| 研究生: |
帕撒帝 Parthasarathi Pal |
|---|---|
| 論文名稱: |
於高操作穩定性可穿戴式與陣列多阻態隨機存取記憶體,探討內存計算 (CIM) 應用可行性 Robust Thermal and Electrical Stability in Multilevel Nonvolatile Wearable and Crosspoint Resistive Switching Memories for Feasible Integration of Computing in Memory (CIM) Application |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 外文關鍵詞: | bending, complementary resistive switching, cross-point, inference engine, flexible, hafnium oxide, MLC, MNIST, neural networks, non-volatile memory, ReRAM, synaptic plasticity, variation, threshold switching |
| ORCID: | 0000-0002-4888-9596 |
| 相關次數: | 點閱:63 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著 CMOS 技術的興起,通過硬體設計以實現能夠克服傳統馮紐曼架構的神經網絡的可能性上獲得了巨大進展。通過即時的數據處理及多階儲存單元(MLC)運算可以在消耗更少的能量下,處理大量複雜的數據,同時更有著益發出色的可擴展性。
在一開始的探討中,我們通過使用有機類材料中的氧化石墨烯(Graphene oxide)作為介電層來探討其電阻開關機制。在摻入石墨烯電荷捕捉層的元件中,其表現出良好的操作穩定性及雙極性的開關特性,而其開關比大約為10^2-10^3之間。而在特定數量的連續直流偏壓開關操作後,隨著SET、RESET電壓的增加,在其開關比維持大約為10^2的情況下,元件的操作特性逐漸由雙極性轉向互補式開關特性,通過電性分析和曲線擬合法我們驗證了傳導機制的改變。而在互補開關中隨著電壓的增加,注入電子數量隨之快速上升,這樣的現象促成了中間層電荷儲存區的形成,進而提升性能。該元件在85°C的高溫操作下顯示出長達10^4秒的數據保留周期(retention)和良好的直流耐久性(endurance)。除此之外,該元件還能夠以多阻態操作存儲多位數據(4位元),從而實現高密度記憶體。
另外,具有連續電導變化的人工突觸裝置對於仿生神經形態系統的硬體操作方面實現至關重要。隨著技術的演進,可穿戴式的伸縮技術研究與應用在世界上也變得越發重要。無論從製造或適用性方面來看,高溫都是限制該項技術演進的重要議題之一。因此,在接下來的研究中,我們將展示以高介電常數(High k)同時與互補金氧半導體製程兼容(CMOS compatible)的金屬氧化物(HfO2)作為介電層,並探討其在可撓基板上異質堆疊出的憶阻體開關特性與其在人工神經網路中的應用。該元件在500 μA限電流下表現出約1.2 × 10^4的出色記憶儲存空間(ION/IOFF)和極高的穩定度(σHRS ∼ 3.95 × 10^-10 S)。同時該元件在超過500次的直流存儲操作中表現出相當出色的機械應力和電性穩定度,並且在120°C下的高溫環境下數據保留周期超過10^4秒而沒有任何退化。同時該器件可用於六種不同狀態下的多級儲存單元(MLC)操作,並可用於實 2位元數據存儲應用。而該元件的傳導機制以低電場區間的蕭基發射和高電場區間的跳躍傳導為主的高阻態(HRS),和在低阻態(LRS)的歐姆傳導所組成。我們同時在神經網絡中以96.07%的準確率作為基準對該元件進行了訓練,並觀察其電導變化和高溫操作對特性影響。另外也特別在高溫環境下以95.68%的片外訓練精確度對元件進行了訓練,並在整個過程中觀察其精確度曲線的變化。結果顯示該元件在超過 10^4秒的長期彎曲應力(r = 8 mm)下仍維持出色的機械應力穩定性,同時保有完好的記憶儲存空間。在實驗中為觀察長期機械應力對學習過程的影響,每30分鐘進行一次神經精確度量測,結果顯示其最大值為96.01%。
此外,通過將矽(Si)摻雜到具有高度線性突觸特性的高介電常數薄膜(HfOx)中,我們得到了一種高度可靠且多工的電阻式記憶體,並且可以通過調變限電流在閾值切換(threshold)和非揮發性(NVM)開關行為間進行切換。結果顯示在限電流小於1 µA時轉為揮發性操作,並在限電流高於10 µA時表現出非揮發性行為。通過RESET電壓調變也得到具備3bit/cell的高密度記憶體。而該元件不僅顯示了出色的增強/抑制線性響應,在高達10000個快速脈衝(100 ns)的情況下,有著良好的開關比 (>10^3)。在85°C的環境下以脈衝寬度為200 ns進行量測,也能維持穩定的數據保存能力 (10^5 s) 和高寫入耐久性(~10^7個週期)。儘管如此,類神經方面的應用已經通過使用Si:HfOx交叉陣列電阻的實驗校準數據的神經網路模擬得到成功的驗證。對於神經網路模擬,已經獲得了0.03的低非線性度和98.08%的模式識認精確度。而這樣的結果正顯示了在未來大規模使用交叉陣列的類神經形態元件中低功率選擇器和高密度非揮發性記憶體的發展潛力。
最後,考慮到高熱積存(thermal budget)的類神經形態應用,我們選擇在高度可撓曲的聚酰亞胺基板上沉積以氧化鉿(HfO2)作為介電層的2bit/cell堆疊電阻式隨機存取記憶體 (ReRAM)。而該元件的特性顯示,在低阻態(LRS)電流(ION)與高阻態(HRS)電流(IOFF)其ION/IOFF之比高於1.4×10^3,而在100 µA限電流下元件與元件間的變化度很小,顯示其相當高的操作穩定性。在5 mm彎曲半徑下超過 10^4次的重複彎曲應力測試則顯示了高機械穩定性及超過10^6次的寫入耐久性都顯示了這些元件非常適合應用於線上神經網路訓練。在 125°C 下超過 10^4秒的數據保留能力也增強了這些設備的長期推理能力。此外,這些元件的性能皆已經通過系統層級的模擬和實驗校準數據得到了在類神經方面應用的驗證。而根據系統層級模擬也顯示,在長達10年的操作區間內,推理準確度與基線相比僅有2%的損失。
The increasing initiations in CMOS technology, the hardware implemented neural network acquiring enormous significance due to the capability to overcome the von Neumann bottle neck disputes. The real time data processing and MLC operation can deal with massive amount of complex data consuming less energy with outstanding scalability.
Initially, organic material-based resistive switching mechanisms were studied by using graphene oxide as the switching layer. With the insertion of a charge trapping graphene layer, the device showed good stability and good electrical bipolar switching properties, with an ON/ OFF ratio about 10^2–10^3. The device gradually shifted toward complementary switching behavior while maintaining an ON/OFF ratio of 10^2 from bipolar switching behavior after a specific number of consecutive DC switching cycles with increases in the SET-RESET voltage. The conduction mechanisms for bipolar (P–F conduction) and the complementary switching were verified based on the electrical characteristics and curve fittings. Rapid increases in the injected electrons due to increased voltage in complementary switching facilitated the formation of an intermediate charge reservoir region that, in turn, enhanced performance. The device showed a retention period as high as 10^4 s at 85°C and good DC endurance. The device is also capable of multi-resistance states to obtain multi-bit (4-bit) data storage, leading to high density memory realization.
In addition, an artificial synaptic device with continuous conductance variation is essential for the hardware implementation of bioinspired neuromorphic systems. With increasing technological advancement, wearable flexible technology is gaining enormous importance in the research community. High temperature is one of the key issues in flexible technology from the fabrication and applicability aspects. In this work, we have demonstrated the performance of a complementary metal-oxide-semiconductor (CMOS)-compatible high-k material (HfO2) based flexible heterogeneous stacked resistive switching device in an artificial neural network. The device exhibited an excellent memory window (ION/IOFF) of around 1.2 × 10^4 with an ultralow variation (σHRS ∼ 3.95 × 10^-10 S) at 500 μA current compliance. The device shows excellent mechanical and electrical
stability for more than 500 DC cycles and data retention capability at 120 °C for more than 104 s without any degradation. The device can be used for multilevel cell (MLC) operation in six distinct states and can be useful for the implementation of 2-bit data storage applications. The conduction mechanism in the device was dominated by Schottky emission at the lower field region and hopping conduction at the higher field region of the high-resistance state (HRS), whereas ohmic conduction was satisfied at the low resistance state (LRS). We have trained the device in the neural network with 96.07% accuracy as the baseline and observed the effect of conductance variation and high-temperature operation. We trained the device at a high temperature with a 95.68% off-chip training accuracy and observed the accuracy profile throughout the time. The device also possessed an excellent mechanical stability under a long-term bending stress (r = 8 mm) of over 10^4 s with an intact memory window. The neural accuracy was measured every 30 min with a maximum of 96.01% to observe the effect of long-term mechanical stress on the off-chip learning process.
Moreover, A highly reliable and versatile resistive memory devices demonstrating both threshold and nonvolatile (NVM) switching behavior depending on the compliance current modulation has been utilized by doping a semiconducting (Si) material into a high-k (HfOx) film with highly linear synaptic behavior. The device shifted towards volatile switching at the CC less than 1 µA and exhibited NVM behavior at CC limit above 10 µA. 3-bit/cell data storage capability on RESET voltage modulation implemented for high density memory application. The device shows excellent programming linearity of potentiation/depression responses up to 10000 pulses compatible with fast pulse (100 ns) with good ON/OFF ratio (>10^3), stable data retention capability (10^5 s) at 85°C and high WRITE endurance (~10^7 cycles) with a pulse width of 200 ns. Nevertheless, the neuromorphic applications have been successfully verified by neural network simulations using experimentally calibrated data of the Si:HfOx resistive cross-point devices. A low nonlinearity of 0.03 with 98.08% pattern recognition accuracy have been obtained for neural network simulations. The calibrated results revealed the potentiality of device for low power selector and high density NVM storage in large scale crossbar array in future neuromorphic devices.
Finally, hafnium oxide (HfO2) based 2bits/cell stacked resistive random access memory devices (ReRAM) fabricated on highly flexible polyimide substrates for neuromorphic applications considering high thermal budget. The ratio of low resistance state (LRS) current (ION) to high resistance state (HRS) current (IOFF) or ION/IOFF for the fabricated devices was above 1.4×10^3 with a low device to device variation at 100 µA current compliance. The mechanical stability over 10^4 bending cycles at a 5 mm bending radius and endurance over 10^6 WRITE cycles make these devices suitable for online neural network training. The data retention capability over 10^4 seconds at 125°C also infuses these devices' long-term inference capability. Further, the performance of the devices has been verified for neuromorphic applications by system-level simulations with experimentally calibrated data. The system-level simulation reveals only a 2% loss in inference accuracy over ten years from the baseline.
CHAPTER 1
[1] D. Ielmini, and R. Waser, “Resistive switching : From fundamentals of nanoionic redox processes to memristive device applications,” Wiley-VCH Verlag GmbH & Co. KGaA, 2016.
[2] S. Yu, and P. Y. Chen, “Emerging memory technologies: recent trends and prospects,” IEEE Solid State Circuits Magazine, vol. 8, p. 43, 2016.
[3] T. Kubota, K. Ando, and S. Muramatsu, "FLASH memory data retention reliability and the floating gate/tunnel SiO2 interface characteristics," Appl. Surf. Sci., vol. 117-118, pp. 253-258, 1997.
[4] S. N. Keeney, "A 130 nm-generation high density EtoxTM flash memory technology," in Tech. Dig. - Int. Electron Devices Meet., 2001, pp. 2.5.1 - 2.5.4.
[5] C. W. Hu, T. C. Chang, C. H. Tu, C. N. Chiang, C. C. Lin, S. M. Sze, and T. Y. Tseng, “NiSiGe nanocrystals for nonvolatile memory devices,” Appl. Phys. Lett., vol. 94, p. 062102, 2009.
[6] Computerworld, “Memory wars: RRAM vs 3D NAND Flash, and the winner is…us,” https://www.computerworld.com/article/2484798/emerging-technology-memory-wars-rram-vs-3d-nand-flash-and-the-winner-is-us.html
[7] J. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanoscale Res. Lett., vol. 9, p. 526, 2014.
[8] S. W. Chung, T. Kishi, J. W. Park, M. Yoshikawa, K. S. Park, T. Nagase, K. Sunochi, H. Kanaya, G. C. Kim, K. Noma, M. S. Lee, A. Yamamoto, K. M. Rho, K. Tsuchida, S. J. Chung, J. Y. Yi, H. S. Kim, Y. S. Chun, H. Oyamatsu and S. J. Hong, “4 Gbit density STT-MRAM, using perpendicular MTJ realized with compact cell structure,” IEDM Technical Digest, p. 27.1.1, 2016.
[9] S. S. P. Parkin, M. Hayashi, and L. Thomas, “ Magnetic domain-wall racetrack memory,” Science, vol. 320, p. 190-194, 2008.
[10] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, "Phase-change random access memory: A scalable technology," IBM J. Res. Dev., vol. 52, pp. 465-479, 2008.
[11] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE, vol. 98, p. 2201, 2010.
[12] J. F. Scott and C. A. Paz De Araujo, "Ferroelectric Memories," Science, vol. 246, p. 1400, 1989.
[13] A. Sheikholeslami and P. G. Gulak, "A Survey of Circuit Innovations in Ferroelectric Random-Access Memories," Proc. IEEE, vol. 88, pp. 833-840, 2000.
[14] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater., vol. 6, pp. 833-840, 2007.
[15] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K.Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nat. Mater., vol. 10, p. 625, 2011.
[16] A. Prakash, D. Jana and S. Maikap, "TaOx-based resistive switching memories: prospective and challenges," Nanoscale Res. Lett., vol. 8, p. 418, 2013.
[17] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Mater. Sci. Eng. R, vol. 83, p.1, 2014.
[18] H. Sun, C. .Liu, W. Xu, J. Zhao, N. Zheng, and T. Zhang, “Using magnetic RAM to build low power and soft error resilient L1 cache,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, p. 19, 2012.
[19] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, "Sub-nanosecond switching of a tantalum oxide memristor," Nanotechnology, vol. 22, p. 485203, 2011.
[20] W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOx/Pt –ReRAM devices,” IEEE Electron Device Lett., vol. 37, p. 564, no. 5, 2016.
[21] J. J. Yang, D. B. Strukov, and D. R. Stewart, "Memristive devices for computing," Nat. Nanotechnol., vol. 8, pp. 13-24, 2013.
[22] John Sowa, Vivomind Resarch, and Semantic Web. Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project *. (December), 2014.
[23] Ian J Goodfellow and Aaron Courville Yoshua Bengio. Deep Learning [draft of March 30, 2015]-MIT Press (2016). 2015.
[24] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088), 1986.
[25] Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2):119–130, 1988.
[26] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.
[27] Tayfun Gokmen and Yurii Vlasov. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations. Frontiers in Neuroscience, 10:333, 2016.
[28] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat, Carmelo di Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan C P Farinha, Benjamin Killeen, Christina Cheng, Yassine Jaoudi, and Geoffrey W Burr. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, 558(7708):60–67, 2018.
[29] J. Bae, S. Lim, B. Park, and J. Lee. High-density and near-linear synaptic device based on a reconfigurable gated schottky diode. IEEE Electron Device Letters, 38(8):1153–1156, 2017.
[30] Qingzhou Wan, Mohammad T. Sharbati, John R. Erickson, Yanhao Du, and Feng Xiong. Emerging Artificial Synaptic Devices for Neuromorphic Computing, 2019.
[31] Shinhyun Choi, Scott H. Tan, Zefan Li, Yunjo Kim, Chanyeol Choi, Pai Yu Chen, Hanwool Yeon, Shimeng Yu, and Jeehwan Kim. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nature Materials, 17(4), 2018.
[32] J. Woo, A. Padovani, K. Moon, M. Kwak, L. Larcher, and H. Hwang “Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications”, IEEE Electron Device Letters, vol. 38, no. 9, pp. 1220 – 1223, Sept. 2017.
[33] M. Riesenhuber, & T. Poggio, “Hierarchical models of object recognition in cortex” Nature Neuroscience, vol. 2, no 11, July 2003.
[34] S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, J. A. Rogers, “Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin” Science, Vol 344, Issue 6179, pp. 70-74, Apr 2014.
[35] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin , C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams, Q. Xia and J. J. Yang, “Fully memristive neural networks for pattern classification with unsupervised learning”, Nat. Elect., Vol 1, pp. 137–145, Feb 2018.
[36] C. Mead, “Neuromorphic electronic systems,” Proc. IEEE, vol. 78, no. 10, pp. 1629–1636, Oct. 1990.
[37] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. L. Gallo, K. Moon, J. Woo, H. Hwang & Y. Leblebici, “Neuromorphic computing using non-volatile memory,” Adv. Phys., X, vol. 2, no. 1, pp. 89–124, Nov. 2016.
[38] P. Pal, S. Mazumder, C-W Huang, D-D Lu, Y-H Wang, “Impact of the Barrier Layer on the High Thermal and Mechanical Stability of a Flexible Resistive Memory in a Neural Network Application, ACS Appl. Elect. Mar. 2022.
[39] D. Ielmini, H.-S. P. Wong, ‘In-Memory Computing with Resistive Switching Devices’, Nat. Electron., 1, pp. 333-343, 2018.
CHAPTER 2
[1] T. W. Hickmott, "Low-frequency negative resistance in thin anodic oxide films," J. Appl. Phys., vol. 33, pp. 2669-2682, 1962.
[2] T. Yanagida, K. Nagashima, K. Oka, M. Kanai, A. Klamchuen, B. H. Park, and T. Kawai, “Scaling effect on unipolar and bipolar resistive switching of metal oxides,” Sci. Rep., vol. 3, pp. 1657, 2013.
[3] A. Sawa, "Resistive switching in transition metal oxides," Mater. Today, vol. 11, pp. 28-36, 2008.
[4] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K.Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nat. Mater., vol. 10, p. 625, 2011.
[5] R. Muenstermann, T. Menke, R. Dittmann, R. Waser, “Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices”, Adv. Mat., vol. 22, pp. 4819, 2010.
[6] Y. M Chiang, D. B. Birnie, and W. D. Kingery, “Physical Ceramics,” Newyork: Wiley, 1997.
[7] T. B. Reed, “The Chemistry of Extended Defects in Non-Metallic Solids,” Amstredam : North-Holland Pub. Co., 1970.
[8] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: resistive switching mechanisms and current status,” Rep. Prog. Phys., vol. 75, pp. 076502, 2012.
[9] J. H. Yoon, S. J. Song, I. H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park, and C. S. Hwang, “Highly uniform, electroforming free, and self rectifying resistive memory in the Pt/Ta2O5/HfO2/TiN structure,” Adv. Funct. Mater., vol. 24, pp. 5086-5095, 2014.
[10] K. M. Kim, J. Zhang, C. Graves, J. J. Yang, B. J. Choi, C. S. Hwang, Z. Li, and R. S. Williams, “Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application,” Nano Lett., vol. 16, pp. 6724-6732, 2016.
[11] N. Ge, M. X. Zhang, L. Zhang, J. J. Yang, Z. Li, and R. S. Williams, “Electrode material dependent switching in TaOx memristors,” Semicond. Sci. Technol., vol. 29, pp. 104003, 2014.
[12] S. Chakrabarti, S. Maikap, S. Samanta, S. jana, A. Roy, and J. T. Qiu, “Scalable cross-point resistive switching memory and mechanism through an understanding of H2O2/glucose sensing using an IrOx/Al2O3/W structure,” Phys. Chem. Chem. Phys., vol. 19, pp. 25938, 2017.
[13] D. Jana, S. Samanta, S. Roy, Y. F. Lin, and S. Maikap, “Observation of Resistive Switching Memory by Reducing Device Size in a New Cr/CrOx/TiOx/TiN Structure,” Nano-Micro Lett., vol. 7, pp. 392-399, 2015.
[14] D. Jana, S. Roy, R. Panja, M. Dutta, S. Z. Rahaman, R. Mahapatra and S. Maikap, "Conductive-bridging random access memory: challenges and opportunity for 3D architecture," Nanoscale Res. Lett., vol. 10, pp. 188-23, 2015.
[15] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” IEDM Technical Digest, p. 293, 2008.
[16] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," Tech. Dig. - Int. Electron Devices Meet., pp. 1-4, 2008.
[17] B. Govoreanu, G. S. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, "10×10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation," Tech. Dig. - Int. Electron Devices Meet., pp. 31.6.1-31.6.4, 2011.
[18] J. J. Yang, D. B. Strukov, and D. R. Stewart, "Memristive devices for computing," Nat. Nanotechnol., vol. 8, pp. 13-24, 2013.
[19] U.Celano, L.Goux, A.Belmonte, K.Opsomer, A.Franquet, A.Schulze, C.Detavernier, O.Richard, H.Bender, andM.Jurczak, “Three dimensional observation of the conductive filament in nanoscaled resistive memory devices,”Nano Lett.,vol. 14, pp. 2401, 2014.
[20] S. Kwon, S. Jang, J. W. Choi, S. Choi, S. Jang, T. W. Kim, and G. Wang, “Controllable switching filaments prepared via tunable and well-defined single truncated conical nanopore structures for fast and scalable SiOx memory,” Nano Lett., vol. 17, pp. 7462-7470, 2017.
[21] S. Roy, A. Roy, R. Panja, S. Samanta, S. Chakrabarti, P. L. Yu, S. Maikap, H. M. Cheng, L. N. Tsai, and J. T. Qiu, “Comparison of resistive switching characteristics by using e-gun/sputter deposited SiOx film in W/SiOx/TiN structure and pH/creatinine sensing through iridium electrode,” J. Alloy. Compd., vol. 726, pp. 30-40, 2017.
[22] J. C. Wang, C. H. Hsu, Y. R. Ye, C. S. Lai, C. F. Ai and W. F. Tsai, "High-performance multilevel resistive switching gadolinium oxide memristors with hydrogen plasma immersion ion implantation treatment," IEEE Electron Device Lett., vol. 35, pp. 452-454, 2014.
[23] Q. Zhou and J. Zhai, "Study of the bipolar resistive-switching behaviors in Pt/GdOx/TaNx structure for RRAM application," Phys. Status Solidi A, vol. 211, pp. 173–179, 2014.
[24] C. H. Cheng, C. Y. Tsai, A. Chin, and F. S. Yeh, "High performance ultra low energy RRAM with good retention and endurance," Tech. Dig. - Int. Electron Devices Meet., pp. 19.4.1, 2010.
[25] S. Samanta, S. Z. Rahaman, A. Roy, S. Jana, S. Chakrabarti, R. Panja, S. Roy, M. Dutta, S. Ginnaram, A. Prakash, S. Maikap, H.-M. Cheng, L. N. Tsai, J.T. Qiu and S. K. Ray, “Understanding of multi-level resistive switching mechanism in GeOx through redox reaction in H2O2/sarcosine prostate cancer biomarker detection,” Sci. Rep., vol. 7, pp. 11240, 2017.
[26] M. C. Wu, Y. W. Lin, W. Y. Jang, C. H. Lin, and T. Y. Tseng, “Low power and highly reliable multilevel operation in ZrO2 1T1R RRAM,” IEEE Electron Device Lett., vol. 32, pp. 1026, no. 8, 2011.
[27] C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R, vol. 22, p. 269, 1998.
[28] N. Birks, G. H. Meier, F. S. Pettit, “Introduction to the high-temperature oxidation of metals.” Cambridge: Cambridge University Press; 2006. http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php
[29] J. Robertson, "High dielectric constant oxides," Eur. Phys. J. Appl. Phys., vol. 28, pp. 265-291, 2004.
[30] S. K. Kim, J. Y. Kim, B. C. Jang, M. S. Cho, S. Y. Choi, J. Y. Lee, and H. Y. Jeong, “Conductive Graphitic Channel in Graphene Oxide Based Memristive Devices,” Adv. Funct. Mater., vol. 26, no. 41, pp. 1-9, 2016.
[31] L. H. Wang, W. Yang, Q. Q. Sun, P. Zhou, H. L. Lu, S. J. Ding, and D. W. Zhang, “The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories,” Appl. Phys. Lett., vol. 100, no. 6, Art. no. 063509, February 2012.
[32] F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, and R. W. Li, “Mechanism of nonvolatile resistive switching in graphene oxide thin films,” Carbon., vol. 49, no. 12, pp. 3796-3802, October 2011.
[33] J. Zhao, M. Zhang, S. Wan, Z. Yang, C. S. Hwang, “Highly Flexible Resistive Switching Memory Based on the Electronic Switching Mechanism in the Al/TiO2/Al/Polyimide Structure,” ACS Appl. Mater. Interfaces, vol. 10, no. 2, pp. 1828-1835, January 2018.
[34] S. Samanta, Z. Panpan, K. Han, G. Xiao, S. Chakraborty, Y. Li, X. Fong, “Impact of Ti Interfacial Layer on Resistive Switching Characteristics at Sub-µA Current Level in SiOx-Based Flexible Cross-Point RRAM,” 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), August 2019.
[35] J. Shang, W. H. Xue, Z. H. Ji, G. Liu, X. H. Niu, X. H. Yi, L. Pan, Q. F. Zhan, X. L. Xu, R. W. Li, “Highly Flexible Resistive Switching Memory Based on Amorphous-Nanocrystalline Hafnium Oxide Films,” Nanoscale, vol. 9, no. 21, pp. 7037-7046, March 2017.
[36] Y. Ji, B. Cho, S. Song, T. W. Kim, M. Choe, Y. H. Kahng, T. Lee, “Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate,” Adv. Mater., vol. 22, pp. 3071-3075, July 2010.
[37] S. Kim, J. H. Son, S. H. Lee, B. K. You, K. I. Park, H. K. Lee, M. Byun, K. J. Lee, “Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser LiftOff,” Adv. Mater., vol. 26, pp. 7480-7487, September 2014.
[38] T. Y. Wang, J. L. Meng, Q. X. Li, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, D. W. Zhang, “Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique,” J. of Mat. Sc. & Tech., vol. 60, pp. 21–26, January 2021.
[39] J. Meena, S. Sze, U. Chand, T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanosc. Res. Lett., vol. 9, no. 526, pp. 526-558, September 2014.
[40] W. Banerjee, “Challenges and Applications of Emerging Nonvolatile Memory Devices,” Electronics, vol. 9, no. 6, Art. no. 1029, pp. 1–24, June 2020.
[41] X. L. Hong, D. J. Loy, P.A. Dananjaya, F. Tan, C. M. Ng, and W. N. “Lew, Oxide-based RRAM materials for neuromorphic computing,” J. Material Science, vol. 53, pp. 8720-8746, February 2018.
[42] W. Banerjee, Q. Liu, H. Lv, S. Long, and M. Liu, “Electronic imitation of behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor devices,” Nanoscale, vol. 9, pp. 14442–14450, September 2017.
CHAPTER 3
[1] O. Kavehei, S. Al-Sarawi, K. R. Cho, K. Eshraghian, and D. Abbott, “An analytical approach for memristive nanoarchitectures,” IEEE Trans. Nanotechnol., vol. 11, no. 2, pp. 374-385, March 2012.
[2] B. Cho, J. M. Yun, S. Song, Y. Ji, D. Y. Kim, and T. Lee, “Direct observation of Ag filamentary paths in organic resistive memory devices,” Adv. Funct. Mater., vol. 21, no. 20, pp. 3976-3981, 2011.
[3] E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, “Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3PbI3-xClx Perovskite for Resistive Random Access Memory Devices,” Adv. Mater., vol. 27, no. 40, pp. 6170-6175, Aug 2015.
[4] Y. C. Chang, C. J. Lee, L. W. Wang, and Y. H. Wang, “Highly Uniform Resistive Switching Properties of Solution Processed Silver Embedded Gelatin Thin Film,” Small, vol. 14, no. 13, Art. no. 1703888, 2018.
[5] S. K. Kim, J. Y. Kim, B. C. Jang, M. S. Cho, S. Y. Choi, J. Y. Lee, and H. Y. Jeong, “Conductive Graphitic Channel in Graphene Oxide Based Memristive Devices,” Adv. Funct. Mater., vol. 26, no. 41, pp. 1-9, 2016.
[6] L. H. Wang, W. Yang, Q. Q. Sun, P. Zhou, H. L. Lu, S. J. Ding, and D. W. Zhang, “The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories,” Appl. Phys. Lett., vol. 100, no. 6, Art. no. 063509, February 2012.
[7] F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, and R. W. Li, “Mechanism of nonvolatile resistive switching in graphene oxide thin films,” Carbon., vol. 49, no. 12, pp. 3796-3802, October 2011.
[8] G. Khurana, P. Misra, and R. S. Katiyar, “Multilevel resistive memory switching in graphene sandwiched organic polymer heterostructure,” Carbon., vol. 76, pp. 341-347, September 2014.
[9] G. H. Shin C. K. Kim, G. S. Bang, J. Y. Kim, B. C. Jang, B. J. Koo, M. H. Woo, Y. K. Choi, and S. Y. Choi, “Multilevel resistive switching nonvolatile memory based on MoS2 nanosheet-embedded graphene oxide,” 2D Mater., vol. 3, no. 3, Art. no. 034002, August 2016.
[10] C. Pan, E. Miranda, M. A. Villena, N. Xiao, X. Jing, X. Xie, T. Wu, F. Hui, Y. Shi and M. Lanza., “Model for multi-filamentary conduction in graphene/hBN/graphene based resistive switching devices,” 2D Mater., vol. 4, no. 2, Art. no. 025099, May 2017.
[11] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nat. Mater., vol. 9, no. 5, pp. 403-406, April 2010.
[12] G. Wang, A. C. Lauchner, J. Lin, D. Natelson, K. V. Palem, and J. M. Tour, “High performance and low-power rewritable SiOx 1 kbit one diode-one resistor crossbar memory array,” Adv. Mater., vol. 25, no. 34, pp. 4789-4793, July 2013.
[13] X. P. Wang, Z. Fang, X. Li, B. Chen, B. Gao, J. F. Kang, Z. X. Chen, A. Kamath, N. S. Shen, N. Singh, G. Q. Lo and D. L. Kwong, “Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation,” Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 6, pp. 493-496, 2012.
[14] Y. C. Bae A. R. Lee, J. B. Lee, J. H. Koo, K. C. Kwon, J. G. Park, H. S. Im, and J. P. Hong, “Oxygen ion drift-induced complementary resistive switching in homo TiOx/TiOy/TiOx and hetero TiOx/TiON/ TiOx triple multilayer frameworks,” Adv. Funct. Mater. vol. 22, no, 4, pp. 709-716, 2012.
[15] D. Jana, S. Samanta, S. Maikap, and H. M. Cheng, “Evolution of complementary resistive switching characteristics using IrOx/GdOx/Al2O3/TiN structure,” Appl. Phys. Lett., vol. 108, no. 1, Art. no. 011605, January 2016.
[16] X. Chen, W. Hu, Y. Li, S. Wu, and D. Bao, “Complementary resistive switching behaviors evolved from bipolar TiN/HfO2/Pt device,” Appl. Phys. Lett., vol. 108, no. 5, Art. no. 053504, February 2016.
[17] Y. He, G. Ma, H. Cai, C. Liu, Q. Chen, A. Chen, H. Wang and T. C. Chang, “Interconversion between Bipolar and Complementary Behavior in Nanoscale Resistive Switching Devices,” IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 619-624, January 2019.
[18] F. T. Johra, J. W. Lee, and W. G. Jung, “Facile and safe graphene preparation on solution based platform,” J. Ind. Eng. Chem., vol 20, no. 5, pp. 2883-2887, 2014.
[19] N.Díez, A.͆liwak, S.Gryglewicz, B.Grzyb, and G.Gryglewicz, “Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment,” RSC Adv., vol. 5, no.100, pp. 81831 - 81937, 2015.
[20] A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362 no. 1824, pp. 2477-2512, 2004.
[21] D. Němeček and G. J.Thomas, “Raman Spectroscopy of Viruses and Viral Proteins,” Front. Mol. Spectrosc., Chapter 16, pp. 553-595, 2009.
[22] S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, and F. Pan, “Tuning the switching behavior of binary oxide based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: A case study on the Ta2O5-Ta system,” Phys. Chem. Chem. Phys., vol. 17, no. 19, pp. 12849-12856, April 2015.
[23] M. K. Hota, M. N. Hedhili, N. Wehbe, M. A. McLachlan, and H. N. Alshareef, “Multistate Resistive Switching Memory for Synaptic Memory Applications,” Adv. Mater. Interfaces, vol. 3, no. 18, Art. no. 1600192, July 2016.
[24] M. K. Hota, D. H. Nagaraju, M. N. Hedhili, and H. N. Alshareef, “Electroforming free resistive switching memory in two-dimensional VOx nanosheets,” Appl. Phys. Lett., vol. 107, no. 16, Art. no. 163106, October 2015.
[25] S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, and S. Jeon, “Resistive switching characteristics of solution-processed transparent TiOx for nonvolatile memory application,” J. Electrochem. Soc., vol. 157, no. 11, pp. 1042-1045, September 2010.
[26] E. W. Lim and R. Ismail, “Conduction mechanism of valence change resistive switching memory: A survey,” Electronics, vol. 4, no. 3, pp. 586-613, September 2015).
[27] A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev., vol. 97, no. 6, pp. 1538-1544, March 1955.
[28] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano, vol. 5, no. 1, pp. 26-41, 2011.
[29] R. Waser and M. Aono, “Nanoionics based resistive switching memories,” Nat. Materials, vol. 6, pp. 833-839, November 2007.
[30] J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. M. Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett., vol. 97, no. 23, Art. no. 232102, December 2010.
[31] S. K. Hong, J. E. Kim, S. O. Kim, and B. J. Cho, “Analysis on switching mechanism of graphene oxide resistive memory device,” J. Appl. Phys., vol. 110, no. 4, Art. no. 044506, August 2011.
[32] D. Kumar, U. Chand, L. W. Siang, and T. Y Tseng, “High-Performance TiN/Al2O3/ZnO/Al2O3/TiN Flexible RRAM Device With High Bending Condition,” IEEE Trans. Electron Devices, vol. 67, no. 2, pp. 493-498, February 2020.
CHAPTER 4
[1] K. Moon, M. Kwak, J. Park, D. Lee, H. Hwang, “Improved Conductance Linearity and Conductance Ratio of 1T2R Synapse Device for Neuromorphic Systems,” IEEE Elect. Dev. Lett., vol. 38, no. 8, August 2017.
[2] T. Y. Wang, Z. Y. He, H. Liu, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, P. Zhou, D. W. Zhang, “Flexible Electronic Synapses for Face Recognition Application with Multimodulated Conductance States,” ACS Appl. Mater. Interfaces, vol. 10, no. 43, pp. 37345-37352, October 2018.
[3] S. Chandrasekaran, F. M. Simanjuntak, D. Panda, T. Y. Tseng, “Enhanced Synaptic Linearity in ZnO-Based Invisible Memristive Synapse by Introducing Double Pulsing Scheme” IEEE Trans. Elect. Dev., vol. 66, no. 11, pp. 4722-4726, September 2019.
[4] Y. H. Lin, C. H. Wang, M. H. Lee, D. Y. Lee, Y. Y. Lin, F.M. Lee, H. L. Lung, K. C. Wang, T. Y. Tseng, C. Y. Lu, “Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing,” IEEE Trans. Elec. Dev, vol 66, no. 3, pp. 1289-1295, March 2019.
[5] P. Pal, S. Thunder, M. J. Tsai, P. T. Huang, Y. H. Wang, “Benchmarking the Performance of Heterogeneous Stacked RRAM with CFETSRAM and MRAM for Deep Neural Network Application Amidst Variation and Noise,” International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), May 2021.
[6] M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo, “Physical aspects of low power synapses based on phase change memory devices,” J. Appl. Phys., vol. 112, Art. no. 054904, September 2012.
[7] Y. Kaneko, Y. Nishitani, M. Ueda, “Ferroelectric artificial synapses for recognition of a multishaded image” IEEE Trans. Elect. Dev., vol. 61, no. 8, pp. 2827–2833, August 2014.
[8] D. Ielmini, H. S. P. Wong, “In-Memory Computing with Resistive Switching Devices,” Nat. Electron., vol. 1, pp. 333-343, June 2018.
[9] S. Samanta, X. Gong, P. Zhang, K. Han, X. Fong, “Bipolar resistive switching and synaptic characteristics modulation at sub-mA current level using novel Ni/SiOx/W cross-point structure,” J. of Alloys and Compounds, vol. 805, pp. 915-923, October 2019.
[10] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C. Gamrat, W. S. Zhao, J. O. Klein, S. Galdin-Retailleau, D. Querlioz, “Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 2, pp. 166–174, April 2015.
[11] G. Vescio, G. Martín, A. Crespo-Yepes, S. Claramunt, D. Alonso, J. Lopez-Vidrier, S. Estrade, M. Porti, R. Rodríguez, F. Peiro, A. Cornet, A. Cirera, M. Nafría, “Low-Power, High-Performance, Non-volatile Inkjet-Printed HfO2 Based Resistive Random Access Memory: From Device to Nanoscale Characterization,” ACS Appl. Mater. Interfaces, vol. 11, no. 26, pp. 23659-23666, June 2019.
[12] P. Pal, Y. H. Wang, “Interconversion of complementary resistive switching from graphene oxide based bipolar multilevel resistive switching device,” Appl. Phys. Lett., vol. 117, Art no. 054101, August 2020.
[13] J. Woo, A. Padovani, K. Moon, M. Kwak, L. Larcher, H. Hwang, “Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications,” IEEE Elect. Dev. Lett., vol. 38, no. 9, pp. 1220-1223, September 2017.
[14] D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat, G. Ghibaudo, B. DeSalvo, L. Perniola, “HfO2-based OxRAM devices as synapses for convolutional neural networks,” IEEE Trans. Electron Devices, vol. 62, no. 8, pp. 2494–2501, August 2015.
[15] W. Banerjee, S. H. Kim, S. Lee, S. Lee, D. Lee, and H. Hwang, “Deep Insight into Steep-Slope Threshold Switching with Record Selectivity (> 4 × 1010) Controlled by Metal-Ion Movement through Vacancy-Induced-Percolation Path: Quantum-Level Control of Hybrid-Filament,” Adv. Funct. Mater., Art. no. 2104054, June 2021.
[16] G. Sassine, C. Nail, P. Blaise, B. Sklenard, M. Bernard, R. Gassilloud, A. Marty, M. Veillerot, C. Vallée, E. Nowak, and G. Molas, “Hybrid-RRAM toward Next Generation of Nonvolatile Memory: Coupling of Oxygen Vacancies and Metal Ions,” Adv. Electron. Mater., Art. no. 1800658, November 2018.
[17] W. Banerjee, S. H. Kim, S. Lee, D. Lee, H. Hwang, “An Efficient Approach Based on Tuned Nanoionics to Maximize Memory Characteristics in Ag-Based Devices,” Adv. Electron. Mater., vol. 7, Art. no. 2100022, March 2021.
[18] G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre, C. Licitra, B. D. Salvo, L. Perniola, “Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances,” IEEE International Electron Device Meeting (IEDM), December 2014, vol. 138, pp. 139–139.
[19] A. Padovani, J. Woo, H. Hwang, L. Larcher, “Understanding and Optimization of Pulsed SET Operation in HfOx-Based RRAM Devices for Neuromorphic Computing Applications,” IEEE Elect. Dev. Lett., vol. 39, no. 5, pp. 672-675, April 2018.
[20] W. Banerjee, and H. Hwang, “Quantized Conduction Device with 6-Bit Storage Based on Electrically Controllable Break Junctions,” Adv. Electron. Mater., Art. no.1900744, September 2019.
[21] K. Moon, S. Lim, J. Park, C. Sung, S. Oh, J. Woo, J. Lee, and H. Hwang, “RRAM-based synapse devices for neuromorphic systems,” Faraday Discuss., vol. 213, pp. 421-451, January 2019.
[22] S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, and T. Prodromakis, “Multibit memory operation of metal-oxide bi-layer memristors,” Scientific Reports, vol. 7, Art. no. 17532, pp. 1–7 December 2017.
[23] J. Zhao, M. Zhang, S. Wan, Z. Yang, C. S. Hwang, “Highly Flexible Resistive Switching Memory Based on the Electronic Switching Mechanism in the Al/TiO2/Al/Polyimide Structure,” ACS Appl. Mater. Interfaces, vol. 10, no. 2, pp. 1828-1835, January 2018.
[24] S. Samanta, Z. Panpan, K. Han, G. Xiao, S. Chakraborty, Y. Li, X. Fong, “Impact of Ti Interfacial Layer on Resistive Switching Characteristics at Sub-µA Current Level in SiOx-Based Flexible Cross-Point RRAM,” 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), August 2019.
[25] J. Shang, W. H. Xue, Z. H. Ji, G. Liu, X. H. Niu, X. H. Yi, L. Pan, Q. F. Zhan, X. L. Xu, R. W. Li, “Highly Flexible Resistive Switching Memory Based on Amorphous-Nanocrystalline Hafnium Oxide Films,” Nanoscale, vol. 9, no. 21, pp. 7037-7046, March 2017.
[26] Y. Ji, B. Cho, S. Song, T. W. Kim, M. Choe, Y. H. Kahng, T. Lee, “Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate,” Adv. Mater., vol. 22, pp. 3071-3075, July 2010.
[27] S. Kim, J. H. Son, S. H. Lee, B. K. You, K. I. Park, H. K. Lee, M. Byun, K. J. Lee, “Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser LiftOff,” Adv. Mater., vol. 26, pp. 7480-7487, September 2014.
[28] T. Y. Wang, J. L. Meng, Q. X. Li, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, D. W. Zhang, “Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique,” J. of Mat. Sc. & Tech., vol. 60, pp. 21–26, January 2021.
[29] J. Meena, S. Sze, U. Chand, T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanosc. Res. Lett., vol. 9, no. 526, pp. 526-558, September 2014.
[30] A. D. Paul, S. Biswas, P. Das, H. J. Edwards, V. R. Dhanak, R. Mahapatra, “Effect of Aluminum Doping on Performance of HfOx-Based Flexible Resistive Memory Devices,” IEEE Trans. on Elect. Dev., vol 67, no. 10, pp. 4222-4227, October 2020.
[31] W. Banerjee, “Challenges and Applications of Emerging Nonvolatile Memory Devices,” Electronics, vol. 9, no. 6, Art. no. 1029, pp. 1–24, June 2020.
[32] X. L. Hong, D. J. Loy, P.A. Dananjaya, F. Tan, C. M. Ng, and W. N. “Lew, Oxide-based RRAM materials for neuromorphic computing,” J. Material Science, vol. 53, pp. 8720-8746, February 2018.
[33] W. Banerjee, Q. Liu, H. Lv, S. Long, and M. Liu, “Electronic imitation of behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor devices,” Nanoscale, vol. 9, pp. 14442–14450, September 2017.
[34] D. Ielmini, “Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks,” Microelectronic Engineering, vol. 190, pp. 44–53, January 2018.
[35] S. Thunder, P. Pal, Y. H. Wang, P. T. Huang, “Ultra Low Power 3D-Embedded Convolutional Neural Network Cube Based on α-IGZO Nanosheet and Bi-Layer Resistive Memory,” 2021 International Conference on IC Design and Technology (ICICDT), 2021, IEEE, DOI: 10.1109/ICICDT51558.2021.9626489
[36] D. Kuzum, S. Yu, H. S. P. Wong, “Synaptic electronics: Materials, devices and applications” Nanotechnology, vol. 24, no. 38, pp. 382001-382022, September 2013.
[37] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” IEDM Tech. Dig., pp. 587–590, 2004.
[38] Z. Li, B. Tian, K. H. Xue, B. Wang, M. Xu, H. Lu, H. Sun, X. Miao, “Coexistence of Digital and Analog Resistive Switching With Low Operation Voltage in Oxygen-Gradient HfOx Memristors,” IEEE Elect. Dev. Lett., vol. 40, no. 7, pp. 1068-1071, July 2019.
[39] S. Z. Rahaman, Y. D. Lin, H. Y. Lee, Y. S. Chen, P. S. Chen, W. S. Chen, C. H. Hsu, K. H. Tsai, M. J. Tsai, and P. H. Wang, “The Role of Ti Buffer Layer Thickness on the Resistive Switching Properties of Hafnium Oxide-Based Resistive Switching Memories,” Langmuir, vol. 33, no. 19, pp. 4654-4665, April 2017.
[40] B. Attarimashalkoubeh, A. Prakash, S. Lee, J. Song, J. Woo, S. H. Misha, N. Tamanna, and H. Hwang, “Effects of Ti Buffer Layer on Retention and Electrical Characteristics of Cu-Based Conductive-Bridge Random Access Memory (CBRAM),” ECS Solid State Letters, vol. 3, no. 10, pp. 120-122, July 2014.
[41] S. Mazumder, P. Pal, T. J. Tsai, P. C. Lin, Y. H. Wang, “A low program voltage enabled flash like AlGaN/GaN stack layered MIS-HEMTs using trap assisted technique,” ECS J. Solid State Sci. Technol., vol. 10, no. 5, Art. no. 055019, pp. 1–7, May 2021.
[42] H. H. Le, W. C. Hong, J. W. Du, T. H. Lin, Y. X. Hong, I. H. Chen, W. J. Lee, N. Y. Chan, D. D. Lu, “Ultralow Power Neuromorphic Accelerator for Deep Learning Using Ni/HfO2/TiN Resistive Random Access Memory,” IEEE Electron Devices Technology and Manufacturing Conference (EDTM), vol. 55, 2020.
[43] A. Gumyusenge, X. Luo, Z. Ke, D. T. Tran, J. Mei, “Polyimide Based High-Temperature Plastic Electronics,” ACS Materials Lett., vol. 1, no. 1, pp. 154-157, June 2019.
[44] W. C. Peng, Y. C. Chen, J. L. He, S. L. Ou, R. H. Horng, D. S. Wuu, “Tunability of p- and n-channel TiOx thin film transistors,” Sci. Rep., vol. 8, Art. no. 9255, June 2018, pp. 1–11.
[45] T. K. Sham, M. S. Lazarus, “X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces,” Chem. Phys. Lett., vol. 68, no. 2-3, pp. 426–432, December 1979.
[46] E. O. Filatova, A. S. Konashuk, S. S. Sakhonenkov, A. U. Gaisin, N. M. Kolomiiets, V. V. Afanas’ev, H. F. W. Dekkers, “Mechanisms of TiN Effective Workfunction Tuning at Interfaces with HfO2 and SiO2,” J. Phys. Chem. C, vol. 124, no. 28, pp. 15547-15557, June 2020.
[47] W. Zhang, D. Zhou, N. Sun, J. Wang, S. Li, “Effect of Bias Voltage on Substrate for the Structure and Electrical Properties of Y:HfO2 Thin Films Deposited by Reactive Magnetron Co-Sputtering,” Adv. Electron. Mater., Art. no. 2100488, July 2021.
[48] H. Hernandez-Arriaga, E. Lopez-Luna, E. Martınez-Guerra, M. M. Turrubiartes, A. G. Rodrıguez, M. A. Vidal, “Growth of HfO2/TiO2 nanolaminates by atomic layer deposition and HfO2-TiO2 by atomic partial layer deposition,” J. Appl. Phys., vol. 121, Art. no. 064302, February 2017.
[49] D. J. Wouters, R. Waser, M. Wuttig, “Phase-Change and Redox-Based Resistive Switching Memories,” Proceedings of the IEEE, vol. 103, No. 8, pp. 1274-1288, August 2015.
50] S. M. Sze,; K. K. Ng, “Physics of Semiconductor Devices,” Third Ed. 2006.
[51. S. Monaghan, P. K. Hurley, K. Cherkaoui, M. A. Negara, A. Schenk, “Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures,” Solid-State Electronics, vol. 53, no. 4, pp. 438–444, April 2009.
[52] J. H. Yoon, S. J. Song, I. H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park, C. S. Hwang, “Highly Uniform, Electroforming-Free, and Self-Rectifying Resistive Memory in the Pt/Ta2O5/HfO2-x/TiN Structure,” Adv. Funct. Mater., vol. 24, Art. no. 5086, May 2014.
[53] Y. Wei, Q. Xu, Z. Wang, Z. Liu, F. Pan, Q Zhang, J. Wang, “Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition,” Journal of Alloys and Compounds, vol. 735, 1422-1426, February 2018.
[54] Y. Chen, L. Li, X. Yin, A. Yerramilli, Y. Shen, Y. Song, W. Bian, N. Li, Z. Zhao, W. Qu, N. D. Theodore, T. L. Alford, “Resistive Switching Characteristics of Flexible TiO2 Thin Film Fabricated by Deep Ultraviolet Photochemical Solution Method,” IEEE Elect. Dev. Lett., vol. 38, no. 11, pp. 1528-1531, November 2017.
[55] P. T. Liu, Y. S. Fan, C. C. Chen, “Improvement of Resistive Switching Uniformity for Al–Zn–Sn–O-Based Memory Device With Inserting HfO2 Layer,” IEEE Elect. Dev. Lett., vol. 35, no. 12, pp. 1233-1235, December 2014.
[56] R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei, J. Wang, L. Zhang, L. Q. Zhu, “Role of Oxygen Vacancies at the TiO2/HfO2 Interface in Flexible Oxide-Based Resistive Switching Memory,” Adv. Electron. Mater., vol. 5, Art. no. 1800833, pp. 1–7, April 2019.
CHAPTER 5
[1] K. Moon, M. Kwak, J. Park, D. Lee, and H. Hwang, “Improved Conductance Linearity and Conductance Ratio of 1T2R Synapse Device for Neuromorphic Systems”, IEEE Electron Device Letters, vol. 38, no. 8, pp. 1023 – 1026, Aug. 2017.
[2] J. Woo, A. Padovani, K. Moon, M. Kwak, L. Larcher, and H. Hwang “Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications”, IEEE Electron Device Letters, vol. 38, no. 9, pp. 1220 – 1223, Sept. 2017.
[3] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Proc. IEEE, vol. 106, no. 2, pp. 260–285, Feb. 2018.
[4] S. Patel, P. Canoza, & S. Salahuddin, “Logically synthesized and hardware-accelerated restricted Boltzmann machines for combinatorial optimization and integer factorization,” Nat Electron, vol. 5, pp. 92–101, February 2022.
[5] M. Riesenhuber, & T. Poggio, “Hierarchical models of object recognition in cortex” Nature Neuroscience, vol. 2, no 11, July 2003.
[6] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, “Short-term plasticity and long-term potentiation mimicked in single inorganic synapses,” Nature Mater., vol. 10, pp. 591–595, Aug. 2011.
[7] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, & G. W. Burr, “Equivalent-accuracy accelerated neural-network training using analogue memory,” Nature, vol. 558, pp. 60–67, June 2018.
[8] S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, J. A. Rogers, “Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin” Science, Vol 344, Issue 6179, pp. 70-74, Apr 2014.
[5] Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, J. A. Rogers, “Soft Microfluidic Assemblies Of Sensors, Circuits, And Radios For The Skin”, Science, 4 Apr 2014, Vol 344, Issue 6179, Pp. 70-74.
[9] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin , C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams, Q. Xia and J. J. Yang, “Fully memristive neural networks for pattern classification with unsupervised learning”, Nat. Elect., Vol 1, pp. 137–145, Feb 2018.
[10] C. Mead, “Neuromorphic electronic systems,” Proc. IEEE, vol. 78, no. 10, pp. 1629–1636, Oct. 1990.
[11] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. L. Gallo, K. Moon, J. Woo, H. Hwang & Y. Leblebici, “Neuromorphic computing using non-volatile memory,” Adv. Phys., X, vol. 2, no. 1, pp. 89–124, Nov. 2016.
[12] P. Pal, S. Mazumder, C-W Huang, D-D Lu, Y-H Wang, “Impact of the Barrier Layer on the High Thermal and Mechanical Stability of a Flexible Resistive Memory in a Neural Network Application, ACS Appl. Elect. Mat. 2022.
[13] D. Ielmini, H.-S. P. Wong, ‘In-Memory Computing with Resistive Switching Devices’, Nat. Electron., 1, pp. 333-343, 2018.
[14] R. Waser and M. Aono, “Nanoionics based resistive switching memories,” Nat. Mater. 6, 833, 2007.
[15] P. Lin, C. Li, Z. Wang, Y. Li, H. Jiang, W. Song, M. Rao, Y. Zhuo, N. K. Upadhyay, M. Barnell, Q. Wu, J. J. Yang and Q. Xia “Three-dimensional memristor circuits as complex neural networks,” Nature Electron., vol. 3, no. 4, pp. 225–232, Apr. 2020.
[16] E. Linn, R. Rosezin, C. Kugeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nat. Mater. 9(5), pp 403, 2010.
[17] G. Wang, A. C. Lauchner, J. Lin, D. Natelson, K. V. Palem, and J. M. Tour, “High performance and low-power rewritable SiOx 1-kbit one diode-one resistor crossbar memory array,” Adv. Mater. 25, 34, pp. 4789, 2013.
[18] X. P. Wang, Z. Fang, X. Li, B. Chen, B. Gao, J. F. Kang, Z. X. Chen, A. Kamath, N. S. Shen, N. Singh, G. Q. Lo, and D. L. Kwong, “Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nanopillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation,” in Technical Digest-International Electron Devices Meeting (IEDM), Vol. 6, pp. 493, 2012.
[19] P. Pal and Y-H Wang, "Interconversion of complementary resistive switching from graphene oxide based bipolar multilevel resistive switching device", Applied Physics Letters, 117, 054101, 2020.
[20] D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: Materials, devices and applications,” Nanotechnology, vol. 24, no. 38, pp. 382001, 2013.
[21] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity,” in IEDM Tech. Dig., Baltimore, MD, USA, pp. 1–4, Dec. 2009.
[22] Y. Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. S. Kar, D. J. Wouters, G. Groeseneken, J. A. Kittl, M. Jurczak, and L. Altimime, “Balancing SET/RESET pulse for> 1010 endurance in HfO2/Hf 1T1R bipolar RRAM,” IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3243–3249, Dec. 2012.
[23] A. D. Paul, S. Biswas, P. Das, H. J. Edwards, V. R. Dhanak, and R. Mahapatra, “Effect of Aluminum Doping on Performance of HfOx-Based Flexible Resistive Memory Devices”, IEEE Trans. on Elect. Dev., Vol. 67, No. 10, pp. 4222-4227, 2020.
[24] D. T. Wang Y. W. Dai, J. Xu, L. Chen, Q. Q. Sun, P. Zhou, P. F. Wang, S. J. Ding, and D. W. Zhang., “Resistive switching and synaptic behaviors of TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 878–881, Jul. 2016.
[25] T. Tan, Y. Du, A. Cao, Y. Sun, G. Zha, H. Lei, X. Zheng, “The resistive switching characteristics of Ni-doped HfOx film and its application as a synapse,” J. Alloys Compounds, vol. 766, pp. 918–924, Oct. 2018.
[26] S. Roy, G. Niu, Q. Wang, Y. Wang, Y. Zhang, H. Wu, S. Zhai, P. Shi, S. Song, Z. Song, Z. G. Ye, C. Wenger, T. Schroeder, Y. H. Xie, X. Meng, W. Luo, and W. Ren, “Toward a Reliable Synaptic Simulation Using Al-Doped HfO2 RRAM”, ACS Appl. Mater. Interfaces, 12, pp. 10648-10656, 2020.
[27] S. Samanta, K. Han, S. Das, and X. Gong, “Improvement in Threshold Switching Performance Using Al2O3 Interfacial Layer in Ag/Al2O3/SiOx/W Cross-Point Platform”, IEEE Electron Device Letters, Vol. 41, No. 6, pp. 924–927, June 2020.
[28] T Hasegawa, K Terabe, T Tsuruoka and M Aono, “Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von-Neumann Computers”, Adv. Mater., 24, pp. 252, 2012.
[29] Y. Shi, C. Pan, V. Chen, N. Raghavan, K. L. Pey, F. M. Puglisi, E. Pop, H.-S. P. Wong, M. Lanza, “Coexistence of volatile and non¬volatile resistive switching in 2D h¬BN based electronic synapses”, 2017 IEEE IEDM, pp. 119–122, 2017.
[30] A Bricalli, E Ambrosi, M Laudato, M Maestro, R Rodriguez and D Ielmini, “Resistive switching device technology based on silicon oxide for improved on-off ratio part II: select devices”, IEEE Trans. Electron Devices 65, pp. 122–128, 2018.
[31] M. K. Rahmani, B-D Yang, H. W. Kim, H. Kim and M. H. Kang, “Coexistence of volatile and non-volatile resistive switching in Ni/SiO2/Pt memristor device controlled from different current compliances”, Semicond. Sci. Technol. 36, 095031, 2021.
[32] S. Munjal and N. Khare, “Compliance current controlled volatile and nonvolatile memory in Ag/CoFe2O4/Pt resistive switching device”, Nanotechnology, 32, 185204 (8pp), 2021.
[33] P. Pal, S. Thunder, M. -J. Tsai, P. -T. Huang and Y. H. Wang, "Benchmarking the Performance of Heterogeneous Stacked RRAM with CFETSRAM and MRAM for Deep Neural Network Application Amidst Variation and Noise," 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 1-2, 2021, doi: 10.1109/VLSI-TSA51926.2021.9440130.
[34] S. Mazumder, P. Pal, T. J. Tsai, P. C. Lin and Y. H. Wang, “A low program voltage enabled flash like AlGaN/GaN stack layered MIS-HEMTs using trap assisted technique”, ECS J. Solid State Sci. Technol., 10, pp. 1–7, 2021.
[35] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79, no. 8, pp. 2554–2558, 1982.
[36] E. O. Filatova, A. S. Konashuk, S. S. Sakhonenkov, A. U.Gaisin, N. M. Kolomiiets, V. V. Afanas’ev, H. F. W. Dekkers, “Mechanisms of TiN Effective Work function Tuning at Interfaces with HfO2 and SiO2”, J. Phys. Chem. C, 124, 15547-15557.
[37] W. Zhang, D. Zhou, N. Sun, J. Wang, S. Li, “Effect of Bias Voltage on Substrate for the Structure and Electrical Properties of Y:HfO2 Thin Films Deposited by Reactive Magnetron Co-Sputtering”, Adv. Electron. Mater., Art. No. 2100488, 2021.
[38] J. Yin, F. Zeng, Q. Wan, Y. Sun, Y. Hu, J. Liu, G. Li, and F. Pan, “Self modulating interfacial cation migration induced threshold switching in bilayer oxide memristive device,” J. Phys. Chem. C, vol. 123, no. 1, pp. 878–885, Jan. 2019.
[39] Y-J Li, H-Q Wu, B. Gao, Q-L Hua, Z. Zhang, W-R Zhang, and H. Qian, “Impact of variations of threshold voltage and hold voltage of threshold switching selectors in 1S1R crossbar array” Chin. Phys. B, Vol. 27, No. 11, pp. 118502-118505, 2018.
[40] W. Wang, M. Laudato, E. Ambrosi, A. Bricalli, E. Covi, Y-H Lin, and D. Ielmini, “Volatile Resistive Switching Memory Based on Ag Ion Drift/Diffusion Part I: Numerical Modeling”, IEEE Transactions on Electron Devices, Vol. 66, no. 9, September 2019.
[41] A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez, and D. Ielmini, “SiOx based resistive switching memory (RRAM) for crossbar storage/select elements with high on/off ratio,” in IEDM Tech. Dig., Dec. 2016, pp. 4.3.1–4.3.4.
[42] X. Ding, X. Wang, Y. Feng, W. Shen, and L. Liu, “Low operation current of Si/HfO2 double layers based RRAM device with insertion of Si film”, Japanese Journal of Applied Physics, vol. 59, no. SGGB16, 2020.
[43] J. Ran, D. Xianghao, and H. Zuyin, “Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2–x/Pt memory” J. Semicond., Vol. 37, No. 8, Art. No. 084006, 2016.
CHAPTER 6
[1] K. Moon, M. Kwak, J. Park, D. Lee, H. Hwang, “Improved Conductance Linearity and Conductance Ratio of 1T2R Synapse Device for Neuromorphic Systems,” IEEE Elect. Dev. Lett., vol. 38, no. 8, pp. 1023–1026, August 2017.
[2] S. Patel, P. Canoza, & S. Salahuddin, “Logically synthesized and hardware-accelerated restricted Boltzmann machines for combinatorial optimization and integer factorization,” Nat Electron, vol. 5, pp. 92–101, February 2022.
[3] M. Riesenhuber, & T. Poggio, “Hierarchical models of object recognition in cortex” Nature Neuroscience, vol. 2, no 11, July 2003.
[4] T. Y. Wang, Z. Y. He, H. Liu, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, P. Zhou, D. W. Zhang, “Flexible Electronic Synapses for Face Recognition Application with Multimodulated Conductance States,” ACS Appl. Mater. Interfaces, vol. 10, no. 43, pp. 37345-37352, October 2018.
[5] S. Chandrasekaran, F. M. Simanjuntak, D. Panda, T. Y. Tseng, “Enhanced Synaptic Linearity in ZnO-Based Invisible Memristive Synapse by Introducing Double Pulsing Scheme,” IEEE Trans. Elect. Dev., vol. 66, no. 11, pp. 4722-4726 November 2019.
[6] Y. H. Lin, C. H. Wang, M. H. Lee, D. Y. Lee, Y. Y. Lin, F.M. Lee, H. L. Lung, K. C. Wang, T. Y. Tseng, C. Y. Lu, “Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing,” IEEE Trans. Elec. Dev., March 2019, vol. 66, no. 3, pp. 1289-1295, March 2019.
[7] P. Pal, S. Thunder, M. J. Tsai, P. T. Huang, Y. H. Wang, “Benchmarking the Performance of Heterogeneous Stacked RRAM with CFETSRAM and MRAM for Deep Neural Network Application Amidst Variation and Noise,” International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 1–2, May 2021, doi: 10.1109/VLSI-TSA51926.2021.9440130.
[8] M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo, “Physical aspects of low power synapses based on phase change memory devices,” J. Appl. Phys., vol. 112, Art. No. 054904, September 2012.
[9] S. Samanta, X. Gong, P. Zhang, K. Han, X. Fong, “Bipolar resistive switching and synaptic characteristics modulation at sub-µA current level using novel Ni/SiOx/W cross-point structure,” J. of Alloys and Compounds., vol. 805, pp. 915-923, October 2019.
[10] D. Ielmini, H. S. P. Wong, “In-Memory Computing with Resistive Switching Devices,” Nat. Electron., vol. 1, pp. 333-343, June 2018.
[11] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C. Gamrat, W. S. Zhao, J. O. Klein, S. Galdin-Retailleau, D. Querlioz, “Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 2, pp. 166–174, April 2015.
[12] P. Pal, Y. H. Wang, “Interconversion of complementary resistive switching from graphene oxide based bipolar multilevel resistive switching device,” Appl. Phys. Lett., vol. 117, Art. no. 054101, August 2020.
[13] J. Woo, A. Padovani, K. Moon, M. Kwak, L. Larcher, H. Hwang, “Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications,” IEEE Elect. Dev. Lett., vol. 38, no. 9, pp. 1220-1223, July 2017.
[14] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, & G. W. Burr, “Equivalent-accuracy accelerated neural-network training using analogue memory,” Nature, vol. 558, pp. 60–67, June 2018.
[15] S. De, H. H. Le, B. H. Qiu, M. A. Baig, P. J. Sung, C. J. Su, Y. J. Lee and D. D. Lu, "Robust Binary Neural Network Operation From 233 K to 398 K via Gate Stack and Bias Optimization of Ferroelectric FinFET Synapses," in IEEE Electron Device Letters, vol. 42, no. 8, pp. 1144-1147, Aug. 2021.
[16] G. Sassine, C. Nail, P. Blaise, B. Sklenard, M. Bernard, R. Gassilloud, A. Marty, M. Veillerot, C. Vallée, E. Nowak, and G. Molas, “Hybrid-RRAM toward Next Generation of Nonvolatile Memory: Coupling of Oxygen Vacancies and Metal Ions,” Adv. Electron. Mater., Art. no. 1800658, pp. 1–7, November 2018.
[17] A. Padovani, J. Woo, H. Hwang, L. Larcher, “Understanding and Optimization of Pulsed SET Operation in HfOx-Based RRAM Devices for Neuromorphic Computing Applications,” IEEE Elect. Dev. Lett., vol. 39, no. 5, pp. 672-675, April 2018.
[18] C. C. Chang, P. C. Chen, T. Chou, I. T. Wang, B. Hudec, C. C. Chang, C. M. Tsai, T. S. Chang, & T. H. Hou, (2018) “Mitigating Asymmetric Nonlinear Weight Update Effects in Hardware Neural Network Based on Analog Resistive Synapse,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 116–124, March 2018.
[19] J. Fu, Z. Liao, N. Gong, & J. Wang, “Mitigating Nonlinear Effect of Memristive Synaptic Device for Neuromorphic Computing” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9 , no. 2, June 2019.
[20] H. Kim, S. Hwang, J. Park, S. Yun, J. H. Lee & B. G. Park, “Spiking Neural Network Using Synaptic Transistors and Neuron Circuits for Pattern Recognition with Noisy Images,” IEEE Electron Device Letters, vol. 39, no. 4, February 2019.
[21] D. Ielmini, “Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks,” Microelectronic Engineering, vol. 190, pp. 44–53, April 2018.
[22] T. Ali, P. Polakowski, K. Kuhnel, M. Czernohorsky, T. Kampfe, M. Rudolph, B. Patzold, D. Lehninger, F. Muller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Muhle, K. Seidel, & J. Muller, “An MMultilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage,” 2019 IEEE International Electron Devices Meeting (IEDM). December 2019.
[23] S. De, D. D. Lu, H.-H. Le, S. Mazumder, Y. J. Lee, W. C. Tseng, B. H. Qiu, Md. A. Baig, P. J. Sung, C. J. Su, C. T. Wu, W. F. Wu, W. K Yeh, Y. H. Wang, "Ultra-low power robust 3bit/cell Hf0.5Zr0.5O2 ferroelectric finFET with high endurance for advanced computing-in-memory technology," in Proc. Symp. VLSI Technology, 2021, pp. 1 – 2, June 2021.
[24] D. D. Lu, S. De, M. A. Baig, B. H. Qiu, and Y. J. Lee, “Computationally Efficient Compact Model for Ferroelectric Field-Effect Transistors to Simulate the Online Training of Neural Networks,” Semicond. Sci. Technol. vol. 35, no. 9, Art. no. 95007, July 2020.
[25] S. Thunder, P. Pal, Y. H. Wang, P. T. Huang, “Ultra Low Power 3D-Embedded Convolutional Neural Network Cube Based on α-IGZO Nanosheet and Bi-Layer Resistive Memory,” 2021 International Conference on IC Design and Technology (ICICDT), December 2021, pp. 1–4, doi: 10.1109/ICICDT51558.2021.9626489.
[26] J. Shang, W. H. Xue, Z. H. Ji, G. Liu, X. H. Niu, X. H. Yi, L. Pan, Q. F. Zhan, X. L. Xu, R. W. Li, “Highly Flexible Resistive Switching Memory Based on Amorphous-Nanocrystalline Hafnium Oxide Films,” Nanoscale, vol. 9, no. 21, pp. 7037-7046, March 2017.
[27] S. Kim, J. H. Son, S. H. Lee, B. K. You, K. I. Park, H. K. Lee, M. Byun, K. J. Lee, “Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser Liftoffs,” Adv. Mater., vol. 26, pp. 7480-7487, September 2014.
[28] T. Y. Wang, J. L. Meng, Q. X. Li, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, D. W. Zhang, “Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique,” J. of Mat. Sc. & Tech., vol. 60, pp. 21–26, January 2021.
[29] J. Zhao, M. Zhang, S. Wan, Z. Yang, C. S. Hwang, “Highly Flexible Resistive Switching Memory Based on the Electronic Switching Mechanism in the Al/TiO2/Al/Polyimide Structure,” ACS Appl. Mater. Interfaces, vol. 10, no. 2, pp. 1828-1835, January 2018.
[30] J. Meena, S. Sze, U. Chand, T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanosc. Res. Lett., vol. 9, no. 526, pp. 526-558, September 2014.
[31] P. Pal, S. Mazumder, C. W. Huang, D. D. Lu, Y. H. Wang, “Impact of the Barrier Layer on the High Thermal and Mechanical Stability of a Flexible Resistive Memory in a Neural Network Application,” ACS Appl. Elect. Mat., vol. 4, no. 3, pp. 1072–1081, February 2022.
[32] D. Kuzum, S. Yu, H. S. P. Wong, “Synaptic electronics: Materials, devices and applications,” Nanotechnology, vol. 24, No. 38, pp. 382001-382022, September 2013.
[33] C. Ye, T. Deng, J. Zhang, L. Shen, P. He, W. Wei, and H. Wang, “Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory,” Semicond. Sci. Technol., vol. 31, Art. no. 105005, September 2016.
[34] R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei, J. Wang, L. Zhang, L. Q. Zhu, “Role of Oxygen Vacancies at the TiO2/HfO2 Interface in Flexible Oxide-Based Resistive Switching Memory,” Adv. Electron. Mater., vol. 5, pp. 1800833-1800839, April. 2019.
[35] S. Mazumder, P. Pal, T. J. Tsai, P. C. Lin, Y. H. Wang, “A low program voltage enabled flash like AlGaN/GaN stack layered MIS-HEMTs using trap assisted technique” ECS J. Solid State Sci. Technol., vol. 10, no. 5, Art. no. 105005, pp. 1–7, May 2021.
[36] A. Gumyusenge, X. Luo, Z. Ke, D. T. Tran, J. Mei, “Polyimide Based High-Temperature Plastic Electronics” ACS Materials Lett., vol. 1, no. 1, pp. 154-157, June 2019.
[37] W. C. Peng, Y. C. Chen, J. L. He, S. L. Ou, R. H. Horng, D. S. Wuu, “Tunability of p- and n-channel TiOx thin film transistors,” Sci. Rep., vol. 8, no. 9255, pp. 1-11, June 2018.
[38] D. J. Wouters, R. Waser, M. Wuttig, “Phase-Change and Redox-Based Resistive Switching Memories,” Proceedings of the IEEE, vol. 103, No. 8, pp. 1274-1288, August 2015.
[39] S. M. Sze, K. K. Ng, “Physics of Semiconductor Devices,” Third Ed., 2006.
[40] S. Monaghan, P. K. Hurley, K. Cherkaoui, M. A. Negara, A. Schenk, “Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures,” Solid-State Electronics, vol. 53, no. 4, pp. 438–444, April 2009.
[41] J. H. Yoon, S. J. Song, I. H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park, C. S. Hwang, “Highly Uniform, Electroforming-Free, and Self-Rectifying Resistive Memory in the Pt/Ta2O5/HfO2-x/TiN Structure,” Adv. Funct. Mater., vol 24, pp. 1–10, May 2014.
[42] Y. Wei, Q. Xu, Z. Wang, Z. Liu, F. Pan, Q. Zhang, J. Wang, “Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition,” Journal of Alloys and Compounds, vol. 735, pp. 1422-1426, February 2018.
[43] M. Ziegler, C. Wenger, E. Chicca, H. Kohlstedt, “Tutorial: Concepts for Closely Mimicking Biological Learning with Memristive Devices: Principles to Emulate Cellular Forms of Learning” J. Appl. Phys., vol. 124, Art. no. 152003, October 2018.
[44] P. Chen, X. Peng and S. Yu, "NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3067-3080, Dec. 2018.