簡易檢索 / 詳目顯示

研究生: 吳幸黛
Wu, Hsing-Tai
論文名稱: 結合Alamouti碼之中繼策略與頻譜配置之高傳輸率細胞架構
A High Capacity Cell Architecture Based on Alamouti Coded Relay Strategy and Frequency Allocation Scheme
指導教授: 張志文
Chang, Chih-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 47
中文關鍵詞: 正交分頻多工中繼策略空時編碼細胞架構對數常態分佈總和
外文關鍵詞: OFDMA, relay strategy, space/time coding, cell architecture, sum of lognormal
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在正交分頻多工系統中,如何消除跨細胞干擾問題以提昇傳輸率為一項重要的研究議題。近年來,規劃新的頻譜配置結構與提出有效率之中繼策略成為兩大解決方向。在本文中,我們結合上述兩個概念,建構出一個具有高傳輸率之細胞架構。首先,我們將細胞分為內圍和外圍區域,分別給予2/3及1/3頻帶資源,以有效消除跨細胞干擾問題。其中,內圍區域配置較多頻帶資源,以確保基地台與中繼器之間的傳輸品質,加強中繼器的使用效率。再者,利用空時編碼實踐多樣性增益,配合低功率的中繼器可減少跨細胞干擾個數。不同以往,我們考慮完整通道特性來分析多細胞環境下之效能表現,其中包括路徑耗損,具有對數常態分布特性之遮蔽效應與衰弱反應。我們提出的細胞架構在傳輸率與中斷機率上佔有極大優勢,本文並針對傳輸率與中斷機率進行推導分析,結果顯示,此分析方法與模擬結果幾近吻合。

    In the orthogonal frequency division multiple access (OFDMA) system, how to eliminate the inter cell interference (ICI) problem is the key to providing ubiquitously high data rate services. In the recent years, the novel frequency allocation scheme (FAS) and effcient relay strategy has become two popular techniques to solve this problem. In this thesis, we combine these two techniques to build a high-capacity cell architecture.
    Firstly, each of the inner and outer zone areas within a sector is allocated a portion of bandwidth, i.e. 2/3 and 1/3, respectively, so as to effectively eliminate the ICI problem. Secondly, a wider bandwidth for the inner zone areas is allocated such that the higher link capacity along the path from base station (BS) to relay station (RS) can not be a bottleneck during the relay procedures. Thirdly, the Alamouti coded relay strategy can own the diversity gain; and the lower transmission power of RS can further reduce the amount of ICI. Fourthly, different from the literature, the complete channel effects including the path loss, log-normal shadowing and the fading, are taken into considerations of performance analysis in the multiple cell environments. The advantages of the proposed cell architecture are verified via simulation and analytical results in terms of capacity and outage probability.

    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . .. . . . . . . . . . . . . . 2 2 Background and Literature Survey 3 2.1 Multiple Access Technologies . . . . . . . . . . 3 2.1.1 FDMA . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 TDMA . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 OFDMA . . . . . . . . . . . . . . . . . . . . . 5 2.2 Relay Strategy . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Space-Time Block Code (STBC) . . . . . . . . . . 11 2.3.1 OSTBC . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 QOSTBC . . . . . . . . . . . . . . . . . . . . 13 2.3.3 Two-Stage Relay With STBC . . . . . . . . . . . 15 2.4 Cell Architecture . . . . . . . . . . . . . . . 16 2.4.1 The Frequency Allocation Scheme (FAS) in [1] . 17 2.4.2 The Novel Frequency Reuse Scheme (NFRS) in [2] 18 2.4.3 The Modi¯ed Orthogonal Resource Allocation Algorithm (MORAA) Scheme in [3] . . . . . . . . . . . . . . . . 19 2.4.4 The Proposed Cell Architecture With Alamouti Coded Relay Strategy and FAS . . . . . . . . . . . . . . . 20 2.4.5 Qualitative Comparison . . . .. . . . . . . . . 21 3 Performance Analysis 24 3.1 System Model . . . . . . . . . . . . . . . . . . 24 3.1.1 Two-Hop Relay With Space/Time Coding . . . . . 25 3.1.2 Channel Model . . . . . . . . . . . . . . . . . 27 3.1.3 The SIR Expression . . . . . . . . . . . . . . 28 3.2 Approximation of Sum of Lognormal Distributed Random Variables [4] . . . . . . . . . . . . . . . . . . . .29 3.2.1 The LS linear (LSL) approximation . . . . . . . 30 3.2.2 The LS quadratic (LSQ) approximation . .. . . . 31 3.3 Capacity and Outage Analysis . . . . . .. . . . . 32 4 Simulation Results and Discussion 34 4.1 Simulation Setup . . . . . . . . . . . . . . . . 34 4.2 Simulation Results and Discussion . . . . . . . . 35 5 Conclusion 43 5.1 Conclusion . . . . . . . . . . . . . . .. . . . . 43 Bibliography 44 Vita 47

    [1]K. Cho, W. Lee, D. Yoon, H. S. Jin, K. Kim, and S. K. P. Reinaldo, "Frequency allocation scheme for interference avoidance in cellular system with FIxed relay," in
    IEEE Digital Telecommunications, vol. 23, July 2008, pp. 130-134.
    [2] M. LIANG, F. LIU, Z. CHEN, Y. F. WANG, and D. C. YANG, "A novel frequency reuse scheme for OFDMA based relay enhanced cellular networks," in IEEE Vehicular Technology Conference, April 2009, pp. 1-5.
    [3] M. LIANG, Y. F. WANG, F. HUANG, and D. C. YANG, "An improved frequency reuse algorithm for FIxed two-hop OFDMA cellular relaying networks," in ACM, 2009.
    [4] L. Zhao and J. Ding, "Least squares approximations to lognormal sum distributions," IEEE Trans. on Vehicular Technology, vol. 56, no. 2, pp. 991-997, Mar. 2007.
    [5] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX Understanding Broadband Wireless Networking. Pearson Education, Inc., 2007.
    [6] T. Ohseki, N. Fuke, H. Ishikawa, and Y. Takeuchi, "Multihop mobile communications system adopting fixed relay stations and its time slot allocation schemes," in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2006, pp. 1-5.
    [7] M. Hayes, S. K. Kassim, J. A. Chambers, and M. D. Macleod, "Exploitation of quasi-orthogonal space time block codes in virtual antenna arrays: part I - theoretical capacity and throughput gains," in IEEE Vehicular Technology Conference, May 2008, pp. 349-352.
    [8] S. V. Maiya and T. E. Fuja, "Routing and spectral effciency in fading with alamouti coding at two parallel relays," in IEEE International Conference on Communications, June 2009, pp. 1-5.
    [9] IEEE standard for local and metropolitan area networks, "Part 16: Air interface for fixed broadband wireless access systems," October 2004.
    [10] C.-S. Chiu and C.-C. Huang, "Combined partial reuse and soft handover in OFDMA downlink transmission," in IEEE Vehicular Technology Conference, May 2008, pp. 1707-1711.
    [11] R. Pabst, B. H.Walke, D. C. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee,
    H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. D. Falconer,
    and G. P. Fettweis, "Relay-based deployment concepts for wireless and mobile broadband radio," IEEE Communications Magazine, vol. 42, no. 9, pp. 80-89, Sept. 2004.
    [12] S. M. Alamouti, "A simple transmit diversity technique for wireless communication," IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [13] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
    [14] C. Toker, S. Lambotharan, and J. A. Chambers, "Closed-loop quasi-orthogonal STBCs and their performance in multipath fading environments and when combined with turbo codes," IEEE Transaction on Wireless Communications, vol. 3,
    no. 6, pp. 1890-1896, Nov. 2004.
    [15] M. Assaad, "Optimal fractional frequency reuse (FFR) in multicellular OFDMA system," in IEEE Vehicular Technology Conference, Sept. 2008, pp. 1-5.
    [16] H. Hu, H. Yanikomeroglu, D. D. Falconer, and S. Periyalwar, "Range extension without capacity penalty in cellular networks with digital fixed relays," in IEEE
    Global Telecommunications Conference, vol. 5, Dec. 2004, pp. 3053-3057.
    [17] A. M. D. Turkmani, "Probability of error for M-branch macro-scopic selection diversity," in Proc. IEE, vol. 139, Feb. 1992, pp. 71-78.
    [18] A. S. Laourine A., Stephenne A., "On the capacity of log-normal fading channels," IEEE Trans. on Communications, vol. 57, no. 6, pp. 1603-1607, June 2009.
    [19] C. Conne and I.-M. Kim, "Outage probability of multi-hop amplify-and-forward relay systems," IEEE Transaction on Wireless Communications, vol. 9, no. 3, pp. 1139-1149, Mar. 2010.
    [20] B. Can, H. Yanikomeroglu, F. A. Onat, E. D. Carvalho, and H. Yomo, "Effcient cooperative diversity schemes and radio resource allocation for IEEE 802.16j," in IEEE Wireless Communications and Networking Conference, April 2008, pp. 36-41.

    無法下載圖示 校內:2013-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE