| 研究生: |
江奇軒 Chiang, Chi-Hsuan |
|---|---|
| 論文名稱: |
超高性能纖維強化混凝土梁柱接頭在爆炸荷載作用下的殘餘強度研究 Investigation on the Residual Strength of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beam Column-Joint Subjected to Blast Loading |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
戴毓修
Tai, Yuh-Shiou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 高性能纖維混凝土(UHPFRC) 、Abaqus 、梁柱接頭 、爆炸荷載 |
| 外文關鍵詞: | UHPFRC, Abaqus, Beam-Column joint, Blast Loading |
| 相關次數: | 點閱:152 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年國際上發生許多結構物遭到爆裂物的恐怖攻擊事件,而爆炸災害會對結構產生極大的破壞及後續修復所付出的重大社會成本,但是對於這方面結構的設計觀念及規範是較為缺乏的。在結構物的建造材料方面,當結構設計往高樓層、大跨距的空間配置發展之下,對於材料強度、韌性的需求也逐漸增大,進而發展出高性能纖維混凝土(Ultra-High Performance Fiber Reinforced Concrete , UHPFRC)可以提供更好的材料強度及韌性。
本研究使用有限元素分析軟體Abaqus分析並探討高性能纖維混凝土T型梁柱接頭在不同爆炸波源、炸藥量及軸壓力作用下其受爆炸荷載的動態反應行為,並使用已受爆炸荷載而有所損傷的梁柱接頭加載側推力,藉以評估遭受爆炸後的殘餘強度,並比較不同情形之下與殘餘強度的關聯性。
結果顯示,使用高性能纖維混凝土確實可以為梁柱接頭提供更高的極限強度。當梁柱接頭受到爆炸荷載之下因為爆炸力時相當短暫,結構物會有局部的動態反應,造成在箍筋間距轉換處因為勁度不連續,造成傷害集中於此處。之後比較梁柱接頭承受不同軸力的情形,當梁柱接頭所受的軸力較高時,因接頭區的軸力較大可提供較好的圍束效果,會使損傷集中在梁端處,這讓側推的極限強度損失較多。最後整理以上關於梁柱接頭的動態反應、側推曲線及各時間點的結構損傷情形的詳細資料,供後續對於結構物受爆炸荷載的反應參考使用。
In recent years, many terrorist attacks on structures in the world have been carried out, and the explosions have caused great damage to the structure and major social costs for subsequent restoration. However, the design code this issue are relatively lacking . When the structural design is developed to the higher floor and the large-span space configuration, the demand for material strength and toughness is gradually increased, basis on this two major objectives ,the Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)is developed.
The finite element analysis software Abaqus is used to discussed the dynamic behavior of the UHPFRC beam-column joints under different blast condition and different column axial loading. After blast loading ,using push-over analysis to investigation on the residual strength compare to undamaged strength.
It was found that UHPFRC beam-column joint can indeed provide a higher ultimate strength. When the beam-column joint is subjected to blast loading, the structure will have a partial dynamic reaction. Beside the damage concentrated at the interface between transform of the stirrups spacing because of the discontinuity on the stiffness. Under the different axial loading condition, when the beam-column joint is subjected to high axial loading , due to the better confining effect at the joint zone, so that the damage will be concentrated at the beam end , therefore the ultimate strength of push-over is less then low axial loading condition. Furthermore ,the above detailed information about the dynamic response of the beam-column joint, the push-over curve and the structural damage distribution at each time point are record for following research.
[1] Federal Emergency Management Agency Mitigation , American Society of Civil Engineers . The Oklahoma City Bombing : improving building performance through multi-hazard mitigation . August 1996
[2] https://edition.cnn.com/2015/07/11/middleeast/egypt-cairo-explosion/index.html
[3] US Departmenet of Transportation Federal Highway Administration.Ultra-High Performanace Concrete:A state-of-the-art Report for the Bridge Community.June 2013
[4] John Wiley & Sons,Inc. Designing and Building with UHPFRC. 12 February 2013
[5] F.de Larrard , T.Sedran . Optimization of Ultra-High-Performance Concrete by the Use of a Packing Mode . Cement and Concrete Reasearch(1994), Vol. 24 No.6,pp997-1009.
[6] Kay Wille , Nguyen Viet Tue ,Gustavo J. Parra-Montesinos. Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis. Materials and Structures (2014) 47:1825–1838
[7] A.M.T.Hassan,S.W.Jones,G.H.Mahmud . Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fiber reinforced concrete (UHPFRC).Construction and Building Material 37 (2012) 874-882
[8] K. Wille ,S. El-Tawil, A.E. Naaman . Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement & Concrete Composites 48 (2014) 53–66
[9] Tohru Makita , Eugen Bruhwiler. Damage models for UHPFRC and R-UHPFRC tensile fatigue behavior. Engineering Structures 90 (2015) 61–70
[10] Biao Li, Lihua Xu , Yin Chi , Biao Huang, Changning Li. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Construction and Building Materials 140 (2017) 109–118
[11] R.J. Thomas , Andrew D. Sorensen. Review of strain rate effects for UHPC in tension. Construction and Building Materials 153 (2017) 846–856
[12] Y.S. Tai. Uniaxial compression tests at various loading rates for reactive powder concrete. Theoretical and Applied Fracture Mechanics 52 (2009) 14–21
[13] Chung-Chan Hung , Chen-Yu Chueh. Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures 122 (2016) 108–120
[14] 戴毓修,爆炸壓力波對建物影響分析,行政院原子能委員會委託研究計劃研究報告,2010
[15] Jun Li , Chengqing Wu, Hong Hao , Zhongxian Liu. Post-blast capacity of ultra-high performance concrete columns. Engineering Structures 134 (2017) 289–302
[16] Tuan Ngo, Priyan Mendis, Ted Krauthammer. Behavior of Ultrahigh-Strength Prestressed Concrete Panels Subjected to Blast Loading. JOURNAL OF STRUCTURAL ENGINEERING . ASCE / NOVEMBER 2007
[17] G. K. Schleyer, S. J. Barnett, S. G. Millard, G. Wight, M. Rebentrost. UHPFRC panel testing. The Structural Engineer 89 (23/24) ,2011.
[18] Lei Mao, Stephanie Barnett, David Begg, Graham Schleyer, Gavin Wight. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading. International Journal of Impact Engineering 64 (2014) 91-100
[19] Goran H. Mahmud, Zhenjun Yang , Aram M.T. Hassan. Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials 48 (2013) 1027–1034
[20] H. Othman, H. Marzouk. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. International Journal of Impact Engineering 114 (2018) 20–31
[21] 嚴楚寒,複合層板受爆炸荷載下之最佳化設計,碩士,土木工程學系碩博士班,國立成功大學,2013
[22] 王富民,三明治蜂窩結構受爆炸荷載下動態響應及損傷分析,碩士,土木工程學系碩博士班,國立成功大學,2014
[23] Ghada M. Hekal.Collapse Analysis of a Reinforced Concrete Frame due to Middle Column Loss by Explosion. International Journal of Advanced Engineering and Management Research.Vol. 3 Issue 3, 2018
[24] Yen Lei Voo.Application of Ultra High Performance Reinforced Concrete –the Malaysia Prerspective. Internatioal Journal of Sustainable Construction Engineering & Technology, Vol3 , Issue 1 ,2012
[25] Joost C. Walraven. High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures (2009) 42:1247–1260
[26] Shionaga R, Sato Y, Walraven JC, Den Uijl JA (2008). Cracking behaviour of high performance fiber reinforced concrete in tension and bending. In: Paper published at the symposium ‘‘high performance concrete’’, Tokyo, Japan, Oct 2008, pp 231–240
[27] Pansuk W (2007) Shear capacity of RC and ultra high strength fiber reinforced concrete flanged beams. PhD thesis , Hokkaido University, Japan, September
[28] Chung-Chan Hung , Shang-Heng Li. Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites: Part B 45 (2013) 1441–1447
[29] K. Wille & A. E. Naaman. Fracture energy of UHP-FRC under direct tensile loading. Korea Concrete Institute, Seoul.2010
[30] Naaman AE, Reinhardt HW. Setting the stage: toward performance based classification of FRC composites. In: Proceedings of 4th RILEM symposium on high performance fiber reinforced cement, composites (HPFRCC4); 2003. p. 1–4
[31] T. Ngo, P. Mendis, A. Gupta & J. Ramsay . Blast Loading and Blast Effects on Structures – An Overview . EJSE Special Issue: Loading on Structures (2007)
[32] WE Baker. Explosions in air. University of Texas press.1973.p.3-2
[33] Farouk Siba. Near-Field Explosion Effects on Reinforced Concrete Columns: An Experimental Investigation. Master of Applied Science in Civil Engineering ,Carleton University Ottawa, Ontario.2014
[34] Cormie D, Mays G, Smith P. Blast effects on buildings. 2nd ed. London, UK. Thomas Telford Limited. 2009.
[35] 吳俊諺,鋼筋混凝土版受爆壓波作用之破壞分析,碩士,土木工程學系碩博士班,國立成功大學,2010
[36] P. Vannucci, F. Masi, I Stefanou. A comparative study on the effects of blast actions on a monumental structure. [Research Report] UVSQ - ENPC. 2017.
[37] TM5-855-1 . Fundamentals of Protective Design for Conventional Weapons.US Deportment of the Army.1986
[38] Anil K.Agrawal,Zhihua Yi.Blast Load Effects on Highway Bridges.Region 2 University Transportation Research Center.2009
[39] Remennikov, AM, A Review of Methods for Predicting Bomb Blast Effects on Buildings, Journal of Battlefield Technology, 2003.
[40] Zoran Bajić, Jovica Bogdanov, Radun Jeremić. Blast Effects Evaluation Using TNT Equivalent. Scientific Technical Review.2009.
[41] TB 700-2, NAVSEAINST 8020.8 B, DoD Ammunition And Explosives Hazards Classification Procedures, 1998.
[42] International Ammunition Technical Guidelines. https://www.un.org/disarmament/un-saferguard/kingery-bulmash/
[43] Abaqus Analysis User’s Guide 6-14,
http://Abaqus.software.polimi.it/v6.14/books/usb/default.htm
[44] J.Lee, G. L. Fenves(1998), Plastic-Damage Model for Cyclic Loading of Concrete Structures, Journal of Engineering Mechanics, vol. 124, no.8, pp. 892–900
[45] 郭清翰,李宏仁.新高強度鋼筋混凝土梁柱接頭耐震性能研究.碩士.營建工程系碩士班.國立雲林科技大學.2011
[46] Dassault Systemes Simulia Corp,Abaqus 最新實務入門引導,全華圖書股份有限公司,2013.
[47] 吳宏振,黃永茂.T形管件液壓成形之自適性模擬.碩士.機械與機電工程學系.國立中山大學.2013
[48] 內政部營建署.混凝土結構設計規範.2017