簡易檢索 / 詳目顯示

研究生: 劉鎔瑄
Liu, Jung-Hsuan
論文名稱: 水熱合成p-SnO/n-ZnSnO3異質接面薄膜及其壓電相關之應用
Hydrothermal Synthesis of SnO/ZnSnO3 Heterojunction Films and Their Piezoelectricity-related Applications
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 104
中文關鍵詞: 水熱法ZnSnO3奈米陣列SnO奈米顆粒p-SnO/n-ZnSnO3異質接面薄膜壓電性質光壓電性質光催化
外文關鍵詞: Hydrothermal synthesis, ZnSnO3 nanorod, SnO nanoparticle, p-SnO/n-ZnSnO3 heterojunction film, piezotronic effect, piezophototronic effect, photocatalyst
相關次數: 點閱:47下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,以水熱法在FTO基板上成長ZnSnO3奈米柱狀並結合SnO奈米顆粒以提升複合材料在可見光下的光催化表現。從TEM的NBDP及HRTEM結果中發現ZnSnO3由(104)、(110)和(214)面構成,而在複合材料中可以觀察到奈米顆粒附著在柱狀表面,進一步從NBDP及HRTEM分析中得知SnO及SnO2同時存在奈米顆粒中,代表在此製程中仍有部分雜相存在。透過XPS鍵結能的偏移證實ZnSnO3-SnO確實成功製成,另外,在Sn元素的分析也證實除了來自ZnSnO3及SnO的訊號外,也有部分SnO2貢獻。在UV-vis量測中得知ZnSnO3能隙為4 eV,而SnO能隙為2.1 eV。由Mott-Schottky斜率可知ZnSnO3為n-type而SnO為p-type,證實pn junction成功合成,並進一步整合UV-vis、Mott-Schottky及UPS繪製能帶圖。從PFM分析ZnSnO3的壓電係數(d33)大約為15.13 pm/ V。最後,在光降解中,分別探討RhB濃度及體積對降解效率的影響,發現在5ppm、5 mL具有優異的表現,其降解反應常數為12 × 10-3 min-1。由能帶圖得機制可以得知,p-n界面的電場確實能幫助電子的遷移,因此證明透過p-type SnO的結合確實可提升ZnSnO3在可見光下的應用。

    A p-SnO/n-ZnSnO3 heterojunction film was fabricated on fluorine-doped tin oxide (FTO) substrate through hydrothermal processes to enhance the photocatalytic performance under visible light illumination. The TEM analysis indicated the fabrication of single-crystal ZnSnO3 nanorods and SnO and SnO2 nanoparticles. The XPS results revealed all of the constituent elements with desirable valence states and the binding energy shift for the ZnSnO3-SnO composite, indicating the formation of the heterostructure. The result also revealed the impurities of SnO2 (approximately 37 %). The UV-vis analysis determined the band gaps of the ZnSnO3 and SnO of approximately 4 and 2.1 eV, respectively. Mott-Schottky measurement determined the n-type ZnSnO3, p-type SnO, and p-n junction for the composite. An energy band diagram was constructed on the basis of UV-vis and UPS measurements. The PFM results validated the piezoelectric coefficient (d33) of approximately 15.13 pm/V for the ZnSnO3. The photodegradation of various concentrations and volumes of RhB triggered by the sample was studied and the most promising degradation rate constant (k) was approximately 12 × 10-3 min-1. This was attributable to the induced built-in electric filed in the p-n junction, which improved the migration of photoinduced charge carriers.

    1.1 Background 2 1.2 Research Motivation 2 1.3 Research Objectives 3 1.4 Structure of The Thesis 3 2.1 Introduction 7 2.2 Photocatalyst 8 2.2.1 Photodegradation 9 A. Effect of morphology 10 B. Effect of doping 11 C. Heterojunction 12 2.2.2 Water splitting Reaction 14 2.3 Piezoelectric Material 15 2.3.1 Piezoelectricity 16 2.3.2 Piezotronic effect 17 2.3.3 Piezophotonics 18 2.3.4 Piezophototronics 19 2.3.5 Piezophotocatalysis 21 2.4 Piezo-enhanced Heterojunction Photocatalyst 23 2.4.1 Piezo-enhanced n-n junction 23 2.4.2 Piezo-enhanced p-n junction 24 2.5 Materials Perspective 26 2.5.1 Crystal structure of ZnSnO3 27 2.5.2 Crystal structure of SnO 28 2.6 Materials Fabrication Techniques 29 2.6.1 Synthesis techniques for ZnSnO3 29 2.6.2 Morphology of ZnSnO3 31 2.6.3 ZnSnO3 application 33 A. Photocatalyst 33 B. Nanogenerator 33 C. Strain sensor 34 2.6.4 Synthesis techniques for SnO 35 2.6.5 Morphology of SnO 37 2.6.6 SnO application 37 A. Photocatalyst 37 2.6.7 Advantages of hydrothermal process 38 3.1 Materials 40 3.2 Experimental Procedure 41 3.2.1 Substrate cleaning 41 3.2.2 Pure ZnSnO3 film 41 3.2.3 SnO film 42 3.2.4 ZnSnO3-SnO junction film 43 3.3 Characterization technique 44 3.3.1 X-ray diffraction (XRD) analysis 44 3.3.2 Scanning electron microscopy (SEM) 45 3.3.3 Focused ion beam (FIB) 46 3.3.4 Transmission electron microscope (TEM) 46 3.3.5 X-ray photoelectron spectroscopy (XPS) 47 3.3.6 Ultraviolet-visible (UV-vis) spectroscopy 48 3.3.7 Mott-Schottky (M-S) analysis 49 3.3.8 Ultraviolet photoelectron spectroscopy (UPS) 51 3.3.9 Piezotronic and piezophototronic analysis 51 3.3.10 Piezoelectric Force Microscopy (PFM) 52 3.3.11 Photodegradation analysis 53 4.1 Fabrication of composite 56 4.1.1 ZnSnO3 synthesis 56 4.1.1.1 ZnSnO3 film synthesis on FTO substrate 56 4.1.1.2 Morphology of ZnSnO3 56 4.1.2 SnO synthesis 59 4.1.2.1 SnO powder synthesis through NaOH 59 4.1.2.2 SnO powder synthesis through urea 59 4.1.2.3 SnO film on FTO substrate 61 4.1.3 Composite fabrication 62 4.1.3.1 XRD spectrum 62 4.1.3.2 Morphology observation 63 4.2 TEM results 66 4.2.1 ZnSnO3 film 66 4.2.2 ZnSnO3-SnO composite film 68 4.3 XPS analysis 71 4.3.1 ZnSnO3 film 71 4.3.2 SnO film 72 4.3.3 ZnSnO3-SnO composite film 73 4.3.4 Shift in chemical binding energy 74 4.4 UV-vis spectra 75 4.5 Mott-Schottky measurement 76 4.6 UPS results 77 4.7 Energy Band diagram 79 4.8 Electric property 80 4.8.1 Piezotronic effect 80 4.8.2 Piezophototronic effect 81 4.8.3 Piezoelectric Force Microscopy (PFM) 83 4.9 Photocatalytic measurement 84 4.9.1 Photodegradation 84 4.9.1.1 Effect of high concentrations of RhB 84 4.9.1.2 Effect of different concentrations of RhB 90 4.9.1.3 Dye volume 91 4.9.1.4 Cycling test 93 5.1 Conclusions 95 5.2 Future work 96 Reference 97

    [1] S. Chen, D. Huang, P. Xu, W. Xue, L. Lei, M. Cheng, R. Wang, X. Liu, and R. Deng, "Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?" Journal of Materials Chemistry A, 8, 2286-2322, (2020).
    [2] Y. Zhong, C. Peng, Z. He, D. Chen, H. Jia, J. Zhang, H. Ding, and X. Wu, "Interface engineering of heterojunction photocatalysts based on 1D nanomaterials." Catalysis Science & Technology, 11, 27-42, (2021).
    [3] Y. Li, M. Wu, Y. Wang, Q. Yang, X. Li, B. Zhang, and D. Yang, "Novel P-n Li2SnO3/g-C3N4 Heterojunction With Enhanced Visible Light Photocatalytic Efficiency Toward Rhodamine B Degradation." Front Chem, 8, 1-10, (2020).
    [4] L. You, M. Gao, T. Li, L. Guo, P. Chen, and M. Liu, "Investigation of the kinetics and mechanism of Z-scheme Ag3PO4/WO3 p–n junction photocatalysts with enhanced removal efficiency for RhB." New Journal of Chemistry, 43, 17104-17115, (2019).
    [5] Y. Zhao, X. Huang, X. Tan, T. Yu, X. Li, L. Yang, and S. Wang, "Fabrication of BiOBr nanosheets@TiO2 nanobelts p–n junction photocatalysts for enhanced visible-light activity." Applied Surface Science, 365, 209-217, (2016).
    [6] Y. Liu, Z.-H. Yang, P.-P. Song, R. Xu, and H. Wang, "Facile synthesis of Bi2MoO6 /ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue." Applied Surface Science, 430, 561-570, (2018).
    [7] M. F. Holick, "Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health." Anticancer Res, 36, 1345-1356, (2016).
    [8] T. Zhao, Y. Zhao, and L. Jiang, "Nano-/microstructure improved photocatalytic activities of semiconductors." Philos Trans A Math Phys Eng Sci, 371, 1-16, (2013).
    [9] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations." Chem Soc Rev, 44, 2893-2939, (2015).
    [10] C. G. Zoski, "Handbook of Electrochemistry." Elsevier B.V., UK, 1-935, (2007).
    [11] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting-materials and challenges." Chem Soc Rev, 46, 4645-4660, (2017).
    [12] A. Meng, B. Zhu, B. Zhong, L. Zhang, and B. Cheng, "Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity." Applied Surface Science, 422, 518-527, (2017).
    [13] J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, "Photocatalysis fundamentals and surface modification of TiO2 nanomaterials." Chinese Journal of Catalysis, 36, 2049-2070, (2015).
    [14] S. Ahmed and D. F. Ollis, "Solar Photoassisted Catalytic Decomposition of the Chlorinated Hydrocarbons Trichloroethylene and Trichloromethane." Solar Energy, 32, 597-601, (1984).
    [15] D. Beydoun, R. Amal, G. Low, and S. McEvoy, "Role of nanoparticles in photocatalysis." Journal of Nanoparticle Research, 1, 439-458, (1999).
    [16] S. T. M. Hoffmann M.R., W. Choi & D., Bahnemann, "Environmental applications of semiconductor photocatalysis." Chemical Reviews, 95, 69–96, (1995).
    [17] K. Perovic, F. M. Dela Rosa, M. Kovacic, H. Kusic, U. Lavrencic Stangar, F. Fresno, D. D. Dionysiou, and A. L. Bozic, "Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting." Materials, 13, 1-44, (2020).
    [18] K. Zhou, X. Li, S. Liu, and J. H. Lee, "Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells." Nanotechnology, 25, 1-6, (2014).-
    [19] M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y. Z. Chen, J. Nah, T. S. Matthews, Y. L. Chueh, J. W. Ager, and A. Javey, "p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production." Angew Chem Int Ed Engl, 51, 10760-10764, (2012).
    [20] O. Carp, "Photoinduced reactivity of titanium dioxide." Progress in Solid State Chemistry, 32, 33-177, (2004).
    [21] W. Y. Choi, A. Termin, and M. R. Hoffmann, "The Role of Metal-Ion Dopants in Quantum-Sized Tio2-Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics." Journal of Physical Chemistry, 98, 13669-13679, (1994).
    [22] M. D. H.-A. Juan M. Coronado • Fernando Fresno, Raquel Portela, "Metal Doping of Semiconductors for Improving Photoactivity." Springer-Verlag, London, 1-351, (2013).
    [23] S. Liu and X. Chen, "A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation." J Hazard Mater, 152, 48-55, (2008).
    [24] R. Mohammed, M. E. M. Ali, E. Gomaa, and M. Mohsen, "Green ZnO nanorod material for dye degradation and detoxification of pharmaceutical wastes in water." Journal of Environmental Chemical Engineering, 8, 1-8, (2020).
    [25] G.-Y. Zhang, Y. Feng, Y.-Y. Xu, D.-Z. Gao, and Y.-Q. Sun, "Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property." Materials Research Bulletin, 47, 625-630, (2012).
    [26] H. Lee, M. Kim, D. Sohn, S. H. Kim, S.-G. Oh, S. S. Im, and I. S. Kim, "Electrospun tungsten trioxide nanofibers decorated with palladium oxide nanoparticles exhibiting enhanced photocatalytic activity." RSC Advances, 7, 6108-6113, (2017).
    [27] J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, "Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review." Chem Soc Rev, 43, 6920-6937, (2014).
    [28] I.-h. Yoo, S. S. Kalanur, and H. Seo, "A nanoscale p–n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core-shell structure for highly efficient solar water splitting." Applied Catalysis B: Environmental, 250, 200-212, (2019).
    [29] Z. L. Wang, "Piezotronics and Piezo-Phototronics." pringer-Verlag Berlin Heidelberg, London, 1-254, (2012).
    [30] J. Lam, "Piezoelectricity." LibreTexts, 1-5, (2021)
    [31] Z. L. Wang and W. Wu, "Piezotronics and piezo-phototronics: fundamentals and applications." National Science Review, 1, 62-90, (2014).
    [32] X. Wang, D. Peng, B. Huang, C. Pan, and Z. L. Wang, "Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications." Nano Energy, 55, 389-400, (2019).
    [33] G. Hu, W. Guo, R. Yu, X. Yang, R. Zhou, C. Pan, and Z. L. Wang, "Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect." Nano Energy, 23, 27-33, (2016).
    [34] X. Han, M. Chen, C. Pan, and Z. L. Wang, "Progress in piezo-phototronic effect enhanced photodetectors." Journal of Materials Chemistry C, 4, 11341-11354, (2016).
    [35] Lun Pan, Shangcong Sun, Ying Chen, Peihong Wang, Jiyu Wang, Xiangwen Zhang, Ji-Jun Zou,* and Zhong Lin Wang, "Advances in Piezo-Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis." Adv. Energy Mater., 10, 1-25, (2020)
    [36] Simrjit Singh, Neeraj Khare, "Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst." Nano Energy, 38, 335-341, (2017)
    [37] Z. L. Wang, "Progress in piezotronics and piezo-phototronics." Adv Mater, 24, 4632-4646, (2012).
    [38] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z. L. Wang, "Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO(2) Nanoplatelets via Thermal Stress." ACS Nano, 10, 2636-2643, (2016).
    [39] Y. Bai, J. Zhao, Y. Li, Z. Lv, and K. Lu, "Preparation and photocatalytic performance of TiO2/PbTiO3 fiber composite enhanced by external force induced piezoelectric field." Journal of the American Ceramic Society, 102, 5415-5423, (2019).
    [40] H. Li, Y. Zhou, W. Tu, J. Ye, and Z. Zou, "State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance." Advanced Functional Materials, 25, 998-1013, (2015).
    [41] A. Tuluk, T. Mahon, S. van der Zwaag, and P. Groen, "Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites." Journal of Alloys and Compounds, 868, 1-7, (2021).
    [42] M.-K. Lo, S.-Y. Lee, and K.-S. Chang, "Study of ZnSnO3-Nanowire Piezophotocatalyst Using Two-Step Hydrothermal Synthesis." The Journal of Physical Chemistry C, 119, 5218-5224, (2015).
    [43] W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, and C. Sun, "Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities." Applied Catalysis B: Environmental, 185, 242-252, (2016).
    [44] Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas, and H. N. Alshareef, "Recent Developments in p-Type Oxide Semiconductor Materials and Devices." Adv Mater, 28, 3831-3892, (2016).
    [45] H. Hosono, "Recent progress in transparent oxide semiconductors: Materials and device application." Thin Solid Films, 515, 6000-6014, (2007).
    [46] H. Sato, T. Minami, S. Takata, and T. Yamada, "Transparent Conducting P-Type Nio Thin-Films Prepared by Magnetron Sputtering." Thin Solid Films, 236, 27-31, (1993).
    [47] A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, "First-principles calculations of native defects in tin monoxide." Physical Review B, 74, 1-8, (2006).
    [48] R. Zhang, Q. Wang, J. Zhang, L. Yin, Y. Li, S. Yin, and W. Cao, "Morphology modulation of SnO photocatalyst: from microplate to hierarchical architectures self-assembled with thickness controllable nanosheets." CrystEngComm, 20, 4651-4665, (2018).
    [49] A. T. Al-Hinai, M. H. Al-Hinai, and J. Dutta, "Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media." Materials Research Bulletin, 49, 645-650, (2014).
    [50] B. Tan, E. Toman, Y. G. Li, and Y. Y. Wu, "Zinc stannate (Zn2SnO4) dye-sensitized solar cells." Journal of the American Chemical Society, 129, 14, 4162-4163, (2007).
    [51] Jyh Ming Wu, Chen Xu, Yan Zhang and Zhong Lin Wang, " Lead-Free Nanogenerator Made from Single ZnSnO3 Microbelt." American Chemical Society, 6, 4335-4340, (2012).
    [52] T. Bora, M. H. Al-Hinai, A. T. Al-Hinai, J. Dutta, and C. M. Jantzen, "Phase Transformation of Metastable ZnSnO3 Upon Thermal Decomposition by In-Situ Temperature-Dependent Raman Spectroscopy." Journal of the American Ceramic Society, 98, 4044-4049, (2015).
    [53] J. Xu, X. Jia, X. Lou, and J. Shen, "One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles." Solid-State Electronics, 50, 504-507, (2006).
    [54] D. P. Kovacheva, K., "Preparation of Crystalline ZnSnO3 from Li2SnO3 by Low-temperature Ion Exchange." Solid State Ionics., 109, 327−332, (1998).
    [55] Y. Inaguma, M. Yoshida, and T. Katsumata, "A polar oxide ZnSnO3 with a LiNbO3-type structure." J Am Chem Soc, 130, 6704-6705, (2008).
    [56] H. Mizoguchi, H. W. Eng, and P. M. Woodward, "Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+." Inorganic Chemistry, 43, 1667-1680, (2004).
    [57] M. Yoshida, T. Katsumata, and Y. Inaguma, "High-pressure synthesis, crystal and electronic structures, and transport properties of a novel perovskite HgSnO3." Inorganic Chemistry, 47, 6296-6302, (2008).
    [58] Y. Inaguma, K. Hasumi, M. Yoshida, T. Ohba, and T. Katsumata, "High-pressure synthesis, structure, and characterization of a post-perovskite CaPtO3 with CaIrO3-type structure." Inorganic Chemistry, 47, 1868-1870, (2008).
    [59] C.-Y. C. Jyh Ming Wu, Yan Zhang, Kuan-Hsueh Chen, Ya Yang, Youfan Hu, Jr-Hau He, and Zhong Lin Wang, "Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO3 Nanowire-Microwire." ACS NANO., 6, 4369–4374, (2012).
    [60] M. A. Islam, M. K. S. B. Rafiq, H. Misran, M. A. Uzzaman, K. Techato, G. Muhammad, and N. Amin, "Tailoring of the Structural and Optoelectronic Properties of Zinc-Tin-Oxide Thin Films via Oxygenation Process for Solar Cell Application." IEEE Access, 8, 193560-193568, (2020).
    [61] X. Y. Xue, Y. J. Chen, Y. G. Wang, and T. H. Wang, "Synthesis and ethanol sensing properties of ZnSnO3 nanowires." Applied Physics Letters, 86, 1-4, (2005).
    [62] S. J. Cho, M. J. Uddin, and P. Alaboina, "Review of Nanotechnology for Cathode Materials in Batteries." Emerging Nanotechnologies in Rechargeable Energy Storage Systems, 83-129, (2017).
    [63] J. Y. Son, G. Lee, M. H. Jo, H. Kim, H. M. Jang, and Y. H. Shin, "Heteroepitaxial Ferroelectric ZnSnO3 Thin Film." Journal of the American Chemical Society, 131, 8386-8387, (2009).
    [64] Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, and M. Li, "Hydrothermal Synthesis of Nanomaterials." Journal of Nanomaterials, 2020, 1-3, (2020).
    [65] A. Rovisco, R. Branquinho, J. Martins, M. J. Oliveira, D. Nunes, E. Fortunato, R. Martins, and P. Barquinha, "Seed-Layer Free Zinc Tin Oxide Tailored Nanostructures for Nanoelectronic Applications: Effect of Chemical Parameters." ACS Appl Nano Mater, 1, 3986-3997, (2018).
    [66] A. Datta, D. Mukherjee, C. Kons, S. Witanachchi, and P. Mukherjee, "Evidence of superior ferroelectricity in structurally welded ZnSnO3 nanowire arrays." Small, 10, 4093-4099, (2014).
    [67] G. Wang, Y. Xi, H. Xuan, R. Liu, X. Chen, and L. Cheng, "Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes." Nano Energy, 18, 28-36, (2015).
    [68] M. Miyauchi, Z. Liu, Z. G. Zhao, S. Anandan, and K. Hara, "Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices." Chem Commun, 46, 1529-1531, (2010).
    [69] Y. Zeng, K. Zhang, X. Wang, Y. Sui, B. Zou, W. Zheng, and G. Zou, "Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages." Sensors and Actuators B: Chemical, 159, 245-250, (2011).
    [70] R. Guo, Y. Guo, H. Duan, H. Li, and H. Liu, "Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting." ACS Appl Mater Interfaces, 9, 8271-8279, (2017).
    [71] Y. Chen, L. Yu, Q. Li, Y. Wu, Q. Li, and T. Wang, "An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance." Nanotechnology, 23, 1-10, (2012).
    [72] H. Men, P. Gao, B. Zhou, Y. Chen, C. Zhu, G. Xiao, L. Wang, and M. Zhang, "Fast synthesis of ultra-thin ZnSnO3 nanorods with high ethanol sensing properties." Chem Commun (Camb), 46, 7581-7583, (2010).
    [73] J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, and Z. L. Wang, "Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts." Adv Mater, 24, 6094-6099, (2012).
    [74] A. Biswas, S. Saha, and N. R. Jana, "ZnSnO3 Nanoparticle-Based Piezocatalysts for Ultrasound-Assisted Degradation of Organic Pollutants." ACS Applied Nano Materials, 2, 1120-1128, (2019).
    [75] A. Rovisco, A. Dos Santos, T. Cramer, J. Martins, R. Branquinho, H. Aguas, B. Fraboni, E. Fortunato, R. Martins, R. Igreja, and P. Barquinha, "Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructuration." ACS Appl Mater Interfaces, 12, 18421-18430, (2020).
    [76] J. M. Wu, C. Y. Chen, Y. Zhang, K. H. Chen, Y. Yang, Y. F. Hu, J. H. He, and Z. L. Wang, "Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO3 Nanowire/Microwire." ACS Nano, 6, 4369-4374, (2012).
    [77] S. J. Lee, Y. Jang, H. J. Kim, E. S. Hwang, S. M. Jeon, J. S. Kim, T. Moon, K. T. Jang, Y. C. Joo, D. Y. Cho, and C. S. Hwang, "Composition, Microstructure, and Electrical Performance of Sputtered SnO Thin Films for p-Type Oxide Semiconductor." ACS Appl Mater Interfaces, 10, 3810-3821, (2018).
    [78] B. Kumar, D. H. Lee, S. H. Kim, B. Yang, S. Maeng, and S. W. Kim, "General Route to Single-Crystalline SnO Nanosheets on Arbitrary Substrates." Journal of Physical Chemistry C, 114, 11050-11055, (2010).
    [79] M. Minohara, N. Kikuchi, Y. Yoshida, H. Kumigashira, and Y. Aiura, "Improvement of the hole mobility of SnO epitaxial films grown by pulsed laser deposition." Journal of Materials Chemistry C, 7, 6332-6336, (2019).
    [80] Y. Hu, K. Xu, L. Kong, H. Jiang, L. Zhang, and C. Li, "Flame synthesis of single crystalline SnO nanoplatelets for lithium-ion batteries." Chemical Engineering Journal, 242, 220-225, (2014).
    [81] H. Zhang, Q. He, F. Wei, Y. Tan, Y. Jiang, G. Zheng, G. Ding, and Z. Jiao, "Ultrathin SnO nanosheets as anode materials for rechargeable lithium-ion batteries." Materials Letters, 120, 200-203, (2014).
    [82] M. Z. Iqbal, F. Wang, T. Feng, H. Zhao, M. Y. Rafique, D. Rafi ud, M. H. Farooq, Q. u. a. Javed, and D. F. Khan, "Facile synthesis of self-assembled SnO nano-square sheets and hydrogen absorption characteristics." Materials Research Bulletin, 47, 3902-3907, (2012).
    [83] P. H. Suman, A. A. Felix, H. L. Tuller, J. A. Varela, and M. O. Orlandi, "Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents." Sensors and Actuators B: Chemical, 208, 122-127, (2015).
    [84] J. Safaei-Ghomi, H. Shahbazi-Alavi, and E. Heidari-Baghbahadorani, "SnO nanoparticles as an efficient catalyst for the one-pot synthesis of chromeno[2,3-b]pyridines and 2-amino-3,5-dicyano-6-sulfanyl pyridines." RSC Adv., 4, 50668-50677, (2014).
    [85] C. Chen, W. Mei, C. Wang, Z. Yang, X. a. Chen, X. Chen, and T. Liu, "Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight." Journal of Alloys and Compounds, 826, 1-8, (2020).
    [86] S. Komarneni, "Nanophase materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods." CURRENT SCIENCE, 85, 1730-1734, (2003).
    [87] L. Reimer, "Scanning Electron Microscopy Physics of Image Formation and Microanalysis." Springer-Verlag Berlin Heidelberg, Germany, 1-538, (1998).
    [88] J. C. V. a. I. S. Gilmore, "Surface Analysis-The Principal Techniques." John Wiley & Sons, Ltd., United Kingdom, 1-684, (2009).
    [89] A. M. Hussein, E. M. A. Dannoun, S. B. Aziz, M. A. Brza, R. T. Abdulwahid, S. A. Hussen, S. Rostam, D. M. T. Mustafa, and D. S. Muhammad, "Steps Toward the Band Gap Identification in Polystyrene Based Solid Polymer Nanocomposites Integrated with Tin Titanate Nanoparticles." Polymers, 12, 1-21, (2020).
    [90] D. A. Neamen, "Semiconductor_Physics_and_Devices_Basic." McGraw-Hill Companies, Inc., Americas, 1-784, (2012).
    [91] T. Zhou, T. Zhang, R. Zhang, Z. Lou, J. Deng, and L. Wang, "Hollow ZnSnO3 Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors." ACS Appl Mater Interfaces, 9, 14525-14533, (2017).
    [92] L. Du, H. Zhang, M. Zhu, and M. Zhang, "Construction of flower-like ZnSnO3/Zn2SnO4 hybrids for enhanced phenylamine sensing performance." Inorganic Chemistry Frontiers, 6, 2311-2317, (2019).
    [93] Z. Chen, M. Lober, A. Rokicinska, Z. Ma, J. Chen, P. Kustrowski, H. J. Meyer, R. Dronskowski, and A. Slabon, "Increased photocurrent of CuWO4 photoanodes by modification with the oxide carbodiimide Sn2O(NCN)." Dalton Trans, 49, 3450-3456, (2020).
    [94] A. Radoń, J. Kubacki, M. Kądziołka-Gaweł, P. Gębara, Ł. Hawełek, S. Topolska, and D. Łukowiec, "Structure and magnetic properties of ultrafine superparamagnetic Sn-doped magnetite nanoparticles synthesized by glycol assisted co-precipitation method." Journal of Physics and Chemistry of Solids, 145, 1-8, (2020).
    [95] H. Yu, T. Yang, Z. Wang, Z. Li, Q. Zhao, and M. Zhang, "p-N heterostructural sensor with SnO-SnO2 for fast NO2 sensing response properties at room temperature." Sensors and Actuators B: Chemical, 258, 517-526, (2018).
    [96] X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei, and J. S. Chen, "A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries." Dalton Trans, 43, 3137-3143, (2014).
    [97] Q. Zhao, Y. Tong, Y. Liu, and Z. Mingzhe, "Effect of Gd3+ doping on structural, optical and magnetic properties of SnO crystals." Ceramics International, 45, 17529-17535, (2019).
    [98] R. Zhang, Q. Wang, J. Zhang, Q. Lu, W. Liu, S. Yin, and W. Cao, "Towards efficient photocatalytic degradation of organic pollutants in hierarchical TiO2/SnO p-n heterojunction under visible-light irradiation." Nanotechnology, 30, 1-10, (2019).
    [99] Y. Bu and Z. Chen, "Highly efficient photoelectrochemical anticorrosion performance of C3N4@ZnO composite with quasi-shell–core structure on 304 stainless steel." RSC Adv., 4, 45397-45406, (2014).
    [100] H. Sim, J. Lee, S. Cho, E.-S. Cho, and S. J. Kwon, "A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application." JSTS:Journal of Semiconductor Technology and Science, 15, 267-275, (2015).
    [101] M. Fortunato, C. R. Chandraiahgari, G. De Bellis, P. Ballirano, F. Sarto, A. Tamburrano, and M. S. Sarto, "Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films." Nanomaterials, 8, 1-16, (2018).
    [102] Z.-L. W. Min-Hua Zhao, and Scott X. Mao, "Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope." NANO LETTERS, 4, 587-590, (2004).
    [103] H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, and G. Zeng, "Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation." J Hazard Mater, 169, 933-940, (2009).
    [104] W. Szeto, C. W. Kan, C. W. M. Yuen, S.-W. Chan, and K. H. Lam, "Effective Photodegradation of Methyl Orange Using Fluidized Bed Reactor Loaded with Cross-Linked Chitosan Embedded Nano-CdS Photocatalyst." International Journal of Chemical Engineering, 2014, 1-16, (2014).

    下載圖示 校內:2023-08-19公開
    校外:2023-08-19公開
    QR CODE