| 研究生: |
陳冠甫 Chen, Guan-Fu |
|---|---|
| 論文名稱: |
親水性高分子和雙電性離子接枝於聚丙烯基板之抗菌貼附與血液相容性比較 Antibacterial adhesion and hemocompatibility evaluations on the hydrophilic polymer or/and zwitterionic compound grafted onto the polypropylene surface |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 表面改質 、抗貼附 、聚乙二醇 、雙電性離子 、血液相容性 |
| 外文關鍵詞: | surface modification, anti-adhesion, PEG, zwitterionic, hemocompatibility |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來研究學者發現對疏水性高的材料表面進行改質,使其變成高親水性表面,可以有效的防止不特定的生物分子貼附行為發生,抗貼附材料發展至今已經可歸納出主要兩大類:親水性高分子和雙電性離子,將此二者固定在基材表面可以使其帶有抵抗生物因子貼附的功能。
在本文中,設計在聚丙烯(polypropylene)基板上透過接枝的方法將親水性高分子環氧基系聚乙二醇Poly(ethylene glycol) diglycidyl ether (PEGDE)鍵結在表面上,再藉由接枝上琥珀醯鹽酸鹽(succinyl chloride)、2-二甲基胺基乙醇(2-dimethylaminoethanol)和1,3-丙烷磺內酯(1,3-propanesultone)來產生雙電性離子的結構,以此來和單純只接枝上PEGDE或雙電性離子的樣品進行比較,探討是否可以藉由此方法使抗貼附功能得到更進一步的增強。在每一個接枝步驟結束後,會利用FTIR和XPS來確認接枝是否成功,並且測量樣品之靜態接觸角來觀察親水性的變化,之後將一同接枝上親水性高分子和雙電性離子的樣品和未經改質之基材以及單純只接枝上親水性高分子或雙電性離子之樣品在抗菌貼附和血液相容性這兩方面進行比較。
從實驗結果中可以發現,經過親水性高分子和雙電性離子改質後的基材表面展現了較佳的親水性、數量更少的細菌和血小板貼附,可以證明生醫材料表面變得親水就可以展現出優秀的抗菌貼附功能和較佳的血液相容性,其中無論是從細菌還是血小板貼附實驗的結果可以得知,將親水性高分子和雙電性離子一起接枝到材料表面可以使其抗貼附的功能比單純只接枝其中一種抗貼附材料來的更好,這證明了此法在生醫材料方面具有發展的潛能。
In recent years, researchers have discovered that the surface of highly hydrophobic materials could be modified to become a hydrophilic surface, which could effectively prevent the non-specific adhesion of biological factors. The development of anti-adhesive materials could be mainly summarized into two categories: hydrophilic polymers and zwitterionic compounds. The two materials could make the surface of the substrates be able to resist the non-specific adhesion of biological factors by fixing them onto the substrates. In this article, the hydrophilic polymer and zwitterionic compound were fixed onto the polypropylene plate together to make it become highly hydrophilic to have stronger resistance to the non-specific adhesion of biological factors than the substrate was modified by only hydrophilic polymer or zwitterionic compound. First, poly(ethylene glycol) diglycidyl ether(PEGDE) was grafted onto the polypropylene plate. Then form the zwitterionic structure by making the succinyl chloride, 2-dimethylaminoethanol and 1,3-propanesultone be grafted onto the substrate. It would let the substrate be modified by PEGDE and zwitterionic compound. The samples were characterized using a variety of testing methods. It was noted that the samples modified via PEGDE and/or zwitterionic compound showed higher hydrophilicity than the unmodified substrate. Anti-adhesion tests exhibited that the samples modified by PEGDE and zwitterionic compound together possessed better anti-adhesion properties against Staphylococcus aureus, Escherichia coli and platelet than the samples modified by only PEGDE or zwitterionic compound. In conclusion, this work successfully fixed the hydrophilic polymer and zwitterionic onto the PP plate together and it showed excellent antibacterial adhesion and hemocompatility properties.
[1] Z. Xin, S. Du, C. Zhao, H. Chen, M. Sun, S. Yan, S. Luan, J. Yin, Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components, Applied Surface Science 365 (2016) 99-107.
[2] D. Li, H. Chen, J.L. Brash, Mimicking the fibrinolytic system on material surfaces, Colloids Surf B Biointerfaces 86(1) (2011) 1-6.
[3] J. Deng, T. Ren, J. Zhu, Z. Mao, C. Gao, Adsorption of plasma proteins and fibronectin on poly(hydroxylethyl methacrylate) brushes of different thickness and their relationship with adhesion and migration of vascular smooth muscle cells, Regen Biomater 1(1) (2014) 17-25.
[4] 岑沛霖,蔡謹, 工業微生物學-第二章:微生物的形態與分類, 化學工業出版社 (2000).
[5] R. Coico, Gram Staining, Current Protocols in Microbiology (2005) A.3C.1-A.3C.2.
[6] 陳盈圓, 結合長碳鏈四級銨與再生性鹵胺類修飾於聚酯纖維之表面特性分析及抗菌性評估, 國立成功大學 化學工程學研究所 碩士論文 (2017).
[7] R.M. Donlan, Biofilm Formation: A Clinically Relevant Microbiological Process, Clinical Infectious Diseases 33 (2001) 1387-1392.
[8] D.R. Korber, J.R. Lawrence, B. Sutton, D.E. Caldwell, Effect of Laminar Flow Velocity on the Kinetics of Surface Recolonization by Mot + and Mot- Pseudomonas fluorescens, Microbial Ecology 18 (1989) 1-19.
[9] M. Rosenberg, E.A. Bayer, J. Delarea, E. Rosenberg, Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane, Applied And Environmental Microbiology 44 (1982) 929-937.
[10] J.H. Pringle, M. Fletcher, Influence of Substratum Wettability on Attachment of Freshwater Bacteria to Solid Surfaces, Applied And Environmental Microbiology 45 (1983) 811-817.
[11] 蔡岱成, 結合鹵胺/聚乙二醇塗層之殺菌與抗細菌貼附功能棉纖維, 國立成功大學 化學工程學研究所 碩士論文 (2017).
[12] L.G. Harris, R.G. Richards, Staphylococci and implant surfaces: a review, Injury 37(2) (2006) S3-S14.
[13] B.D. Hoyle, C.K. Wong, J.W. Costerton, Disparate efficacy of tobramycin on Ca2+-, Mg2+-, and HEPES-treated Pseudomonas aeruginosa biofilms, Canadian journal of microbiology 38(11) (1992) 1214-1218.
[14] I.G. Daguid, E. Evans, M.R.W. Brown, P. Gilbert, Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin, Journal of Antimicrobial Chemotherapy 30 (1992) 803-810.
[15] H. Ceri, M. Olson, C. Stremick, R. Read, D. Morck, A. Buret, The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, Journal of clinical microbiology 37(6) (1999) 1771-1776.
[16] I. Williams, W.A. Venables, D. Lloyd, F. Paul, I. Critchley, The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus, Microbiology 143(7) (1997) 2407-2413.
[17] O. Tresse, T. Jouenne, G.-A. Junter, The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and β-lactam antibiotics, Journal of Antimicrobial Chemotherapy 36(3) (1995) 521-526.
[18] C.D. Nadell, J.B. Xavier, K.R. Foster, The sociobiology of biofilms, FEMS Microbiol Rev 33(1) (2009) 206-224.
[19] 莊文喜, 不同離子性之混合自我聚集單分子層的表面性質與血小板吸附之研究, 國立成功大學 化學工程學研究所 博士論文 (2007).
[20] E.W. Davie, K. Fujikawa, W. Kisiel, The Coagulation Cascade: Initiation, Maintenance, and Regulation, Biochemistry 30(43) (1991) 10363-10370.
[21] A.M. Rouhi, Contemporary biomaterials: understanding surfaces is key to the design of clinically useful materials, Chemical and Engineering News(USA) 77(3) (1999) 51-52.
[22] W. Lemm, Protein adsorption tests for polymer surfaces, Modern Aspects of Protein Adsorption on Biomaterials, Springer1991, pp. 73-79.
[23] B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going, Annu Rev Biomed Eng 6 (2004) 41-75.
[24] I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv Mater 23(6) (2011) 690-718.
[25] S.I. Jeon, J.H. Lee, J.D. Andrade, P.G.D. Gennes, Protein-Surface Interactions in the Presence of Polyethylene Oxide I. Simplified Theory, Journal of Colloid and Interface Science 142 (1990) 149-158.
[26] S.I. Jeon, J.D. Andrade, Protein-Surface Interactions in the Presence of Polyethylene Oxide II. Effect of Protein Size, Journal of Colloid and lnterface Seience 142 (1990) 159-166.
[27] R.A. D'Sa, B.J. Meenan, Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing, Langmuir 26(3) (2010) 1894-1903.
[28] J.L. Dalsin, L. Lin, S. Tosatti, J. Voros, M. Textor, P.B. Messersmith, Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired mPEG-DOPA, Langmuir 21 (2005) 640-646.
[29] J.L. Dalsin, B.-H. Hu, B.P. Lee, P.B. Messersmith, Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces, Journal of the American Chemical Society 125 (2003) 4253-4258.
[30] S. Zurcher, D. Wackerlin, Y. Bethuel, B. Malisova, M. Textor, S. Tosatti, K. Gademann, Biomimetic Surface Modifications Based on the Cyanobacterial Iron Chelator Anachelin, Journal of the American Chemical Society 128 (2006) 1064-1065.
[31] Y. Sui, X. Gao, Z. Wang, C. Gao, Antifouling and antibacterial improvement of surface-functionalized poly(vinylidene fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom transfer radical graft polymerizations, Journal of Membrane Science 394-395 (2012) 107-119.
[32] S.L. McArthur, K.M. McLean, P. Kingshott, H.A.W.S. John, R.C. Chatelier, H.J. Griesser, Effect of polysaccharide structure on protein adsorption, Colloids and Surfaces B: Biointerfaces 17 (2000) 37-48.
[33] R. Li, H. Wang, W. Wang, Y. Ye, Immobilization of heparin on the surface of polypropylene non-woven fabric for improvement of the hydrophilicity and blood compatibility, J Biomater Sci Polym Ed 24(1) (2013) 15-30.
[34] S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials, Polymer 51(23) (2010) 5283-5293.
[35] R.S. Smith, Z. Zhang, M. Bouchard, J. Li, H.S. Lapp, G.R. Brotske, D.L. Lucchino, D. Weaver, L.A. Roth, A. Coury, J. Biggerstaff, S. Sukavaneshvar, R. Langer, C. Loose, Vascular Catheters with a Nonleaching Poly-Sulfobetaine Surface Modification Reduce Thrombus Formation and Microbial Attachment, Science Translational Medicine 4(153) (2012) 1-10.
[36] X. Jin, J. Yuan, J. Shen, Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties, Colloids Surf B Biointerfaces 145 (2016) 275-284.
[37] Z. Zhang, H. Vaisocherova, G. Cheng, W. Yang, H. Xue, S. Jiang, Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental Effects, Biomacromolecules 9 (2008) 2686-2692.
[38] M.T. Bernards, G. Cheng, Z. Zhang, S. Chen, S. Jiang, Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical Polymerization, Macromolecules 41 (2008) 4216-4219.
[39] H. Kitano, S. Tada, T. Mori, K. Takaha, M. Gemmei-Ide, M. Tanaka, M. Fukuda, Y. Yokoyama, Correlation between the Structure of Water in the Vicinity of Carboxybetaine Polymers and Their Blood-Compatibility, Langmuir 21 (2005) 11932-11940.
[40] 陳克紹, 陳素真, 洪翠禪, 廖淑娟, 表面電漿改質技術在生物醫學工程之應用, 化工技術第17卷第8期 (2009) 1-16.
[41] 葉錫誼, 經磺酸化/磷酸化改質之幾丁聚醣薄膜其及表面特性、血液相容性與細胞相容性之研究, 國立成功大學 化學工程學研究所 博士論文 (2011).
[42] 陳柏誠, 以γ-聚麩胺酸改質聚酯型脂肪族聚氨基甲酸酯之製備、特性與血小板貼附性研究, 國立成功大學 化學工程學研究所 碩士論文 (2008).
[43] X. Wang, S. Yuan, D. Shi, Y. Yang, T. Jiang, S. Yan, H. Shi, S. Luan, J. Yin, Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly (N-vinyl pyrrolidone) coating, Applied Surface Science 375 (2016) 9-18.
[44] 卓宥任, 合成含兩性離子及亞磷酸官能基之共聚物修飾鈦金屬表面及其表面特性與血液相容性之研究, 國立成功大學 化學工程學研究所 碩士論文 (2011).
[45] S.A. Ghani, S.H.M. Din, S.J. Tan, Characterizations and electrical conductivity of (poly[vinyl chloride])/(poly[ethylene oxide]) conductive films: The effect of carbon black loading and poly(ethylene glycol) diglycidyl ether, Journal of Vinyl and Additive Technology 24(2) (2018) 139-146.
[46] E.M. Van Wagner, A.C. Sagle, M.M. Sharma, Y.-H. La, B.D. Freeman, Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance, Journal of Membrane Science 367(1-2) (2011) 273-287.
[47] J.F. Watts, X-ray photoelectron spectroscopy, Surface science techniques (1994) 5-23.
[48] B. Yu, X. Wang, X. Qian, W. Xing, H. Yang, L. Ma, Y. Lin, S. Jiang, L. Song, Y. Hu, Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene, Rsc Advances 4(60) (2014) 31782-31794.
[49] X. Hu, X. Lin, H. Zhao, Z. Chen, J. Yang, F. Li, C. Liu, F. Tian, Surface functionalization of polyethersulfone membrane with quaternary ammonium salts for contact-active antibacterial and anti-biofouling properties, Materials 9(5) (2016) 376.
[50] N. Inagaki, S. Tasaka, Y. Horikawa, Nafion‐like thin film plasma‐polymerized from perfluorobenzene/SO2 mixture, Journal of Polymer Science Part A: Polymer Chemistry 27(10) (1989) 3495-3501.
[51] P. Liu, E. Domingue, D.C. Ayers, J. Song, Modification of Ti6Al4V substrates with well-defined zwitterionic polysulfobetaine brushes for improved surface mineralization, ACS applied materials & interfaces 6(10) (2014) 7141-7152.
[52] D.G. Castner, K. Hinds, D.W. Grainger, X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces, Langmuir 12(21) (1996) 5083-5086.
[53] B. Quan, S.-H. Yu, D.Y. Chung, A. Jin, J.H. Park, Y.-E. Sung, Y. Piao, Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications, Scientific reports 4 (2014) 5639.
[54] 余俊彥, 利用不同溶劑製備含磷酸乙醇胺官能基的雙電性自組裝單分子層之表面性質、血小板吸附以及電化學特性之研究, 國立成功大學 化學工程學研究所 碩士論文 (2010).