簡易檢索 / 詳目顯示

研究生: 陳良奎
Chen, Liang-Kuei
論文名稱: 困難梭狀桿菌觸發NLRP1炎性體的活化
Activation of NLRP1 inflammasome is triggered by Clostridium difficile
指導教授: 蔡佩珍
Tsai, Pei-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 52
中文關鍵詞: 困難梭狀桿菌炎性體NLRP1表面層蛋白NOD2
外文關鍵詞: C. difficile, inflammasome, NLRP1, Surface layer protein (SLP), NOD2
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 困難梭狀桿菌是一種會產生孢子的厭氧菌,並且是造成院內感染的主因之一,特別是對服用抗生素治療的住院病人,造成抗生素相關的腹瀉,嚴重則導致偽膜性腸炎以及毒性巨結腸症。儘管先前研究已指出困難梭狀桿菌的毒素可以活化Pyrin炎性體。然而目前對於宿主先天性免疫反應如何對抗困難梭狀桿菌的菌體仍然很不清楚。在我們先前的研究發現非產毒素困難梭狀桿菌會引發非NLRP3所誘導之炎性體的活化。而在本研究中更進一步的驗證困難梭狀桿菌引發的炎性體活化主要是透過NLRP1來調控。同時並証實ASC在NLRP1炎性體活化過程中是可以不被需要的。從感染小鼠大腸組織切片的免疫螢光染色也同樣看到NLRP1及炎性體相關的蛋白表現明顯增加,並與Caspase-1聚集在相同位置。此外,我們也發現到困難梭狀桿菌的主要表面層蛋白Surface layer protein (SLP)會引發NLRP1炎性體的活化,並且具有和Nucleotide-binding oligomerization domain-containing protein 2 (NOD2)直接交互作用的能力。而NLRP1和NOD2在困難梭狀桿菌感染後是有交互作用的。在困難梭狀桿菌感染的小鼠大腸切片中,NOD2也有很高的表現量。在本篇,我們發現困難梭狀桿菌透過SLP,藉由NOD2引發了NLRP1炎性體活化。

    Clostridium difficile is an obligate anaerobic pathogen that causes nosocomial infection especially in antibiotics-treated hospitalized patients. Although clostridial toxin-induced inflammasome activation has been demonstrated through Pyrin, how host innate immunity recognize C. difficile pathogen is still unknown. Previously, we found that C. difficile pathogen induced a NLRP3-independent inflammasome activation. Here, C. difficile pathogen induced inflammasome activation was further confirmed through NLRP1 by artificial reconstitution system. ASC was dispensable for C. difficile induced NLRP1 inflammasome activation. Immunofluorescence staining also demonstrated that NLRP1 and related inflammasome components were upregulated in colon tissues from C. difficile infected mice. Moreover, we found surface layer proteins (SLPs) of C. difficile, predominant outer surface components, were contributed to induce NLRP1 inflammasome activation. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) which mediates anthrax toxin induced NLRP1 inflammasome activation was highly expressed in C. difficile infected colon tissues. SLPs directly interacted with NOD2, and NOD2 interacted with NLRP1 after C. difficile infection. Taken together, this study demonstrated that C. difficile induced NLRP1 inflammasome activation through SLPs interacting with NOD2-NLRP1 pathway.

    中文摘要 I ABSTRACT II 誌謝 III CONTENTS IV Chapter 1. INTRODUCTION 1 1.1 Clostridium difficile infection and epidemiology 1 1.2 Pathogenesis of Clostridium difficile infection 2 1.3 Host immune responses to Clostridium difficile infection 3 1.4 Impact of inflammasome activation in bacterial recognition 4 1.5 Mechanisms of inflammasome activation 5 1.6 NLRP1 inflammasome 6 1.7 C. difficile in infection and inflammasome 8 Chapter 2. MATERIALS AND METHODS 10 2.1 Bacteria strains 10 2.2 Animal 10 2.3 Bacterial culture 10 2.4 Extraction of surface layer proteins (SLPs) 10 2.5 Reagent and cell line 11 2.6 siRNA knockdown 11 2.7 ShRNA lentivirus 12 2.8 In vitro cell infection and SLP in vitro treating test 12 2.9 HEK293T artificial system 13 2.10 Preparation of cell culture supernatant and cell protein lysates 13 2.11 Tissue protein extraction 13 2.12 Western blotting 14 2.13 Immunoprecipitation 15 2.14 Reverse transcription and real-time PCR 15 2.15 C. difficile infection animal model 16 2.16 Data analysis 16 Chapter 3. RESULTS 17 3.1 NLRP1 was involved in C. difficile infection induced inflammasome activation 18 3.2 C. difficile infection induced NLRP1 inflammasome activation in colon tissues 18 3.3 C. difficile pathogen induced ASC-independent NLRP1 inflammasome activation 18 3.4 SLPs of C. difficile induced inflammasome activation 19 3.5 SLPs of C. difficile induced NLRP1 inflammasome activation but not directly interacted with NLRP1 20 3.6 SLPs induced NLRP1 inflammasome activation mediated by NOD2 20 Chapter 4. DISCUSSION 22 REFERENCES 27 APPENDIX 40 Appendix 1. List for primers used in this study 40 Appendix 2. List of plasmids used in this study 40 Appendix 3. Recipes of buffers 42 Appendix 4. Supplementary figure 43 REAGENTS LIST 44

    1.Sethi, A.K., et al., Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infection Control & Hospital Epidemiology, 2010. 31(01): p. 21-27.
    2.Pépin, J., L. Valiquette, and B. Cossette, Mortality attributable to nosocomial Clostridium difficile–associated disease during an epidemic caused by a hypervirulent strain in Quebec. Canadian Medical Association Journal, 2005. 173(9): p. 1037-1042.
    3.Rupnik, M., M.H. Wilcox, and D.N. Gerding, Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nature Reviews Microbiology, 2009. 7(7): p. 526-536.
    4.Carter, G.P., J.I. Rood, and D. Lyras, The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends in Microbiology, 2012. 20(1): p. 21-29.
    5.Ng, J., et al., Clostridium difficile toxin–induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology, 2010. 139(2): p. 542-552. e3.
    6.Lyras, D., et al., Toxin B is essential for virulence of Clostridium difficile. Nature, 2009. 458(7242): p. 1176-1179.
    7.Sorg, J.A. and A.L. Sonenshein, Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. Journal of Bacteriology, 2009. 191(3): p. 1115-1117.
    8.Poutanen, S.M. and A.E. Simor, Clostridium difficile-associated diarrhea in adults. Canadian Medical Association Journal, 2004. 171(1): p. 51-58.
    9.Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clinical Microbiology Reviews, 2005. 18(2): p. 247-263.
    10.Aktories, K., Bacterial protein toxins that modify host regulatory GTPases. Nature Reviews Microbiology, 2011. 9(7): p. 487-498.
    11.Greco, A., et al., Carbohydrate recognition by Clostridium difficile toxin A. Nature Structural & Molecular Biology, 2006. 13(5): p. 460-461.
    12.Davies, A.H., et al., Super toxins from a super bug: structure and function of Clostridium difficile toxins. Biochemical Journal, 2011. 436(3): p. 517-526.
    13.Calabi, E., et al., Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infection and Immunity, 2002. 70(10): p. 5770-5778.
    14.O'Brien, J.B., et al., Passive immunisation of hamsters against Clostridium difficile infection using antibodies to surface layer proteins. FEMS Microbiology letters, 2005. 246(2): p. 199-205.
    15.Bianco, M., et al., Immunomodulatory activities of surface-layer proteins obtained from epidemic and hypervirulent Clostridium difficile strains. Journal of Medical Microbiology, 2011. 60(8): p. 1162-1167.
    16.Ryan, A., et al., A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog, 2011. 7(6): p. e1002076.
    17.Ishii, K.J., et al., Host innate immune receptors and beyond: making sense of microbial infections. Cell Host & Microbe, 2008. 3(6): p. 352-363.
    18.Thinwa, J., et al., Integrin-mediated first signal for inflammasome activation in intestinal epithelial cells. The Journal of Immunology, 2014. 193(3): p. 1373-1382.
    19.Kaisho, T. and S. Akira, Toll-like receptor function and signaling. Journal of Allergy and Clinical Immunology, 2006. 117(5): p. 979-987.
    20.Takeda, K. and S. Akira. TLR signaling pathways. in Seminars in Immunology. 2004. Elsevier.
    21.Yoshino, Y., et al., Clostridium difficile flagellin stimulates toll-like receptor 5, and toxin B promotes flagellin-induced chemokine production via TLR5. Life Sciences, 2013. 92(3): p. 211-217.
    22.Jarchum, I., et al., Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infection and Immunity, 2011. 79(4): p. 1498-1503.
    23.Hasegawa, M., et al., Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. The Journal of Immunology, 2011. 186(8): p. 4872-4880.
    24.Jarchum, I., et al., Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infection and Immunity, 2012. 80(9): p. 2989-2996.
    25.Hasegawa, M., et al., Protective Role of Commensals against Clostridium difficile Infection via an IL-1β–Mediated Positive-Feedback Loop. The Journal of Immunology, 2012. 189(6): p. 3085-3091.
    26.Kanneganti, T.D., The inflammasome: firing up innate immunity. Immunological Reviews, 2015. 265(1): p. 1-5.
    27.van de Veerdonk, F.L., et al., The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. European Journal of Immunology, 2011. 41(8): p. 2260-2268.
    28.Franchi, L., R. Muñoz-Planillo, and G. Núñez, Sensing and reacting to microbes through the inflammasomes. Nature immunology, 2012. 13(4): p. 325-332.
    29.Sellin, M.E., et al., Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host & Microbe, 2014. 16(2): p. 237-248.
    30.Miao, E.A., et al., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology, 2010. 11(12): p. 1136-1142.
    31.Franchi, L., et al., The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature immunology, 2009. 10(3): p. 241-247.
    32.Muñoz-Planillo, R., et al., A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. The Journal of Immunology, 2009. 183(6): p. 3942-3948.
    33.Kim, S., et al., Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. European Journal of Immunology, 2010. 40(6): p. 1545-1551.
    34.Harder, J., et al., Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-κB activation but proceeds independently of TLR signaling and P2X7 receptor. The Journal of Immunology, 2009. 183(9): p. 5823-5829.
    35.Allen, I.C., et al., The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity, 2009. 30(4): p. 556-565.
    36.Mariathasan, S., et al., Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006. 440(7081): p. 228-232.
    37.Gasse, P., et al., Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. American Journal of Respiratory and Critical Care Medicine, 2009. 179(10): p. 903-913.
    38.Schroder, K. and J. Tschopp, The inflammasomes. Cell, 2010. 140(6): p. 821-832.
    39.Ali, S.R., et al., Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity, 2011. 35(1): p. 34-44.
    40.Fink, S.L., T. Bergsbaken, and B.T. Cookson, Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proceedings of the National Academy of Sciences, 2008. 105(11): p. 4312-4317.
    41.Faustin, B., et al., Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Molecular Cell, 2007. 25(5): p. 713-724.
    42.Boyden, E.D. and W.F. Dietrich, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genetics, 2006. 38(2): p. 240-244.
    43.Van Opdenbosch, N., et al., Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nature Communications, 2014. 5.
    44.Cavaillès, P., et al., The rat Toxo1 locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(3): p. 744-749.
    45.Cirelli, K.M., et al., Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLoS Pathog, 2014. 10(3): p. e1003927.
    46.Levinsohn, J.L., et al., Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog, 2012. 8(3): p. e1002638.
    47.Chavarría-Smith, J. and R.E. Vance, Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog, 2013. 9(6): p. e1003452.
    48.Finger, J.N., et al., Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. Journal of Biological Chemistry, 2012. 287(30): p. 25030-25037.
    49.Frew, B.C., V.R. Joag, and J. Mogridge, Proteolytic processing of Nlrp1b is required for inflammasome activity. PLoS Pathog, 2012. 8(4): p. e1002659.
    50.Jin, Y., et al., Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. Journal of Investigative Dermatology, 2007. 127(11): p. 2558-2562.
    51.Levandowski, C.B., et al., NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proceedings of the National Academy of Sciences, 2013. 110(8): p. 2952-2956.
    52.Magitta, N., et al., A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes and Immunity, 2009. 10(2): p. 120-124.
    53.Pontillo, A., et al., The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease. The American Journal of Gastroenterology, 2011. 106(3): p. 539-544.
    54.Williams, T.M., et al., The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. The Journal of Immunology, 2015. 194(7): p. 3369-3380.
    55.De Iudicibus, S., et al., Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases. Journal of Clinical Gastroenterology, 2011. 45(1): p. e1-e7.
    56.張詠琪, Study on Clostridium difficile-induced inflammasome activaion. 國立成功大學醫學檢驗生物技術學系碩士班碩士論文, 2013.
    57.方盈心, Clostridium difficile induces NLRP1-dependent inflammasome activaion. 國立成功大學醫學檢驗技術學系碩士班碩士論文, 2016.
    58.Wright, A., et al., Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics, 2005. 5(9): p. 2443-2452.
    59.Xu, H., et al., Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature, 2014. 513(7517): p. 237-241.
    60.Grogono-Thomas, R., et al., Roles of the Surface Layer Proteins ofCampylobacter fetus subsp. fetus in Ovine Abortion. Infection and Immunity, 2000. 68(3): p. 1687-1691.
    61.Sára, M. and U.B. Sleytr, S-layer proteins. Journal of Bacteriology, 2000. 182(4): p. 859-868.
    62.Ausiello, C.M., et al., Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes and Infection, 2006. 8(11): p. 2640-2646.
    63.Hsu, L.-C., et al., A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proceedings of the National Academy of Sciences, 2008. 105(22): p. 7803-7808.
    64.Takeoka, A., et al., Purification and characterization of S layer proteins from Clostridium difficile GAI 0714. Microbiology, 1991. 137(2): p. 261-267.
    65.Fagan, R.P., et al., Structural insights into the molecular organization of the S‐layer from Clostridium difficile. Molecular Microbiology, 2009. 71(5): p. 1308-1322.
    66.Lynch, M., et al., Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evolutionary Biology, 2017. 17(1): p. 90.
    67.Moayeri, M., et al., Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment. PLoS Pathogens, 2010. 6(12): p. e1001222.
    68.Gorfu, G., et al., Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. MBio, 2014. 5(1): p. e01117-13.
    69.Zhong, Y., A. Kinio, and M. Saleh, Functions of NOD-like receptors in human diseases. Frontiers In Immunology, 2013. 4.
    70.Tschopp, J., F. Martinon, and K. Burns, NALPs: a novel protein family involved in inflammation. Nature reviews. Molecular Cell Biology, 2003. 4(2): p. 95.
    71.Lo, Y.-H., et al., Selective inhibition of the NLRP3 inflammasome by targeting to promyelocytic leukemia protein in mouse and human. Blood, 2013. 121(16): p. 3185-3194.

    無法下載圖示 校內:2022-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE