| 研究生: |
邱子秦 Chiu, Tzu-Chin |
|---|---|
| 論文名稱: |
螢光偏極化研究: 乙醇,膽固醇及溫度效應對類乙醇體陰陽離子液胞雙層膜流動性之影響 Ethanol, Cholesterol, and Temperature Effects on Bilayers Membrane Fluidity of Ethosome-Like Catanionic Vesicles- Fluorescence Polarization Study |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 離子對雙親分子 、類乙醇體陰陽離子液胞 、雙層流動性 、螢光偏極化 、乙醇效應 、膽固醇效應 、溫度效應 |
| 外文關鍵詞: | ion-pair-amphiphiles, ethosome-like catanionic vesicles, vesicular membrane rigidity, fluorescence polarization, ethanol effect, cholesterol effect, temperature effect |
| 相關次數: | 點閱:121 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用四種離子對雙親分子為材料,分別為DeTMA-DS (decyltrimethylammonium-dodecylsulfate)、DeTMA-TS (decyltrimethylammonium-tetradecylsulfate) 、DTMA-DS (dodecyltrimethylammonium-dodecylsulfate) 和HTMA-DS (hexadecyltrimethylammonium-dodecylsulfate),以半自發製程製備穩定的類乙醇體陰陽離子液胞(ethosome-like catanionic vesicles)。並添加疏水性螢光探測分子DPH(1,6-diphenyl-1,3,5-hexatriene),運用螢光偏極化偵測,探討乙醇與膽固醇濃度、溫度對類乙醇體陰陽離子液胞雙層膜流動性的影響。
實驗結果顯示,在四個不同溫度下測量,固定膽固醇濃度下,乙醇濃度的增加,會造成雙層膜的流動性上升。推測可能的原因是,乙醇分子嵌入離子對雙親分子頭基,撐開離子對雙親分子之間的距離,使得雙層膜中碳氫鏈自由度增加,流動性提升。固定乙醇濃度下,膽固醇濃度增加,對DeTMA-DS與DeTMA-TS液胞系統,結果顯示雙層膜流動性減小;但對於DTMA-DS與HTMA-DS的液胞系統,雙層膜的流動性變化並不顯著。推測膽固醇在碳鏈較短的系統,由於膽固醇氫氧基產生的氫鍵作用力,以及膽固醇固環的限制,所以呈現膽固醇凝縮效應;而在碳鏈較長或對稱的系統,則又由於膽固醇尾端碳氫鏈干擾,膽固醇對雙層膜流動性的影響就不太顯著。在溫度效應部份,溫度上升對雙層膜流動性影響並不顯著。推測原因是,碳氫鏈一方面因為溫度的提升,流動性上升,但是另一方面,雙層膜因為產生指插現象,造成粒徑明顯下降,使得流動性減小,流動性隨溫度變化因而變得不顯著。
In this work, fluorescence polarization techniques were used to study the additives and temperature effects on the rigidity of vesicular bilayers membrane, which play crucial roles in determining drug encapsulation and release of vesicles. Four stable ethosome-like catanionic vesicles for the transdermal delivery of drug were fabricated by using four catanionic surfactants (or ion-pair amphiphiles, IPAs), different amount of ethanol, and various concentration of cholesterol in water solution through a simple semispontaneous process.
The experimental results showed that increasing concentration of ethanol did fluidize the bilayers rigidity under four different temperature. It was resulted from enlarging space between ion pair amphiphiles by ethanol inserting into headgroup. Bilayers rigidity of two vesicle systems increased with the increase of cholesterol concentration, while bilayer rigidity of the other two vesicle systems presented unapparent variation with the increase of cholesterol concentration. One explanation of the cholesterol ordering effects was restriction by both cholesterol hydrogen bonding and rigid ring. The other one of unobvious cholesterol effect was fluidization by cholesterol hydrocarbon tails besides.
With raising temperature, bilayers rigidity did not present obvious drop. On one hand, fluidity of hydrocarbon chains increased with raising temperature. On the other hand, it found that vesicles size of all four vesicle systems decreased with raising temperature., It would turn into interdigitated phase, and so that bilayers rigidity increase then. As a result, temperature effect on membrane fluidity became unobvious.
參考文獻
1. Lasic, D. D., The mechanism of vesicle formation. Biochemical Journal 1988, 256 (1), 1-11.
2. Jesorka, A.; Orwar, O., Liposomes: technologies and analytical applications. Annual Review of Analytical Chemistry 2008, 1, 801-32.
3. New, R. R. C. (Ed.), Liposomes: A Practical Approach.Oxford University Press: New york, 1990.
4. Rosoff, M. (Ed.), Vesicles. Marcel Dekker: New york, 1996.
5. 馮思慎; 陳炳宏, 微脂粒在藥物輸送的應用. 化工 2000, 47(3),68-84.
6. Ahmad, I.; Longenecker, M.; Samuel, J.; Allen, T. M., Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Research 1993, 53 (7), 1484-1488.
7. Lasic, D. D. (Ed.), Liposomes in Gene Delivery. CRC Press: New York,1997.
8. Valero, M.; Velázquez, M. M., Effect of the addition of water-soluble polymers on the interfacial properties of aerosol OT vesicles. Journal of Colloid and Interface Science 2004, 278 (2), 465-471.
9. Briz, J. I.; Velázquez, M. M., Effect of water-soluble polymers on the morphology of aerosol OT vesicles. Journal of Colloid and Interface Science 2002, 247 (2), 437-446.
10. Velázquez, M. M.; Valero, M.; Ortega, F.; González, J. B. R., Structure and size of spontaneously formed aggregates in aerosol OT/PEG mixtures: Effects of polymer size and composition. Journal of Colloid and Interface Science 2007, 316 (2), 762-770.
11. Velázquez, M. M.; Valero, M.; Ortega, F., Spontaneous vesicles modulated by polymers. Polymers 2011, 3 (3), 1255-1267.
12. Kaler, E. W. M., A. K.; Rodriguez, B. E.; Zasadzinski, A. N. , Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989, 245 (4924), 1371-1374.
13. 鍾依玲, 陰/陽離子液胞自發性形成之探討. 國立成功大學化學工程學系碩士論文 2002.
14. Tondre, C.; Caillet, C., Properties of the amphiphilic films in mixed. Adv. Colloid. Int. Sci. 2001, 93, 115-134.
15. Wu, K.-C.; Huang, Z.-L.; Yang, Y.-M.; Chang, C.-H.; Chou, T.-H., Enhancement of catansome formation by means of cosolvent effect: Semi-spontaneous preparation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 302 (1-3), 599-607.
16. 黃鉦琳, 帶電陰陽離子液胞的形成及其膠化之研究. 國立成功大學化學工程學系碩士論文 2007.
17. Yang, Y. M.; Wu, K. C.; Huang, Z. L.; Chang, C. H., On the stability of liposomes and catansomes in aqueous alcohol solutions. Langmuir 2008, 24, 1695-1700.
18. 柯政遠, 乙醇體及陰陽體的製備及其包覆釋放行為之探討. 國立成功大學化學工程學系碩士論文 2008.
19. Liu, Y.-S.; Wen, C.-F.; Yang, Y.-M., Development of ethosome-like catanionic vesicles for dermal drug delivery. Journal of the Taiwan Institute of Chemical Engineers 2012, 43 (6), 830-838.
20. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 2005, 4 (2), 145-160.
21. Elsayed, M. M.; Abdallah, O. Y.; Naggar, V. F.; Khalafallah, N. M., Lipid vesicles for skin delivery of drugs: reviewing three decades of research. International Journal of Pharmaceutics 2007, 332 (1-2), 1-16.
22. Cevc, G., Lipid vesicles and other colloids as drug carriers on the skin. Advanced Drug Delivery Reviews 2004, 56 (5), 675-711.
23. Cevc, G.; Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biocllimica et Biophysica Acta 1992, 1104, 226-232.
24. Touitou, E.; Dayana, N.; Bergelsonb, L.; Godina, B.; Eliaza, M., Ethosomes novel vesicular carriers for enhanced delivery. Journal of Controlled Release 2000, 65, 403-418.
25. Hargreaves, W. R.; Deamer, D. W., Liposomes from ionic, single-chain amphiphiles. Biochemistry 1978, 17 (18), 3759-3768.
26. Trommer, H.; Neubert, R., Overcoming the stratum corneum: The modulation of skin penetration. Skin Pharmacology and Physiology 2006, 19 (2), 106-121.
27. Israelachvili, J. N., Intermolecular and surface forces. 2nd ed., Academic Press: London, 1991.
28. Stokes, R. J.; Evans, D. F., Fundamentals of Interfacial Engineering. John Wiley & Sons: New york, 1997.
29. Fukuda, H.; Kawata, K.; Okuda, H., Bilayer-forming ion-pair amphiphiles from. J. Am. Chem. Soc. 1990, 112, 1635-1637.
30. Chien, C. L.; Yeh, S. J.; Yang, Y. M.; Chang, C. H., Formation and encapsulation of catanionic vesicles. J. Chin Colloid & Interface Soc. 2002, 24, 31-45.
31. Barry, J. A.; Gawrisch, K., Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry 1994, 33 (26), 8082-8088.
32. Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B. W.; Holopainen, J.; Karttunen, M., Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers. Biophysical Journal 2006, 90 (4), 1121-1135.
33. Petrache, H. I.; Zemb, T.; Belloni, L.; Parsegian, V. A., Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences 2006, 103 (21), 7982-7987.
34. McLaughlin, A.; Eng, W. K.; Vaio, G.; Wilson, T.; McLaughlin, S., Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. J. Membrane Biol. 1983, 76, 183-193.
35. Evans, E.; Needham, D., Physical properties of surfactant bilayer membranes thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J. Phys. Chem. 1987, 91, 4219-4228.
36. Grasso, D.; Subramaniam, K.; Butkus, M.; Strevett, K.; Bergendahl, J., A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology 2002, 1 (1), 17-38.
37. Sabın, J.; Prieto, G.; Ruso, J.; Hidalgo-Alvarez, R.; Sarmiento, F., Size and stability of liposomes: A possible role of hydration and osmotic forces. The European Physical Journal E 2006, 20 (4), 401-408.
38. Brown, M. F.; Thurmond, R. L.; Dodd, S. W.; Otten, D.; Beyer, K., Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. Journal of the American Chemical Society 2002, 124 (28), 8471-8484.
39. Walz, J. Y.; Ruckenstein, E., Comparison of the van der waals and undulation interactions between uncharged lipid bilayers. The Journal of Physical Chemistry B 1999, 103 (35), 7461-7468.
40. Wang, C.; Tang, S.; Huang, J.; Zhang, X.; Fu, H., Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems. Colloid & Polymer Science 2002, 280 (8), 770-774.
41. Huang, J. B.; Zhao, G. X., Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant. Colloid Polym Sci 1995, 273, 156-164.
42. Huang, J. B.; Zhu, B. Y.; Zhao, G. X.; Zhang, Z. Y., Vesicle formation of a catanionic surfactant mixture in ethanol solution. Langmuir 1997, 13, 5759-5761.
43. Huang, J. B.; Zhu, B. Y.; Mao, M.; He, P.; Wang, J.; He, X., Vesicle formation of 1-1 cationic and anionic surfactant mixtures in nonaqueous polar solvents. Colloid Polym Sci 1999, 277, 354-360.
44. Zhang, X. R.; Huang, J. B.; Mao, M.; Tang, S. H.; Zhu, B. Y., From precipitation to vesicles a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents. Colloid Polym Sci 2001, 279, 1245-1249.
45. Ramsch, R.; Cassel, S.; Rico-Lattes, I., Impact of solvent physical parameters on the aggregation process of catanionic amphiphiles. Langmuir 2009, 25 (12), 6733-8.
46. Sarma, N.; Borah, J. M.; Mahiuddin, S.; Gazi, H. A.; Guchhait, B.; Biswas, R., Influence of chain length of alcohols on Stokes' shift dynamics in catanionic vesicles. The Journal of Physical Chemistry. B 2011, 115 (29), 9040-9.
47. Yeh, S. J.; Yang, Y. M.; Chang, C. H., Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles. Langmuir 2005, 21, 6179-6184.
48. Bendas, E. R.; Tadros, M. I., Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 2007.
49. Yu, W. Y.; Yang, Y. M.; Chang, C. H., Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures. Langmuir 2005, 21, 6185-6193.
50. Toppozini, L.; Armstrong, C. L.; Barrett, M. A.; Zheng, S.; Luo, L.; Nanda, H.; Sakai, V. G.; Rheinstädter, M. C., Partitioning of ethanol into lipid membranes and its effect on fluidity and permeability as seen by x-ray and neutron scattering. Soft Matter 2012, 8 (47), 11839-11849.
51. Rowe, E. S.; Cutrera, T. A., Differential scanning calorimetric studies of ethanol interactions with distearoylphosphatidylcholine: transition to the interdigitated phase. Biochemistry 1990, 29 (45), 10398-10404.
52. Komatsu, H.; Rowe, E. S., Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine. Biochemistry 1991, 30 (9), 2463-2470.
53. Roth, L. G.; Chen, C. H., Thermodynamic elucidation of ethanol-induced interdigitation of hydrocarbon chains in phosphatidylcholine bilayer vesicles. The Journal of Physical Chemistry 1991, 95 (20), 7955-7959.
54. Slater, S. J.; Ho, C.; Taddeo, F. J.; Kelly, M. B.; Stubbs, C. D., Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: Effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry 1993, 32 (14), 3714-3721.
55. Zeng, J.; Smith, K. E.; Chong, P. L. G., Effects of alcohol-induced lipid interdigitation on proton permeability in L-a-dipalmitoylphosphatidylcholine vesicles. Biophysical Journal 1993, 65, 1404-1414.
56. Li, S.; Lin, H.; Wang, G.; Huang, C., Effects of alcohols on the phase transition temperatures of mixed-chain phosphatidylcholines. Biophysical Journal 1996, 70 (6), 2784.
57. Huang, C.; McIntosh, T., Probing the ethanol-induced chain interdigitations in gel-state bilayers of mixed-chain phosphatidylcholines. Biophysical Journal 1997, 72 (6), 2702.
58. Wachtel, E.; Borochov, N.; Bach, D.; Miller, I., The effect of ethanol on the structure of phosphatidylserine bilayers. Chemistry and Physics of Lipids 1998, 92 (2), 127-137.
59. Bach, D.; Borochov, N.; Wachtel, E., Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine–cholesterol bilayer membranes. Chemistry and Physics of Lipids 2002, 114 (2), 123-130.
60. Apel-Paz, M.; Doncel, G. F.; Vanderlick, T. K., Impact of membrane cholesterol content on the resistance of vesicles to surfactant attack. Langmuir 2005, 21 (22), 9843-9849.
61. Bhattacharya, S.; Haldar, S., The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochim. Biophys. Acta 1996, 1283, 21-30.
62. Bhattacharya, S.; Haldar, S., Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochim. Biophys. Acta 2000, 1467, 39-53.
63. Demetzos, C., Differential scanning calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal stability. Journal of Liposome Research 2008, 18 (3), 159-173.
64. Fournier, I.; Barwicz, J.; Auger, M.; Tancrède, P., The chain conformational order of ergosterol-or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: A FTIR study. Chemistry and Pysics of Lipids 2008, 151 (1), 41-50.
65. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. Biochimica et Biophysica Acta 2009, 1788 (2), 345-57.
66. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta 2010, 1798 (3), 376-88.
67. Mannock, D. A.; Lewis, R. N.; McMullen, T. P.; McElhaney, R. N., The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chemistry and Physics of Lipids 2010, 163 (6), 403-448.
68. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophysical Journal 2000, 79 (4), 2056-2065.
69. Halling, K. K.; Slotte, J. P., Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. Biochimica et Biophysica Acta 2004, 1664 (2), 161-71.
70. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophysical Journal 2006, 91 (9), 3327-40.
71. Bernsdorff, C.; Winter, R., Differential properties of the sterols cholesterol, ergosterol, β-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order. The Journal of Physical Chemistry B 2003, 107 (38), 10658-10664.
72. Subczynski, W. K.; Wisniewska, A.; Yin, J.-J.; Hyde, J. S.; Kusumi, A., Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 1994, 33 (24), 7670-7681.
73. Mainali, L.; Raguz, M.; Subczynski, W. K., Phases and domains in sphingomyelin–cholesterol membranes: structure and properties using EPR spin-labeling methods. European Biophysics Journal 2012, 41 (2), 147-159.
74. Tierney, K. J.; Block, D. E.; Longo, M. L., Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. Biophysical Journal 2005, 89 (4), 2481-2493.
75. Bhattacharya, S.; Haldar, S., Interactions between cholesterol and lipids in bilayer membranes. Biochim. Biophy, Acta 2000, 1467, 39-53.
76. de Meyer, F.; Smit, B., Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (10), 3654-8.
77. Severcan, F.; Baykal, U.; Suzer, S., FTIR studies of vitamin E-cholesterol-DPPC membrane interactions in CH2 region. Fresenius J. Anal. Chem. 1996, 355, 415-417.
78. Mannock, D. A.; Lee, M. Y.; Lewis, R. N.; McElhaney, R. N., Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta 2008, 1778 (10), 2191-202.
79. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2010, 1798 (3), 376-388.
80. Silva, C.; Aranda, F. J.; Ortiz, A.; Martinez, V.; Carvajal, M.; Teruel, J. A., Molecular aspects of the interaction between plants sterols and DPPC bilayers: An experimental and theoretical approach. Journal of Colloid and Interface Science 2011, 358 (1), 192-201.
81. Michl, J.; Thulstrup, E. W., Spectroscopy with polarized light: solute alignment by photoselection, in liquid cryst als, polymers, and membranes. VCH: 1986.
82. Valeur, B.; Berberan-Santos, M. N., Molecular fluorescence: principles and applications. 2012.
83. Vincent, M.; De Foresta, B.; Gallay, J.; Alfsen, A., Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents. Biochemistry 1982, 21 (4), 708-716.
84. Lakowicz, J. R., Principles of Forescence Spectroscopy. 3rd ed.; Springer: New york, 2006.
85. Lentz, B. R., Membrane “fluidity” as detected by diphenylhexatriene probes. Chemistry and Physics of Lipids 1989, 50 (3), 171-190.
86. Lentz, B. R., Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chemistry and Physics of Lipids 1993, 64 (1), 99-116.
87. Liu, Y.-S.; Wen, C.-F.; Yang, Y.-M., Cholesterol effects on the vesicular membrane rigidity and drug encapsulation efficiency of ethosome-like catanionic vesicles. Science of Advanced Materials 2014, 6 (5), 954-962.
88. 邱文昱, 陰陽離子液胞包覆油/水溶性藥物之行為探討. 國立成功大學化學工程學系碩士論文 2012.
89. Leser, M. E.; Wei, G.; Luisi, P. L.; Maestro, M., Application of reverse micelles for the extraction of proteins. Biochemical and Biophysical Research Communications 1986, 135 (2), 629-635.
90. Marcozzi, G.; Correa, N.; Luisi, P. L.; Caselli, M., Protein extraction by reverse micelles: A study of the factors affecting the forward and backward transfer of α‐chymotrypsin and its activity. Biotechnology and Bioengineering 1991, 38 (10), 1239-1246.
91. Alonso, J.; Llácer, C.; Vila, A.; Figueruelo, J.; Molina, F., Effect of the osmotic conditions on the value of ζ potential of DMPC multilamellar liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1995, 95 (1), 11-14.
92. Garcia-Manyes, S.; Oncins, G.; Sanz, F., Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophysical Journal 2005, 89(3), 1812-1826.
93. Harris R, A.; Burnett, R. ; Mcquilkin, S.; Mcclard, A.; Francis R, S., Effect of ethanol on membrane order: Fluorescence Studies. Annals New York Academy of Sciences 1987.
94. Kang, J. S.; Choi, C. M.;Yun, ii. Effect of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochimica et Biophysica 1996, 128,157-163.
95. Arshag, D.; Smith T. Membrane disordering of ethanol on cerebral microvessels of aged rats: A brief report. Neurobiology of Aging 1993, 14, 229-232.
96. Gilsanz, F.; Diez, E.; Tabera C. G.; Pozo A. M. Chronic ethanol abuse and membrane fluidity changes in liver disease. Drug and Alcohol Dependence 1991, 29, 237-243.
97. Bejanian M.; Alkana R.L.;Hungen, K.;Baxter, C. F.; Syapin, P. J. Temperature alters ethnaol-induced fluidization of C57 mouse brain membranes.Alcohol 1991, 8, 117-121.
98. Lee, W.-H.; Tang, Y.-L.;Chiu, T.-C.;Yang, Y.-M., Synthsis of ion pair amphiphiles and calorimetric study on gel to liquid-crystalline phase transition behavior of their bilayers. Journal of Chemical & Engineering Data 2015, 60, 1119-1125.
99. 林冠豪, 帶電的陰陽離子液胞之製備及物理穩定性研究. 成功大學化學工程學系碩士論文 2004, 1-86.
100. 林琪卿, 陰陽離子液胞的形成及其膠化之研究. 成功大學化學工程學系碩士論文 2005, 1-120.
101. Jones, M. N., The surface properties of phospholipid liposome systems and their characterisation. Advances in Colloid and Interface Science 1995, 54, 93-128.
102. 溫智芳, 經皮藥物傳輸用類乙醇體陰陽離子液胞之研發. 國立成功大學化學工程學系碩士論文 2013.
103. 葉如萍, 類乙醇體陰陽離子液胞的雙層膜特性與其包覆/釋放行為的關聯. 國立成功大學化學工程學系碩士論文 2013.
104. 劉育姍, 陰陽離子液胞包覆維他命E醋酸酯之行為探討. 國立成功大學化學工程學系碩士論文 2011.
105. 莊雲婷,類乙醇體陰陽離子液胞雙層膜之螢光偏極化研究. 國立成功大學化學工程學系碩士論文 2015