高表面平整度且高成長速率之奈米鑽石薄膜於Si基板上。當氣相壓力為30 Torr、CH4濃度為12~14%且基板溫度為650℃時,所成長出奈米鑽石膜較接近本實驗所設定之目標。在此成長條件下可成長出低表面粗糙度(14~18nm)、高硬度(77~82GPa)且高成長速率(1.65~1.8μm/hr)之奈米鑽石薄膜;且因電子轟擊的效應,可使其薄膜表面粗糙度由未施加偏壓(氣相壓力為30 Torr、CH4濃度為12%且基板溫度為650℃)時的50nm降至14~18nm,且其成長速率亦由未施加偏壓時的0.23μm/hr提升至1.65~1.8μm/hr,提高約8倍左右,而其硬度亦由未使用偏壓(氣相壓力為5 Torr、CH4濃度為12~14%且基板溫度為650℃)時的63~65GPa提升至77~82GPa,提高約15~20GPa左右。
而以負偏壓輔助熱燈絲化學氣相沉積法成長奈米鑽石薄膜時,因高能量的離子轟擊使得薄膜表面缺陷(surface defects)增加,其除了可增加二次成核的密度與速度外,也會使膜中非晶質碳含量增加(或許是particle的晶界厚度增加),而使得其硬度較以正偏壓及傳統熱燈法所成長之奈米鑽石膜降低約10~30GPa左右。
Three subjects on the diamond and nanocrystalline diamond (NCD) films have been studied. The first is the growth of backside diamond films with high surface smoothness. The second is the growth of free-standing diamond films of hemispheric shells. The third is the growth of NCD films.
In order to grow the backside diamond films with high surface smoothness, a high density of diamond nucleation on silicon is required. Silicon substrate was first treated by diamond powders in an ultrasonic bath. By positively biasing the substrate, electron bombardment during diamond growth increased the nucleation densities and rates. In this experiment, the surface roughness of backside diamond films could be improved by using electron bombardment method (substrate current is 0.8 A/cm2 and [CH4]=4.5 %). This is due to the enhancement of nucleation density and rate when electron bombardment was employed. The surface roughness of backside diamond film and the growth rate of diamond film with un-biased conditions ([CH4]=4.5%) were 10 nm and 0.6 m/hr, respectively. When biases were provided, the roughness decreased to 5 nm and the growth rate increased to 1.4 m/hr.
In order to grow the free-standing diamond films of hemispheric shells, the graphite substrate was first treated from a suspension of diamond powders in a bath. Polycrystalline diamond films were then deposited by the hot filament chemical vapor deposition (HFCVD) system. Due to the weak bonding between the diamond films and the graphite substrate, the diamond films could be easily delaminated from the mold. Free-standing diamond films of hemispheric shells with a diameter of 25 mm, a height of 5 mm at the center and an arching-angle around 45 degree were fabricated.
The NCD films were deposited by using three different methods in this thesis. The first method is the growth of NCD films by HFCVD system, the second method is the growth of NCD films by positive bias assisted HFCVD system and the third method is the growth of NCD films by negative bias assisted HFCVD system. The relations of surface morphology, structure and hardness of NCD films grown in three different methods were also investigated.
Highly transparent, high surface smoothness and hard NCD films were deposited on the quartz substrates by modulating the total gas pressure, substrate temperature, and CH4 concentration in HFCVD deposition system. Under the optimized conditions (P=5 torr, [CH4]=12~14%, Ts=650oC), NCD films with a hardness as high as 63~65 GPa and a maximum transmittance of 75% in the visible light region were achieved for thickness of 1.2μm with a root-mean-square (rms) surface roughness around 13~14 nm and a growth rate of 0.8μm/hr.
High growth rate, high surface smoothness and hard NCD films were deposited on the silicon substrate by modulating the total gas pressure, and CH4 concentration in positive bias assisted HFCVD system. Under the optimized conditions (P=30 torr, [CH4]=12~14%, Ts=650oC), NCD films with a hardness as high as 77~82 GPa, a low root-mean-square (rms.) surface roughness around 14~18 nm and a high growth rate around 1.65~1.8μm/hr were prepared. Comparing with un-biased conditions (P=30 torr, [CH4]=12%, Ts=650oC), the surface roughness of NCD films decreased from 50 nm to 14~18 nm due to electron bombardment. The growth rates increased from 0.23 μm/hr to 1.65~1.8 μm/hr when biases were provided. Hardnesses analyzed at the un-biased conditions (P=5 torr, [CH4]=12~14%, Ts=650oC) were 63~65 GPa. When biases were supplied, the hardnesses of NCD films were 77~82 GPa, increasing 15~20 GPa.
For the growth of NCD films in negative-bias assisted HFCVD system, the surface defects were increased by high energy ion bombardment. Ions bombarded the substrate not only increased the secondary nucleation densities and rates, but also increased the amount of amorphous carbon in the films. The hardnesses of NCD films grown in negative bias assisted HFCVD system were 10~30Gpa, lower than the NCD films grown in HFCVD and positive bias assisted HFCVD systems.
1. http:/cnst.rice.edu/images/allotropes.tif
2. J. C. Angus, Thin Solid Films 216, 126(1992).
3. M. N. Yoder, Synthetic Diamond: Emerging CVD Science and Technology, edited by K. E. Spear and J. P. Didmukes(John Wiley & Son, 1993).
4. S.-T. Lee, Z. Lin and X. Jiang, Materials Science and Engineering R25, 123(1999).
5. 宋健民,鑽石合成,全華科技圖書,1999年7月。
6. W. G. Eversole, U. S. Patent 3,030,188, April 17 (1962).
7. D. J. Poferl, N. C. Gardner, and J. C. Angus, J. Appl. Phys. 44, 1428 (1973).
8. B. V. Spitsyn, L. L. Bovilov, and B. V. Derjaguin, J. Cryst. Growth 52,
219 (1981).
9. S. Matsumoto, Y. Sato, M. Tsutsimi, and N. Setaka, J. Mater. Sci. 17,
3106 (1982).
10. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inzunuka, Appl. Phys. Lett.
50, 728 (1987).
11. A. R. Badzian and R. C. de Vries, Mater. Res. Bull. 23, 385 (1988).
12. S. Nakao, M. Noda, H. Watani, and S. Maruno, Jpn J. Appl. Phys. 30, 145 (1991).
13. D. E. Meyer, R. O. Dillon, and J. A. Woollam, J. Vac. Sci. Technol. A7, 2325 (1989).
14. H. Kamarada, K. S. Mar, and A. Hieaki, Jpn. J. Appl. Phys. 26, L1032 (1987).
15. R. Ramesham, T. Roppel, and C. Ellis, J. Mater. Res. 6, 1278 (1991).
16. D. M. Bhusari, J. R. Yang, T. Y. Wang, S. T. Lin, K. H. Chen, L. C. Chen, Solid State Commu. 107, 301 (1998).
17. A. R. Krauss et al., Diamond Related Materials 10, 1952 (2001).
18. B.P. Bandyopadhyay, H. Ohmori, I. Takahashi, Journal of Material Processing Technology 66, 18 (1997).
19. J.A. Weima, W.R. Fahrner, R. Job, J. Solid State Electrochem 5, 112 (2001).
20. B. Bhushan, Diamond Films Technol. 4 (2), 71 (1994).
21. A.P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem, Diamond Related Materials 8, 1198 (1999).
22. 廖建勛,化工資訊,1998年2月,第20頁。
23. H.D. Espinosa, O. Auciello et al., J. Appl. Phys. 94, 6067 (2003).
24. S.A. Catledge et al., J. Appl. Phys. 84, 6469 (1998).
25. A. Heiman et al., J. Appl. Phys. 89, 2622 (2001).
26. D. M. Bhusari et al., Mater. Lett. 36, 279 (1998).
27. D. M. Bhusari et al., J. Mater. Res. 13, 1769 (1998).
28. Y. K. Chang et al., Phys. Rev. Lett. 82, 5377 (1999).
29. L. C. Chen et al., J. Appl. Phys. 89, 753 (2001).
30. V. V. Zhirnov et al., J. Vac. Sci. Technol. B 17, 666 (1999).
31. A. Gohl et al., J. Vac. Sci. Technol. B 17, 670 (1999).
32. B. Gunther et al., J. Vac. Sci. Technol. B 19, 942 (2001).
33. C.Z. Gu and X. Jiang, J. Appl. Phys. 88, 1788 (2000).
34. T. Sharda and M. Umeno et al., Diamond Related Materials 10, 561 (2001).
35. X.T. Zhou and S.T. Lee et al., Appl. Phys. Lett. 80, 3307 (2002).
36. T.S. Yang and M.S. Wong et al., J. Appl. Phys. 92, 4912 (2002).
37. A. Erdemir et al., Diamond Related Materials 5, 923 (1996).
38. D. Zhou et al., J. Appl. Phys. 82, 4546 (1997).
39. S. Jiao et al., J. Appl. Phys. 90, 118 (2001).
40. J. Birrell et al., Appl. Phys. Lett. 81, 2235 (2002).
41. J. Birrell et al., Diamond Related Materials 14, 86 (2005).
42. A. R. Krauss et al., Diamond Related Materials 10, 1952 (2001).
43. A. V. Sumant et al., Mat. Res. Soc. Symp. Proc. 657, EE5.33.1 (2001).
44. D. M. Gruen, MRS Bulletin 26, 771 (2001).
45. X. Jiang,W. J. Zhang,M. Paul and C. –P. Klages, Appl. Phys. Lett. 68, 1927 (1996).
46. X. Jiang,W. J. Zhang and C. –P. Klages, Phy. Rev. B58, 7064 (1998).
47. X. Jiang, M. Fryda , C. L. Jia, Diamond Related Materials 9, 1640 (2000).
48. A. Sawabe, and T. Inuzuka, Appl. Phys. Lett. 46, 15 (1985).
49. A. Sawabe, and T. Inuzuka, Thin Solid Films 137, 89 (1986).
50. S. Nakao, M. Noda et al., J. Gryst. Growth 115, 313 (1991).
51.宋健民,工業材料,137期, 1998年5月,161-162。
52. Y.J. Baik, J.K.Lee, W.s. Lee, K.Y. Eun, Thin Solid Films 341, 202 (1999).
53. J.E. Field, The properties of Natural and Synthetic Diamond (Academic Press, London, 1992), P.682.
54. M.N. R.Ashfold, P. W. May, C. A. Rego, and N. M. Everitt, Chem. Soc. Rev. 23, 21 (1994).
55. T.P. Ong and R. P. H. Chang, Appl. Phys. Lett. 58, 358 (1991).
56. D.N. Belton and S.J. Schmieg, J. Appl. Phys. 66, 4223 (1989).
57. S.H. Seo, Wan-Chul Shin , Jin-Seok Park, Thin Solid Films 416, 190 (2002).
58. Anon, Industrial Diamond Review 64, 17 (2004).
59. Bowers & Wilkins(B&W), http://www.bwspeakers.com.
60. 梁國超,以中空陰極化學氣相沉積法成長鑽石膜及碳微管,成功大學化工所,博士論文(2000)。
61. 陳隆,直流電漿化學氣相沉積法成長鑽石薄膜,成功大學化工所,碩士論文(1992)。
62.D.-G. Lee, and R.K. Singh, Appl. Phys. Lett. 70, 1542 (1997).
63.E.M. Wong, and Peter C. Searsona, Appl. Phys. Lett. 74, 2939(1999).
64.A.R. Boccaccinia, C. Kaya, Ceramics International 28, 893 (2002).
65.張道生,以化學氣相沉積法成長鑽石薄膜-熱鎢絲及電子輔助法,成功大學化工所,碩士論文(1991)。
66.T.P. Ong and R.P.H. Chang, Appl. Phys. Lett. 55, 2063 (1989).
67.Z. Remes and Y. Avigal et al., Phys stat sol (a) 201, 2499 (2004).
68.田明波與劉德令編譯,薄膜科學與技術手冊(機械工業出版社,北
京,1991年),第1頁。
69. J. Carlsson, Thin Solid Films 130, 261 (1985).
70.K.F. Jensen and W. Kern, Thin Film Processes II, edited by J. L. Vossen and W. Kern (Academic Press, 1991) 283.
71.C.E. Morosanu, Thin Films by Chemical Vapor Deposition (Elsevier, New York, 1990), chapter 5.
72.E. Sirtl, I.P. Hunt, and D. H. Sawyer, J. Electrochem. Soc. 121, 919 (1974).
73.P.K. Bachmann and R. Messier, May 15, 1989 C&EN.
74. P.E. Pehresson, F.G. Celii, and J.E. Butler, Diamond Films And
Coatings, edited by R. F. Davis (Noyes, 1993) p.69.
75. R. Kern, G.L. Lay, and J.J. Metois, Current Topics in Material Science 3, 135(1979).
76. H. Liu and D.S. Dandy, Diamond Related Materials 4, 1173 (1995).
77. S. Iijima, Y. Aikawa, and K. Baba, Appl. Phys. Lett. 57, 2646 (1990).
78. M. Ihara, H. Komiyama, and T. Okubo, Appl. Phys. Lett. 65, 1192 (1994).
79. P.A. Denning, D.A. Stevenson, Appl. Phys. Lett. 59, 1562 (1992).
80. M. Frenklach(1991), in Diamond and Diamond-like Films and Coating, edited by R. E. Clausing, L.L. Horton, J.C. Angus, and P. Koidl, NATO ASI Series B: physics, Vol. 266. Plenum, New York, p. 499-524.
81. P.A. Dennig, H. Shiomi, and D.A. Stevenson, Thin Solid Films 212, 63 (1992).
82. D.M. Gruen, Annu. Rev. Mater. Sci. 29, 211 (1999).
83.J.R. Roth, Industrial Plasma engineering Volume 1: Principles (IOP Publishing, Bristlo, 1995), chapter 10.
84. M. Katoh, M. Aoki and H. Kawarada, Jpn. J. Appl. Phys. 33, L194 (1994).
85. S. Yugo, T. Kanai, and T. Muto, Appl. Phys. Lett. 58, 1036 (1991).
86. T. Sharda, M. Umeno et al., Diamond Related Materials 10, 352 (1995).
87. Q. Chen and Z. Lin, Appl. Phys. Lett. 68, 2450 (1996).
88. Q. Chen and Z. Lin, J. Appl. Phys. 80, 797 (1996).
89. Q. Chen, J. Yang, Z. Lin, Appl. Phys. Lett. 67, 1853 (1995).
90. K.J. Liao, W.L. Wang and B. Feng, Phys. Stat. Sol. (A) 167, 117 (1998).
91. W.L. Wang, K.J. Liao, J. Wang, L. Fang, P.D. Ding, J. Esteve, M.C. Polo, G. Sanchez, Diamond Related Materials 8, 123 (1999).
92. X.T. Zhou, S.T. Lee et al., Diamond Related Materials 9, 134 (2000).
93. S. Okoli, R. Aubner, and B. Lux, Surf. Coat. Technol. 47, 585 (1991).
94. S.H. Seo, W.C. Shin, and J.S. Park, Thin Solid Films 416, 190 (2002).
95. S. Michaelson, A. Hoffman, Diamond Related Materials 11, 721 (2002).
96. T. Ono, and M. Esashi et al., Jpn. J. Appl. Phys. 42, 3867 (2003).
97. E. Vietzke, V. Philipps, and C.H. Wild, Surf. Coat. Technol. 47, 156
(1991).
98. A.C. Ferrari, and J. Robertson, Phys. Rev. B 63, 121405(R) (2001).
99. L.L. Connell, J.W. Fleming, and J.E. Bulter et al., J. Appl. Phys. 78, 3622 (1995).
100. A.M. Bonnot, Thin Solid Films 185, 111 (1990).
101. E. Vietzke et al., Surf. Coat. Technol. 47, 156 (1991).
102. Laurence E. Kline, William D. Partlow, J. Appl. Phys. 65, 1 (1989).