簡易檢索 / 詳目顯示

研究生: 吳鈞儒
Wu, Jyun-Ru
論文名稱: 高含量芴酮聚芴的合成與光電性質
Synthesis and optoelectronic properties of poly(fluorene-co-fluorenone)
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 交互共聚高分子芴酮高分子發光二極體
外文關鍵詞: fluorene, alternating copolymer, PLED
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以共軛高分子為主的高分子發光二極體(Polymer Light Emitting Diode, PLED) 已經被科學家廣泛的研究,藉由從陽極、陰極注入的電洞及電子在發光層中再結合,進而發出不同的光色,因此電荷的注入及傳遞速率之平衡對發光效率有非常大之影響。大部分PLED高分子電洞傳遞速率大於電子,所以可利用多層結構導入電子注入/傳遞層、摻混電子注入/傳遞分子,或是利用化學合成改變分子結構,來提升電子注入及傳遞的能力。
    本研究利用Suzuki聚合反應,將親電子性含雙溴官能基的芴酮 (Fluorenone) 和雙硼酯官能基的芴 (Fluorene) 合成一系列主鏈含高比例芴酮之高分子,PF-33、PF-40、PF-40、PF-48、PF-50、PF-52、PF-60 ,探討隨著fluorenone含量增加,對高分子的熱性質、光學性質、電化學性質與元件效能有何差異,同時以掺混的方式將PF-33導入PF內製程元件。在熱性質方面,高分子PF-33~PF-60並沒有發現熔點 (Tm) 出現,而熱裂解溫度 (Td) 皆在430 ℃才有明顯的裂解,PF-33、PF-40、PF-52玻璃轉移溫度 (Tg) 87~95℃,顯示PF-33~PF-60 皆具有高熱穩定性。在光學性質方面,PF-33~PF-60薄膜態的最大UV/Vis 吸收及螢光光譜 (PL) 波長分別在373~382nm 及566~568 nm。在電化學性質方面,利用氧化和還原起始電位分別求出高分子HOMO和LUMO能階,因電子傳遞基團fluorenone的導入,使高分子LUMO能階都有明顯下降,約在-3.17~-3.23 eV,表示改善了電子注入的能力。元件方面,PF-33、PF-40、PF-48雙層元件的其起始電壓分別為6.8V、6.2 V、5.2 V,而大亮度分別為709 cd/m2、313 cd/m2、119 cd/m2,CIE 1931座標皆在 (0.45, 0.52) 。此外我們將PF-33以不同比例 ( 0.02、0.5、1、5 wt% ) 掺混至PF製作成雙層元件,最大亮度分別為610cd/m2、720 cd/m2、3821 cd/m2、4400 cd/m2,流明效率由0.45增加到1.52 cd/A,CIE 1931座標也由 (0.45, 0.52) 轉變到 (0.39, 0.54) 。

    Polymer light emitting diode (PLED) based on conjugated polymers has been extensively investigated by many scientists. However, most EL polymers are p-doped devices, the mobility of holes is usually much greater than electrons. An optimized PLED should have efficient and balanced charge injection/transport between anode and cathode. In order to achieve balanced charge injection, introducing electron transporting units in polymer backbone can also be employed to balance charge injection.
    In this work, we prepared a series of 9,9-dihexylfluorenone-co-fluorenone (M1) random copolymers, named as PF-33 and PF-40, and alternating copolymers, named as PF-40~PF-60 by Suzuki coupling reaction. These copolymers exhibited good thermal stability with 5% weight loss temperature above 430℃ in nitrogen atmosphere. The LUMO level of these polymers located in -3.23 eV were lowered due to the introduction of fluorenone units. Both electrochemical results and MNDO semi-empirical calculations suggested that reduction started from fluorenone sites. In double layer LED devices of PF-33, PF-40 and PF-48, the turn-on voltages were 6.8, 6.2 and 5.2 V with maximum luminance of 709, 313 and 119cd/m2 and the corresponding C.I.E. coordinate is (0.45, 0.52). Furthermore, we incorporated various contents (0.02, 0.5, 1 and 5 wt %) of PF-33 into PF as emission layer for device fabrication, the maximum luminance were 610, 720, 3821 and 4400 cd/m2 and the luminance efficiency increased from 0.45 to 1.52 cd/A. The better luminance efficiencies were probably due to improved electron injection and carrier transporting as well as efficient charge trapping and recombination at fluorenone sites.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 流程目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 理論基礎 4 1-2-1 共軛導電高分子 4 1-2-2 螢光理論 6 1-2-3 影響螢光強度的因素 8 1-3 元件發光原理及結構 10 1-3-1 發光原理 10 1-3-2 單層元件 11 1-3-3 多層元件 12 1-3-4 影響PLED發光效率的因素 14 1-4 有機發光二極體未來研究方向 15 第二章 文獻回顧 17 2-1 前言 17 2-2 高分子有機電激發光材料 17 2-2-1高分子有機電激發光材料的分類 17 2-2-2 共軛高分子 18 2-3 能量轉移 19 2-4 具電子傳遞之發光材料(N-type Material) 20 2-5聚芴(Polyfluorene)為主之高分子 21 2-5-1 聚芴高分子 21 2-5-2 聚芴高分子的缺陷(Defect) 21 2-5-3 酮基缺陷的應用 23 2-6 研究動機 26 第三章 實驗內容 27 3-1 實驗裝置與設備 27 3-2 方法及量測儀器 28 3-3 物性及光電特性測量儀器 29 3-4 藥品及材料 32 3-5 反應原理 34 3-5-1有機金屬觸媒 34 3-5-2 Suzuki cross-coupling 34 3-6 合成步驟與鑑定結果 36 3-6-1單體合成 36 3-6-2高分子合成 36 3-7 光學量測 41 3-7-1光學性質量測 41 3-7-2量子效率測定 42 3-8 循環伏安法 42 3-9 元件製作 44 3-9-1 ITO玻璃之清洗 44 3-9-2 電洞注入層和高分子發光膜的製作 45 3-9-3 陰極蒸鍍 45 3-9-4 元件量測 46 第四章 結果與討論 48 4-1 單體結構之鑑定 48 4-2 高分子結構鑑定 49 4-3 高分子分子量的測定 50 4-4 溶解度測試 50 4-5 高分子熱性質分析 51 4-5-1 熱重分析 52 4-5-2 微差式掃描熱卡計分析 52 4-6 高分子光學性質 53 4-6-1 高分子在溶液中及薄膜態的光學性質 53 4-6-2高分子在酸性環境下的光學性質 54 4-7 相對量子效率 55 4-8 電化學性質探討 56 4-8-1 高分子電化學性質探討 56 4-9元件性質討論 58 4-9-1電流密度(I)-電壓(V)-亮度(L)特性 58 4-9-2電激發光光譜(Electroluminescence Spectra) 59 第五章 結論 61 參考文獻 96

    [ 1] Pope, M.; H. Kallmann, P.; Magnante. J. Chem. Phys. 1963, 38, 2042.
    [ 2] C. W. Tang.; S. A.Vanslyke. Appl. Phys. Lett. 1987, 51, 913.
    [ 3] J. H. Burroughes, D. D. C. Bradly, A. R. Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature. 1990, 374, 539.
    [ 4] 段啟聖;化工資訊與商情,第26期,P.40,民國94年8月.
    [ 5] 郭昭輝;塑膠資訊雜誌,民國91年10月.
    [ 6] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental
    Analysis, 5th edition, Saunders College Publishing. 1997.
    [ 7] 黃孝文, 陳雲;化工資訊月刊,第15卷第3期,P.8,2001.
    [ 8] 葉昆明,陳雲;科學發展,第385期,P.58,2005年1月.
    [ 9] 陳信宏,陳雲;中工高雄會刊,第3期,P.72,2006年.
    [10] 楊素華;光訊雜誌,第98 期,P.29,2002 年10 月.
    [ 11] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny,Nature. 2001, 409, 494.
    [12] 陳金鑫;光訊雜誌,第65期,P.12,民86年4月.
    [13] J. L. Segura, Acta Polym., 1998, 49, 319.
    [14] Halls, J. J.M.; Walsh, C. A.; Greenham, N. C.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.. Nature. 1995, 376, 498.
    [15] Yang, Y.; Hegger, A. J.. Nature. 1990, 374, 539.
    [16] van Mullekom, H. A.M.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W.. Mater. Sci. Eng . 2001, 32, 1.
    [17] J. Gmeiner, S.; Karg, M. M; W. Rieß, P.; Strohriegl, M. S. Acta. Polym. 1993, 44, 201.
    [18] Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, N. C.; Hegger, A. J. Nature. 1992, 357, 477.
    [19] Hughes, G.; Bryce, M. R. J. Mater. Chem. 2005, 15, 94.
    [20] Kulkarni, P. A.; Tonzola, C. J.; Babel. A.; Jenekhe, S. A. J. Mater. Chem. 2004, 16, 4556.
    [21] Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
    [22] Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.
    [23] Antoniadis, H.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 3055.
    [24] Tokuhisa, H.; Era, M.; Tsutsui, T. Adv. Mater. 1998, 10, 404.
    [25] Ahn, J. H.; Wang, C.; Pearson. C.; Bryce, M. R.; Petty, M. C. Appl. Phys. Lett. 2004, 85, 1283.
    [26] Tonzola, C. J.; Alam, M. M.; Bean, B. A.; Jenekhe, S. A. Macromolecules 1999, 37, 3554.
    [27] Karastatiris, P.; Mikroyannidis, J. A.; Spiliopoulos, I. K.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2004, 37, 7867.
    [28] Jandke, M.; Strohriegl, P.; Berleb, S.; Werner, E.; Brutting, W. Macromolecules 1998, 31, 6434.
    [29] Wang, C.; Kilitziraki, M.; MacBride, J. A. H.; Bryce, M. R.; Horsburgh, L. E.; Sheridan,A. K.; Monkman,A. P.; Samuel, I. D. W. Adv. Mater. 2000, 12, 217.
    [30] Uckert, F.; Tak, Y. H.; Müllen, K.; Bässler, H. Adv Mater. 2000, 12, 905.
    [31] Uckert, F.; Setayesh, S.; Müllen, K. Macromolecules 1999, 32, 4519.
    [32] Virgili, T.; Lidzey, D. G.; Bradley, D. D. C. Adv Mater. 2000, 12, 58.
    [33] Scherf, U.; List, E.J.W. Adv Mater. 2002, 14, 477.
    [34] Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 1553.
    [35] Gross, M.; Müller, D. C.; Nothofer, H.G.; Scherf, U.; Neher, D.; Bräuchle, C.; Meerholz, K. Nature. 2000, 405, 661.
    [36]Graice, A. W.; Bradley, D. D. C.; Bernius, M. T.;Inbasekaran, M.;Wu, W. W.;Woo, E. P. Appl. Phys. Lett. 1998, 73, 629.
    [37] Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H. G.; Scherf, U.; Yasuda, A. Adv. Mater. 2000, 11, 671.
    [38] Lemmer, U.; Heun, S.; Mahrt, R. F.; Sgherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E. O.; Mullen, K.; Bassler, H. Chem. Phy. Lett. 1995, 240, 373.
    [39] Bliznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klarner, G.; Miller, R. D.; Miller, D. C. Macromolecules 1999, 32, 361.
    [40] Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
    [41] List, E. J. W.; R. Guentner, P. Scanducci de Freitas, Scherf, U. Adv. Mater. 2002, 14, 374.
    [42] Gaal, M.; List, E. J. W.; Scherf, U. Macromolecules 2003, 36, 4236.
    [43] Böhme, O.; Spetz, A. L.; Lundström, I.; Schmeißer, D. Adv. Mater. 2001, 13, 597.
    [44] Zhao, W.; Cao, T.; White, J. M. Adv. Funct. Mater. 2004, 14, 783.
    [45] Panozzo, S.; Vial, Y.; Stephan, O. J. Appl. Phys. 2002, 92, 3495.
    [46] Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. J. Phys. Chem. B. 2004, 108, 8689.
    [47] Zhou, X. H.; Zhang, Y.; Xie, Y. Q.; Cao, Y.; Pei, J. Macromolecules 2006, 39, 3830.
    [48] Gong, X.; Moses, D.; Heeger, A. J.; Xiao, S. J. Phys. Chem. B. 2004, 108, 8601.
    [49] Sun, Q. J; Fan, B. H.; Tan, Z. A.; Li, Y. F.; Yang, Y. Appl. Phys. Lett. 2006, 88, 163510.
    [50] Rusling, J. F.; Suib, S. L. Adv. Mater. 1994, 6, 922.
    [51] Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
    [52] Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972.
    [53] Martin, A. R.; Yang, Y. Acta Chem. Scand. 1993, 47,221.
    [54] Maxime, R.; Mario L. Macromolecules 1999, 32, 3306.
    [55] John, K. S.; Kreisler, S. Y. L. Acc. Chem. Res. 1977, 10, 434.
    [56] Dieter, N. J. Macro. Rap. Comm. 2001, 22, 1365.
    [57] Egbert, Z.; Alexander, P.; Emmanuelle, H.;David, B.; Jean-Luc, B.; Patricia, S. F.; Ullrich, S.; List, E. J. W. J. Chem. Phys. 2002, 117, 6794.
    [58] Chi, C. Y.; Im, C.; Enkelmann, V.; Ziegler, A.; Lieser, G.; Wegner, G. Chem. Eur. J. 2005, 11, 6833.
    [59] Biczok, L.; Berces, T.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 11071.
    [60] Samant, V.; Singh, A. K.; Ramakrishna, G.; Ghosh, H. N.; Ghanty, T. K.; Palit, D. K. J. Phys. Chem. A. 2005, 109, 8693.

    下載圖示 校內:2008-07-05公開
    校外:2008-07-05公開
    QR CODE