簡易檢索 / 詳目顯示

研究生: 陳駿琰
Chen, Jin-Yan
論文名稱: 含有奈米結構之微流道在親疏水表面的沸騰熱傳現象與流場觀察之研究
Fabrication of Nanostructure Based Hydrophilic and Hydrophobic Surface Micro-Channel and The Case for Study of Boiling Flow Phenomena
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 微流道奈米結構親水性疏水性奈米線
外文關鍵詞: microchannel, nanostructure, hydrophilic, hydrophobic, nanowire
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗的目的在於研究一矽質微流道,利用硝酸銀溶液蝕刻出矽奈米線,使得微流道底部形成超親水表面,完成親水性微流道,再使用過氟庚基三氯矽烷汽化至微流道親水表面使之翻轉為超疏水表面,完成疏水性微流道。
    量測的部分將壓力感測器埋設在微流道的入口端,可詳細的記錄流道內壓力隨時間變化的曲線圖,5條熱偶合線以等距的方式埋設在流道底部藉以記錄不同流量與不同熱通量條件下流道的壁面溫度分佈圖,另外使用影像擷取設備,拍下流道內之流譜圖,觀察親疏水微流道內的流場與氣泡成核現象。
    製程方面使用感應式耦合電漿蝕刻系統(ICP),以分段式蝕刻確保微流道的準直性,流道的長為30mm、寬為1000μm、高為100μm,水力直徑Dh=181.82μm,並在微流道底部以硝酸銀及氫氟酸的溶液蝕刻出奈米線,陽極接合部分則是採用與矽膨脹係數相近的Pyrex 7740玻璃,加熱後施加一壓力與電壓進行接合。

    The goal of this study is to develop a silicon micro-channel system,
    use AgNO3 etch SiNWS, making micro-channel bottom super hydrophilic, achieve hydrophilic micro-channel, and hydrophobic material was deposited at the bottom, reverse it to super hydrophobic surface , complete the hydrophobic micro-channel.
    To messure the test section, set the pressure sensor at the micro-channel inlet, it can take down the pressuer in the channel, and five thermocouple set as same distance in the bottom of channel to take down tempureture distribution in different condition, and use CCD system, take down the pattern in the channel, observe the flow map and bubble nucleation in hydrophilic and hydrophilic micro-channel.
    In the processes of fabrication, the rectangular micro-channel in the (100) silicon wafer were fabricated by the Inductive Couple Plasma Etcher system. These micro-channel, a length of 30mm, a width of 1000μm and depth of 100μm, had on identical rectangular cross-section with a hydraulic diameter of 181.82μm and successfully use nanostructures with the AgNO3 solution etch silicon nanowire in micro-channel which anodic bonding with Pyrex 7740glass.

    摘要I AbstractIII 致謝V 目錄VI 圖目錄IX 符號說明XIII 第一章 緒論1 1-1 前言1 1-2 文獻回顧1 1-3微流道表面矽奈米線的成長機制4 1-3-1 奈米線之生長方法4 第二章 實驗設計與步驟7 2-1 實驗環路及設備7 2-1-1 微量注射泵浦7 2-1-2 測試段7 2-1-3 加熱模組8 2-1-4 加熱電源供應器8 2-1-5 精密電子天平9 2-1-6 X-Y-Z三軸平台9 2-1-7 溫度擷取系統9 2-1-8 壓力擷取系統9 2-1-9 個人電腦10 2-1-10 玻璃光纖照明系統10 2-2 實驗量測儀器10 2-2-1 溫度量測10 2-2-2 壓力量測11 2-2-3 流量控制與量測12 2-2-4 影像擷取與影像處理設備12 2-3流道內部運動分析12 2-4 熱傳分析計算14 2-5 實驗方法與步驟15 2-5-1 實驗方法15 2-5-2 實驗流程16 第三章 含有奈米結構之矽質微流道製作流程19 3-1 微流道製作過程19 3-1-1晶片清洗技術19 3-1-2 薄膜沉積技術21 3-1-3黃光微影技術22 3-1-4感應耦合式蝕刻系統25 3-1-5濕式蝕刻系統26 3-1-6 陽極接合26 3-1-6-1 晶片接合技術之原理與應用27 3-2 微流道與含有奈米結構之微流道製程27 3-2-1 光罩設計27 3-2-2 微流道之製程步驟28 3-2-3 奈米結構之矽質微流道製作流程29 3-2-4 超疏水性之矽質微流道製作流程31 第四章 結果與討論32 4-1壁面溫度與進口壓力量測結果32 4-2流場流譜圖分析33 4-3 微流道參數條件與流譜之關係35 4-4 臨界熱通量攀升比較圖36 第五章 結論37 參考文獻39 圖目錄 圖1-1 採用分段蝕刻奈米線之SEM剖面圖42 圖1-2 垂直擺放蝕刻奈米線之SEM剖面圖42 圖1-3 實驗參數所蝕刻奈米線之SEM剖面圖43 圖1-4 實驗參數所蝕刻奈米線之SEM剖面圖(高度5.71um)43 圖1-5 實驗參數所蝕刻奈米線之SEM剖面圖(直徑84.4nm)44 圖2-1 實驗環路圖45 圖2-2 測試段的剖面示意圖45 圖3-1普通矽質微流道前段製程46 圖3-2普通矽質微流道後段製程47 圖3-3含有奈米線結構微流道製程47 圖3-4超疏水微流道製程48 圖3-5經濕蝕刻後之晶圓48 圖3-6蝕刻後流道進口端經OM拍攝圖49 圖3-7蝕刻後尺標經OM拍攝圖49 圖3-8超親水表面接觸角量測圖49 圖3-9超疏水表面接觸角量測圖50 圖3-10 微流道成品圖50 圖4-1 q”=266.334 kw/m2 , Re=22之璧面溫度分佈圖51 圖4-2 q”=266.334 kw/m2 , Re=22之壓力量測圖51 圖4-3 q”=300.995 kw/m2 , Re=22之璧面溫度分佈圖52 圖4-4 q”=300.995 kw/m2 , Re=22之壓力量測圖52 圖4-5 q”=354.864 kw/m2 , Re=22之璧面溫度分佈圖53 圖4-6 q”=354.864 kw/m2 , Re=22之壓力量測圖53 圖4-7 q”=266.334 kw/m2 , Re=12之璧面溫度分佈圖54 圖4-8 q”=266.334 kw/m2 , Re=12之壓力量測圖54 圖4-9 q”=300.995 kw/m2 , Re=12之璧面溫度分佈圖55 圖4-10 q”=300.995 kw/m2 , Re=12之壓力量測圖55 圖4-11 q”=354.864 kw/m2 , Re=12之璧面溫度分佈圖56 圖4-12 q”=354.864 kw/m2 , Re=12之壓力量測圖56 圖4-13 q”=266.334 kw/m2 , Re=22之璧面溫度分佈圖(奈米線結構)57 圖4-14 q”=266.334 kw/m2 , Re=22之壓力量測圖(奈米線結構)57 圖4-15 q”=300.995 kw/m2 , Re=22之璧面溫度分佈圖(奈米線結構58 圖4-16 q”=300.995 kw/m2 , Re=22之璧面壓力量測圖(奈米線結構58 圖4-17 q”=354.864 kw/m2 , Re=22之璧面溫度分佈圖(奈米線結構) 59 圖4-18 q”=354.864 kw/m2 , Re=22之壓力量測圖(奈米線結構)59 圖4-19 q”=266.334 kw/m2 , Re=12之璧面溫度分佈圖(奈米線結構)60 圖4-20 q”=266.334 kw/m2 , Re=12之壓力量測圖(奈米線結構)60 圖4-21 q”=300.995 kw/m2 , Re=12之璧面溫度分佈圖(奈米線結構) 61 圖4-22 q”=300.995 kw/m2 , Re=12之壓力量測圖(奈米線結構)61 圖4-23 q”=354.864 kw/m2 , Re=12之璧面溫度分佈圖(奈米線結構)62 圖4-24 q”=354.864 kw/m2 , Re=12之壓力量測圖(奈米線結構)62 圖4-25 q”=266.334 kw/m2 , Re=22之璧面溫度分佈圖(超疏水表面) 63 圖4-26 q”=266.334 kw/m2 , Re=22之壓力量測圖(超疏水表面)63 圖4-27 q”=300.995 kw/m2 , Re=22之璧面溫度分佈圖(超疏水表面)64 圖4-28 q”=300.995 kw/m2 , Re=22之壓力感測圖(超疏水表面)64 圖4-29 q”=354.864 kw/m2 , Re=22之璧面溫度分佈圖(超疏水表面)65 圖4-30 q”=354.864 kw/m2 , Re=22之壓力量測圖(超疏水表面)65 圖4-31 q”=266.334 kw/m2 , Re=12之璧面溫度分佈圖(超疏水表面)66 圖4-32 q”=266.334 kw/m2 , Re=12之壓力量測圖(超疏水表面)66 圖4-33 q”=300.995 kw/m2 , Re=12之璧面溫度分佈圖(超疏水表面)67 圖4-34 q”=300.995 kw/m2 , Re=12之壓力量測圖(超疏水表面)67 圖4-35 q”=354.864 kw/m2 , Re=12之璧面溫度分佈圖(超疏水表面)68 圖4-36 q”=354.864 kw/m2 , Re=12之壓力量測圖(超疏水表面)68 圖4-37 q”/G= 2.3 kJ/kg 壁面溫度攀升示意圖69 圖4-38微流道內之流譜隨時間變化圖70 圖4-39超親水微流道內之流譜隨時間變化(無週期性)70 圖4-40超親水微流道內之流譜隨時間變化圖(有週期性)72 圖4-41超疏水微流道內之流譜隨時間變化圖73 圖4-42 普通矽質微流道之氣泡成核現象圖73 圖4-43 奈米線結構微流道之氣泡成核現象圖74 圖4-44 超疏水性微流道之氣泡成核現象圖74 圖4-45普通矽質微流道熱通量和流量與流譜關係圖75 圖4-46超疏水微流道熱通量和流量與流譜關係圖75 圖4-47超親水微流道熱通量和流量與流譜關係圖76 圖4-48臨界熱通量攀升示意圖76

    【1】D. B. Tuckerman, R. F. W. Pease, “High performance heat sinking for VLSI, IEEE Electronic Device letters,” Vol. EDL- 2, No.5 pp.126-129, (1981).
    【2】G. Hetsroni, A. Mosyak, Z. Segal, “Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels,” IEEE Transactions on Components and Packaging Technologies, 24, 1, 17 (2001).
    【3】L. Zhang, J. M. Koo, L. Jiang, S .S. Banerjee, M. Ashegi, K. E. Goodson, J. G. Santiago, T. W. Kenny, “Measurement and modeling of two-phase flow in microchannels with nearly- constant heat flux boundary conditions,” Micro-electro- mechanical Systems (MEMS)2000, MEMS-Vol.2, ASME, Orlando, FL, pp. 129–135, (2000).
    【4】L. Jiang, M. Wong, Y. Zohar, “Phase change in microchannel heat sink under forced convection boiling,” International Journal of Heat and Mass Transfer 48 ,1572–1582, (2005).
    【5】V. Khanikar, I. Mudawar, T. S. Fisher , “Flow boiling in a microchannel coated carbon nanotubes,” IEEE, pp 639 – 649, (2009).
    【6】G. Wang et al., “ International journal of heat and mass transfer 50,” 4297–4310, (2007).
    【7】H. Y. Wu, P. Cheng, “Visualization and measurements of periodic boiling in silicon microchannels,” Int. J. Heat Mass Transfer, 46, 2603–14, (2003).
    【8】I. Mudawar, “Assessment of high heat flux thermal managementschemes,” IEEE Transactions on Components and Packaging Technologies, 24, 122–141, (2001).
    【9】J. L. Xu, J. J. Zhou, Y. H. Gan, “Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes,” Int. J. Heat Mass Transfer, 48, 313–34, (2005).
    【10】Y. Peles, “Two-phase boiling flow in microchannels-instabilities issues and flow regime mapping,” ASME Paper no.ICMM2003-1069 pp. 559–566, (2003).
    【11】J. R. Thome, “Enhanced boiling heat transfer,” Hemisphere Pub. Corp, (1990).
    【12】M. B. Bowers, I. Mudawar, “High flux boiling in low flow rate, lowpressure drop mini-channel and microchannel heat sink,” Int. J. Heat Mass Transfer, vol. 37, pp. 321–332, (1994).
    【13】A. Kawahara, P. M. -Y. Chung, M. Kawaji, “Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel,” Int. J. Multiphase Flow, 28, 1411–1435, (2002).
    【14】T. Y. Liu, P. L. Li, C. W. Liu, C. Gau, “Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface,” International Journal of Heat and Mass Transfer, 54, 126–134, (2011).
    【15】K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater, 13, 127-132, (2003).
    【16】T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, G. G. Siu, “Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method,” Applied Physics A, 81, 669-671, (2005).
    【17】K. Q. Peng, J. Zhu, “Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution,” Electrochem. Acta, 49, 2563-2568, ( 2004).
    【18】K. Q. Peng, Z. P. Huang, J. Zhu, “Fabrication of large-area silicon nanowire p-n junction diode arrays,” Adv. Mater, 16, 73-76, (2004).
    【19】H. Y. Wu, P. Cheng, H. Wang, “Pressure drop and flow boiling instabilities in silicon microchannel heat sinks,” J. Micromech. Microeng, 16, 2138–2146, (2006).
    【20】C. Y. Kuo, C. Gau, “Control of superhydrophilicity and superhydrophobicity of a superwetting silicon nanowire surface,” J. Electrochem. Soc. Volume. 157, Issue 9, pp. K201-K205, (2010).
    【21】陳弘達, “以微機電技術製作含有溫度感測器之微流道系統及兩相流熱傳研究,” 碩士論文, (2005).
    【22】劉庭宇, “研發含有奈米結構之微流道及兩相流現象研究,” 碩士論文, (2009).
    【23】李浩池, “製備大面積矽單晶及鎳矽化物奈米線陣列之研究,” 碩士論文,(2006).
    【24】Hong Xiao, “半導體製程技術導論,” 學銘圖書, (2009).

    下載圖示 校內:2013-09-05公開
    校外:2013-09-05公開
    QR CODE