| 研究生: |
吳建儒 Wu, Chien-Ju |
|---|---|
| 論文名稱: |
磺酸化聚偏二氟乙烯與其混摻物之合成鑑定及其於鋰電池之應用 Synthesis and Characterization of Sulfonated Polyvinylidiene Fluoride and Its Blendings Used for Lithium Batteries |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 正極 、黏著劑 、磺酸根基團 、聚丙烯腈 、磷酸鋰鐵 、鋰電池 |
| 外文關鍵詞: | cathode, binder, sulfonic acid group, polyacrylonitrile, LiFePO4, Lithium battery |
| 相關次數: | 點閱:114 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將聚偏二氟乙烯(PVDF)和甲基丙烯酸縮水甘油脂(GMA)以原子轉移自由基聚合法合成接枝高分子(PgPGMA),接著以牛磺酸鋰將其磺酸化,得到最後產物SPgPGMA。本研究以核磁共振光譜和傅立葉轉換紅外線光譜證實成功合成出SPgPGMA,並將SPgPGMA以及其混摻聚丙烯腈(PAN)之混摻物作為黏著劑應用於鋰電池磷酸鋰鐵正極。從SEM圖可以觀察到磷酸鋰鐵正極使用其混摻物作為黏著劑,由於磺酸根基團和氰基基團所帶的負電性,使得分子間產生相互作用力,以及氰基基團的高極性,因此能具有較強的附著力和較好的分散性。本實驗藉由循環伏安法、充放電測試、電化學阻抗以及長效效能對SPgPGMA以及其混摻物之鋰電池進行電化學測試,並與PVDF鋰電池進行比較,從結果可以發現磺酸根基團顯著提升其離子傳導能力,因此使SPgPGMA及其混摻物之鋰電池具有較少的極化現象和較低的介面阻抗等特色。經由充放電測試,SPgPGMA以及其混摻物之鋰電池都較PVDF擁有較好的放電電容量,尤其是SPg3.6PGMA混摻PAN系統之鋰電池在10C放電速率擁有108mAhg-1放電電容量,且仍保有最穩定的電容保持率(10C/0.1C=72%),此外,本實驗所使用的黏著劑鋰電池,經由200圈充放電後,都保有高於95%的庫侖效率。
A novel graft copolymer consisting of poly(vinylidene fluoride)(PVDF) backbone and poly(glycidyl methacrylate) side chains, that is, PgPGMA, was synthesized by atom transfer radical polymerization(ATRP). Then PgPGMA was sulfonated by Lithium 2-aminoethanesulfonate, followed by the product SPgPGMA. Successful synthesis of the polymer was confirmed by 1H NMR and FT-IR. SPgPGMA and its blending, which is mixed with polyacrylonitrile(PAN) were prepared as binders for LiFePO4 cathode of lithium batteries. The cathodes with the blending exhibit strong adhesion and well dispersion properties observed by SEM, due to the interaction force among the negative charge of the sulfonic acid group and the polarity of the nitrile group. The electrochemical performances were evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle test, cycle life, and compared with the cathode prepared with PVDF binder. Since sulfonic acid group enhances the ionic conductivity and Li+ diffusion, the cathodes with SPgPGMA and its blending feature low polarization, less interfacial resistance and good activity for electrochemical reaction. The cathodes with SPgPGMA and its blending display better discharge capacity than with PVDF, especially for the cathode with SPgPGMA blending PAN shows the highest capacity at 10C (=108 mAhg-1) and maintains the most stable capacity retention (10C/0.1C=72%). In addition, all the binders used for LiFePO4 cathode in this research, have stable coulombic efficiency (>95%) in cycle life after 200 cycles.
1. Li, Y.; Song, J.; Yang, J., A Review on Structure Model and Energy System Design of Lithium-Ion Battery in Renewable Energy Vehicle. Renewable and Sustainable Energy Reviews 2014, 37, 627-633.
2. Tarascon, J.-M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359-367.
3. Lin, D.; Liu, Y.; Cui, Y., Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology 2017, 12, 194-206.
4. Scrosati, B., History of Lithium Batteries. Journal of solid state electrochemistry 2011, 15, 1623-1630.
5. Ozawa, K., Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: The LiCoO2/C System. Solid State Ionics 1994, 69, 212-221.
6. Doyle, M.; Fuller, T. F.; Newman, J., The Importance of the Lithium Ion Transference Number in Lithium/Polymer Cells. Electrochimica Acta 1994, 39, 2073-2081.
7. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.
8. Padhi, A. K.; Nanjundaswamy, K.; Goodenough, J. B., Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of the electrochemical society 1997, 144, 1188-1194.
9. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B., Development and Challenges of Lifepo 4 Cathode Material for Lithium-Ion Batteries. Energy & Environmental Science 2011, 4, 269-284.
10. Ravet, N.; Chouinard, Y.; Magnan, J.; Besner, S.; Gauthier, M.; Armand, M., Electroactivity of Natural and Synthetic Triphylite. Journal of Power Sources 2001, 97, 503-507.
11. Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M., Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes. Nature materials 2002, 1, 123-128.
12. Zhang, S. S., A Review on the Separators of Liquid Electrolyte Li-Ion Batteries. Journal of Power Sources 2007, 164, 351-364.
13. Arora, P.; Zhang, Z., Battery Separators. Chemical reviews 2004, 104, 4419-4462.
14. Chou, S.-L.; Pan, Y.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Small Things Make a Big Difference: Binder Effects on the Performance of Li and Na Batteries. Physical Chemistry Chemical Physics 2014, 16, 20347-20359.
15. Maleki, H.; Deng, G.; Anani, A.; Howard, J., Thermal Stability Studies of Li‐Ion Cells and Components. Journal of The electrochemical society 1999, 146, 3224-3229.
16. Liu, G.; Zheng, H.; Simens, A.; Minor, A.; Song, X.; Battaglia, V., Optimization of Acetylene Black Conductive Additive and Pvdf Composition for High-Power Rechargeable Lithium-Ion Cells. Journal of The Electrochemical Society 2007, 154, A1129-A1134.
17. Choi, D.; Wang, D.; Viswanathan, V. V.; Bae, I.-T.; Wang, W.; Nie, Z.; Zhang, J.-G.; Graff, G. L.; Liu, J.; Yang, Z., Li-Ion Batteries from LiFePO4 Cathode and Anatase/Graphene Composite Anode for Stationary Energy Storage. Electrochemistry Communications 2010, 12, 378-381.
18. Hu, S.; Li, Y.; Yin, J.; Wang, H.; Yuan, X.; Li, Q., Effect of Different Binders on Electrochemical Properties of Lifepo 4/C Cathode Material in Lithium Ion Batteries. Chemical Engineering Journal 2014, 237, 497-502.
19. Yang, J.; Takeda, Y.; Imanishi, N.; Ichikawa, T.; Yamamoto, O., Study of the Cycling Performance of Finely Dispersed Lithium Alloy Composite Electrodes under High Li-Utilization. Journal of power sources 1999, 79, 220-224.
20. Chen, Z.; Christensen, L.; Dahn, J., Study of the Mechanical and Electrical Properties of Carbon/Poly (Vinylidene Fluoride–Tetrafluoroethylene–Propylene) Films Crosslinked with Triethylenetetramine: Possible Application as Binder for Lithium‐Ion Battery Electrodes. Journal of applied polymer science 2004, 91, 2949-2957.
21. Li, J.; Christensen, L.; Obrovac, M.; Hewitt, K.; Dahn, J., Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of the Electrochemical Society 2008, 155, A234-A238.
22. Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X., Simple Annealing Process for Performance Improvement of Silicon Anode Based on Polyvinylidene Fluoride Binder. Journal of Power Sources 2010, 195, 2069-2073.
23. Oh, J.-M.; Geiculescu, O.; DesMarteau, D.; Creager, S., Ionomer Binders Can Improve Discharge Rate Capability in Lithium-Ion Battery Cathodes. Journal of the Electrochemical Society 2011, 158, A207-A213.
24. Maleki, H.; Deng, G.; Kerzhner‐Haller, I.; Anani, A.; Howard, J. N., Thermal Stability Studies of Binder Materials in Anodes for Lithium‐Ion Batteries. Journal of The Electrochemical Society 2000, 147, 4470-4475.
25. Oskam, G.; Searson, P. C.; Jow, T. R., Sol‐Gel Synthesis of Carbon/Silica Gel Electrodes for Lithium Intercalation. Electrochemical and solid-state letters 1999, 2, 610-612.
26. Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K., LiFePO4 Water-Soluble Binder Electrode for Li-Ion Batteries. Journal of Power Sources 2007, 163, 1047-1052.
27. Zhang, S.; Xu, K.; Jow, T., Evaluation on a Water-Based Binder for the Graphite Anode of Li-Ion Batteries. Journal of power sources 2004, 138, 226-231.
28. 刘欣; 赵海雷; 解晶莹; 汤卫平; 潘延林; 吕鹏鹏, 锂离子电池高比容量负极用粘结剂. 化学进展 2013, 25, 1401-1410.
29. Lee, J.-H.; Lee, S.; Paik, U.; Choi, Y.-M., Aqueous Processing of Natural Graphite Particulates for Lithium-Ion Battery Anodes and Their Electrochemical Performance. Journal of power sources 2005, 147, 249-255.
30. Lee, J.-H.; Choi, Y.-M.; Paik, U.; Park, J.-G., The Effect of Carboxymethyl Cellulose Swelling on the Stability of Natural Graphite Particulates in an Aqueous Medium for Lithium Ion Battery Anodes. Journal of electroceramics 2006, 17, 657-660.
31. Lee, J.-H.; Kim, J.-S.; Kim, Y. C.; Zang, D. S.; Paik, U., Dispersion Properties of Aqueous-Based LiFePO4 Pastes and Their Electrochemical Performance for Lithium Batteries. Ultramicroscopy 2008, 108, 1256-1259.
32. Lee, J.-H.; Kim, J.-S.; Kim, Y. C.; Zang, D. S.; Choi, Y.-M.; Park, W. I.; Paik, U., Effect of Carboxymethyl Cellulose on Aqueous Processing of LiFePO4 Cathodes and Their Electrochemical Performance. Electrochemical and Solid-State Letters 2008, 11, A175-A178.
33. Li, C.-C.; Wang, Y.-W., Binder Distributions in Water-Based and Organic-Based LiCoO2 Electrode Sheets and Their Effects on Cell Performance. Journal of the Electrochemical Society 2011, 158, A1361-A1370.
34. Wang, Z.; Dupré, N.; Gaillot, A.-C.; Lestriez, B.; Martin, J.-F.; Daniel, L.; Patoux, S.; Guyomard, D., Cmc as a Binder in LiNi0.4Mn1.6O4V5 Cathodes and Their Electrochemical Performance for Li-Ion Batteries. Electrochimica Acta 2012, 62, 77-83.
35. Li, J.; Daniel, C.; Wood, D., Materials Processing for Lithium-Ion Batteries. Journal of Power Sources 2011, 196, 2452-2460.
36. Cai, Z.; Liang, Y.; Li, W.; Xing, L.; Liao, Y., Preparation and Performances of Lifepo 4 Cathode in Aqueous Solvent with Polyacrylic Acid as a Binder. Journal of Power Sources 2009, 189, 547-551.
37. Li, J.; Le, D.-B.; Ferguson, P.; Dahn, J., Lithium Polyacrylate as a Binder for Tin–Cobalt–Carbon Negative Electrodes in Lithium-Ion Batteries. Electrochimica Acta 2010, 55, 2991-2995.
38. Wang, L.; Dong, Z.; Wang, D.; Zhang, F.; Jin, J., Covalent Bond Glued Sulfur Nanosheet-Based Cathode Integration for Long-Cycle-Life Li–S Batteries. Nano letters 2013, 13, 6244-6250.
39. Gong, L.; Nguyen, M. H. T.; Oh, E.-S., High Polar Polyacrylonitrile as a Potential Binder for Negative Electrodes in Lithium Ion Batteries. Electrochemistry Communications 2013, 29, 45-47.
40. Tsao, C.-H.; Hsu, C.-H.; Kuo, P.-L., Ionic Conducting and Surface Active Binder of Poly (Ethylene Oxide)-Block-Poly (Acrylonitrile) for High Power Lithium-Ion Battery. Electrochimica Acta 2016, 196, 41-47.
41. Lee, J.-T.; Chu, Y.-J.; Peng, X.-W.; Wang, F.-M.; Yang, C.-R.; Li, C.-C., A Novel and Efficient Water-Based Composite Binder for LiCoO2 Cathodes in Lithium-Ion Batteries. Journal of Power Sources 2007, 173, 985-989.
42. Zhang, S.; Jow, T., Study of Poly (Acrylonitrile-Methyl Methacrylate) as Binder for Graphite Anode and LiMn2O4 Cathode of Li-Ion Batteries. Journal of Power sources 2002, 109, 422-426.
43. Garsuch, R. R.; Le, D.-B.; Garsuch, A.; Li, J.; Wang, S.; Farooq, A.; Dahn, J., Studies of Lithium-Exchanged Nafion as an Electrode Binder for Alloy Negatives in Lithium-Ion Batteries. Journal of The Electrochemical Society 2008, 155, A721-A724.
44. Wei, Z.; Xue, L.; Nie, F.; Sheng, J.; Shi, Q.; Zhao, X., Study of Sulfonated Polyether Ether Ketone with Pendant Lithiated Fluorinated Sulfonic Groups as Ion Conductive Binder in Lithium-Ion Batteries. Journal of Power Sources 2014, 256, 28-31.
45. Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K., Study on Polymer Binders for High-Capacity Sio Negative Electrode of Li-Ion Batteries. The Journal of Physical Chemistry C 2011, 115, 13487-13495.
46. Jeong, Y. K.; Kwon, T.-w.; Lee, I.; Kim, T.-S.; Coskun, A.; Choi, J. W., Hyperbranched Β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries. Nano letters 2014, 14, 864-870.
47. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J., A Highly Cross‐Linked Polymeric Binder for High‐Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie International Edition 2012, 51, 8762-8767.
48. Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D., Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐Ion Batteries. Advanced Functional Materials 2014, 24, 5904-5910.
49. Manthiram, A.; Fu, Y.; Su, Y.-S., Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of chemical research 2012, 46, 1125-1134.
50. Ai, G.; Dai, Y.; Ye, Y.; Mao, W.; Wang, Z.; Zhao, H.; Chen, Y.; Zhu, J.; Fu, Y.; Battaglia, V., Investigation of Surface Effects through the Application of the Functional Binders in Lithium Sulfur Batteries. Nano Energy 2015, 16, 28-37.
51. Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y., A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries. Advanced Materials 2017, 29.
52. Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D., Why Peo as a Binder or Polymer Coating Increases Capacity in the Li–S System. Chemical Communications 2013, 49, 8531-8533.
53. Wang, J.-S.; Matyjaszewski, K., Controlled/" Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. Journal of the American Chemical Society 1995, 117, 5614-5615.
54. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(Triphenylphosphine) Ruthenium (Ii)/Methylaluminum Bis (2, 6-Di-Tert-Butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721-1723.
55. Matyjaszewski, K.; Xia, J., Atom Transfer Radical Polymerization. Chemical reviews 2001, 101, 2921-2990.