| 研究生: |
陳駿琰 Chen, Jin-Yan |
|---|---|
| 論文名稱: |
含有奈米結構之微流道在親疏水表面的沸騰熱傳現象與流場觀察之研究 Fabrication of Nanostructure Based Hydrophilic and Hydrophobic Surface Micro-Channel and The Case for Study of Boiling Flow Phenomena |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 微流道 、奈米結構 、親水性 、疏水性 、奈米線 |
| 外文關鍵詞: | microchannel, nanostructure, hydrophilic, hydrophobic, nanowire |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗的目的在於研究一矽質微流道,利用硝酸銀溶液蝕刻出矽奈米線,使得微流道底部形成超親水表面,完成親水性微流道,再使用過氟庚基三氯矽烷汽化至微流道親水表面使之翻轉為超疏水表面,完成疏水性微流道。
量測的部分將壓力感測器埋設在微流道的入口端,可詳細的記錄流道內壓力隨時間變化的曲線圖,5條熱偶合線以等距的方式埋設在流道底部藉以記錄不同流量與不同熱通量條件下流道的壁面溫度分佈圖,另外使用影像擷取設備,拍下流道內之流譜圖,觀察親疏水微流道內的流場與氣泡成核現象。
製程方面使用感應式耦合電漿蝕刻系統(ICP),以分段式蝕刻確保微流道的準直性,流道的長為30mm、寬為1000μm、高為100μm,水力直徑Dh=181.82μm,並在微流道底部以硝酸銀及氫氟酸的溶液蝕刻出奈米線,陽極接合部分則是採用與矽膨脹係數相近的Pyrex 7740玻璃,加熱後施加一壓力與電壓進行接合。
The goal of this study is to develop a silicon micro-channel system,
use AgNO3 etch SiNWS, making micro-channel bottom super hydrophilic, achieve hydrophilic micro-channel, and hydrophobic material was deposited at the bottom, reverse it to super hydrophobic surface , complete the hydrophobic micro-channel.
To messure the test section, set the pressure sensor at the micro-channel inlet, it can take down the pressuer in the channel, and five thermocouple set as same distance in the bottom of channel to take down tempureture distribution in different condition, and use CCD system, take down the pattern in the channel, observe the flow map and bubble nucleation in hydrophilic and hydrophilic micro-channel.
In the processes of fabrication, the rectangular micro-channel in the (100) silicon wafer were fabricated by the Inductive Couple Plasma Etcher system. These micro-channel, a length of 30mm, a width of 1000μm and depth of 100μm, had on identical rectangular cross-section with a hydraulic diameter of 181.82μm and successfully use nanostructures with the AgNO3 solution etch silicon nanowire in micro-channel which anodic bonding with Pyrex 7740glass.
【1】D. B. Tuckerman, R. F. W. Pease, “High performance heat sinking for VLSI, IEEE Electronic Device letters,” Vol. EDL- 2, No.5 pp.126-129, (1981).
【2】G. Hetsroni, A. Mosyak, Z. Segal, “Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels,” IEEE Transactions on Components and Packaging Technologies, 24, 1, 17 (2001).
【3】L. Zhang, J. M. Koo, L. Jiang, S .S. Banerjee, M. Ashegi, K. E. Goodson, J. G. Santiago, T. W. Kenny, “Measurement and modeling of two-phase flow in microchannels with nearly- constant heat flux boundary conditions,” Micro-electro- mechanical Systems (MEMS)2000, MEMS-Vol.2, ASME, Orlando, FL, pp. 129–135, (2000).
【4】L. Jiang, M. Wong, Y. Zohar, “Phase change in microchannel heat sink under forced convection boiling,” International Journal of Heat and Mass Transfer 48 ,1572–1582, (2005).
【5】V. Khanikar, I. Mudawar, T. S. Fisher , “Flow boiling in a microchannel coated carbon nanotubes,” IEEE, pp 639 – 649, (2009).
【6】G. Wang et al., “ International journal of heat and mass transfer 50,” 4297–4310, (2007).
【7】H. Y. Wu, P. Cheng, “Visualization and measurements of periodic boiling in silicon microchannels,” Int. J. Heat Mass Transfer, 46, 2603–14, (2003).
【8】I. Mudawar, “Assessment of high heat flux thermal managementschemes,” IEEE Transactions on Components and Packaging Technologies, 24, 122–141, (2001).
【9】J. L. Xu, J. J. Zhou, Y. H. Gan, “Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes,” Int. J. Heat Mass Transfer, 48, 313–34, (2005).
【10】Y. Peles, “Two-phase boiling flow in microchannels-instabilities issues and flow regime mapping,” ASME Paper no.ICMM2003-1069 pp. 559–566, (2003).
【11】J. R. Thome, “Enhanced boiling heat transfer,” Hemisphere Pub. Corp, (1990).
【12】M. B. Bowers, I. Mudawar, “High flux boiling in low flow rate, lowpressure drop mini-channel and microchannel heat sink,” Int. J. Heat Mass Transfer, vol. 37, pp. 321–332, (1994).
【13】A. Kawahara, P. M. -Y. Chung, M. Kawaji, “Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel,” Int. J. Multiphase Flow, 28, 1411–1435, (2002).
【14】T. Y. Liu, P. L. Li, C. W. Liu, C. Gau, “Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface,” International Journal of Heat and Mass Transfer, 54, 126–134, (2011).
【15】K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater, 13, 127-132, (2003).
【16】T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, G. G. Siu, “Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method,” Applied Physics A, 81, 669-671, (2005).
【17】K. Q. Peng, J. Zhu, “Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution,” Electrochem. Acta, 49, 2563-2568, ( 2004).
【18】K. Q. Peng, Z. P. Huang, J. Zhu, “Fabrication of large-area silicon nanowire p-n junction diode arrays,” Adv. Mater, 16, 73-76, (2004).
【19】H. Y. Wu, P. Cheng, H. Wang, “Pressure drop and flow boiling instabilities in silicon microchannel heat sinks,” J. Micromech. Microeng, 16, 2138–2146, (2006).
【20】C. Y. Kuo, C. Gau, “Control of superhydrophilicity and superhydrophobicity of a superwetting silicon nanowire surface,” J. Electrochem. Soc. Volume. 157, Issue 9, pp. K201-K205, (2010).
【21】陳弘達, “以微機電技術製作含有溫度感測器之微流道系統及兩相流熱傳研究,” 碩士論文, (2005).
【22】劉庭宇, “研發含有奈米結構之微流道及兩相流現象研究,” 碩士論文, (2009).
【23】李浩池, “製備大面積矽單晶及鎳矽化物奈米線陣列之研究,” 碩士論文,(2006).
【24】Hong Xiao, “半導體製程技術導論,” 學銘圖書, (2009).