| 研究生: |
羅尤維 Ruangyoo, Wiriya |
|---|---|
| 論文名稱: |
五夸克(Pentaquark) 粒子 Pc 的結構探討 Pc in the Pentaquark Picture |
| 指導教授: |
陳家駒
Chen, Chia-Chu |
| 共同指導教授: |
Ayut Limphirat
Ayut Limphirat Yupeng Yan Yan, Yupeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 外文關鍵詞: | Pentaquark, Quark model, Partial width ratio |
| 相關次數: | 點閱:122 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Since the pentaquark discovery in the LHCb collaboration, physicists have tried to describe its structure and possible decay processes, resulting in the determination of the quantum numbers of the pentaquark. In this research, we constructed the pentaquark wave functions by using the quark model under the compact pentaquark picture. The wave function was derived from the combination of 3 light quarks and heavy quark-antiquark pair ($c cbar$). There are two possible color singlets for pentaquarks, which are the combination of color singlet-singlet ($[111]_{{qqq}}otimes [111]_{{c cbar}}$) and color octet-octet ($[21]_{{qqq}}otimes [21]_{{c cbar}}$). The possible pentaquark configurations can be in 17 states. The transition amplitudes and partial width ratios were calculated between the pentaquark states and the possible decay channel states. We found that the decay channels $pJ/psi$ remained dominant when compared with other decay channels. Meanwhile, the partial width ratio showed that if there is no mixing among the $I=frac{1}{2}$ and $J=frac{3}{2}$ states as well as among the $I=frac{1}{2}$ and $J=frac{1}{2}$ states, the two states in $pJ/psi$ channel have the same decay widths, which indicates that $P_c(4440)$ may not be a compact pentaquark state since its decay width is much larger than others. Our results suggested that $P_c(4312)$ might be a spin-$frac{1}{2}$ particle while the spin-$frac{3}{2}$ may be assigned to $P_c(4457)$. Moreover, this work constructs all possible pentaquark states by using group theory, and the pentaquark states in other decay channels discussed in this thesis can be possibly searched in the future.
[1] Aaij, R., B. Adeva, M. Adinolfi, A. Affolder, Z. Ajaltouni, S. Akar, J. Albrecht, F. Alessio, M. Alexander, S. Ali, G. Alkhazov, P. A. Cartelle, A. A. Jr, S. Amato, S. Amerio, et al. (2015). Observation
of J/ψp Resonances Consistent with Pentaquark States in Λ^b_0 → J/ψK−p Decays. Phys. Rev.Lett. 115: 072001.
[2] Aaij, R., C. A. Beteta, B. Adeva, M. Adinolfi, C. A. Aidala, Z. Ajaltouni, S. Akar, P. Albicocco, J.Albrecht, F. Alessio, M. Alexander, A. A. Albero, G. Alkhazov, P. A. Cartelle, A. A. A. Jr, et al.(2019). Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of thePc(4450)+. Phys. Rev. Lett. 122(22): 222001.
[3] Aaij, R. et al. (July 2020). First observation of the decay Λ^b_0 → ηc(1S)pK−.
[4] ATLAS (2019). Study of J/ψp resonances in the Λ^b_0 → J/ψpK− decays in pp collisions at √s=7 and
8 TeV with the ATLAS detector. Tech. rep. ATLAS-CONF-2019-048. Geneva: CERN.
[5] Barnes, V. E. et al. (1964). Observation of a Hyperon with Strangeness Minus Three. Phys. Rev. Lett.12 (8): 204–206.
[6] D0 (2019). Inclusive production of the Pc resonances in pp collisions.
[7] Gell-Mann, M. (1964). A Schematic Model of Baryons and Mesons. Phys. Lett. 8: 214–215.
[8] Gross, D. J. and F. Wilczek (1973). Ultraviolet Behavior of Non-Abelian Gauge Theories. Phys. Rev.Lett. 30 (26): 1343–1346.
[9] Gutsche, T., A. Faessler, G. D. Yen, and S. N. Yang (1997). Consequences of strangeness content in the nucleon for φ - meson production in NN̄ annihilation. Nuclear Physics B - ProceedingsSupplements 56(1): 311 –316.
[11] Gutsche, T., R. Vinh Mau, M. Strohmeier-Presicek, and A. Faessler (1999). Radiative proton-antiproton
annihilation and isospin mixing in protonium. Phys. Rev. C 59 (2): 630–641.38
[12] Johnson, K. (1975). The M.I.T. Bag Model. Acta Phys. Polon. B6: 865.
[13] Le Yaouanc, A., L. Oliver, O. Pene, and J. Raynal (1988). HADRON TRANSITIONS IN THE QUARKMODEL.
[14] Limphirat, A., C. Kobdaj, P. Suebka, and Y. Yan (2010). Decay widths of ground-state and excited Ξ_b baryons in a nonrelativistic quark model. Phys. Rev. C 82 (5): 055201.
[15] Liu, Y.-R., H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu (2019). Pentaquark and Tetraquark states.Prog. Part. Nucl. Phys. 107: 237–320.
[16] Politzer, H. D. (1973). Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 30 (26):1346–1349.
[17] Srisuphaphon, S., A. Kaewsnod, A. Limphirat, K. Khosonthongkee, and Y. Yan (2016). Role of pentaquark components inϕmeson production proton-antiproton annihilation reactions. Physical Review C 93(2).
[18] Vandermeulen, J. (1988). NN¯ Annihilation creates two mesons. 37 (4).
[19] Yan, Y, K Khosonthongkee, C Kobdaj, and P Suebka (2010). e+e− → NN¯ at threshold and proton form factor. Journal of Physics G: Nuclear and Particle Physics 37(7): 075007.
[20] Yan, Y., C Kobdaj, W Uchai, A. Faessler, T Gutsche, and Y M. Zheng (Feb. 2003). e+e- annihilation into NN pairs. Modern Physics Letters A 18: 370–373.
Yao, W. M. et al. (July 2006). Review of Particle Physics. Journal of Physics G Nuclear Physics33(1): 1–1232.
[21] Zweig, G. (1964). An SU(3) model for strong interaction symmetry and its breaking. Version 1.
校內:2022-11-11公開