簡易檢索 / 詳目顯示

研究生: 賴梓溢
Lai, Tzu-Yi
論文名稱: 可用能分析、優化設計與經濟評估銅-氯熱化學循環產氫系統
Exergy Analysis, Optimal Design and Economic Evaluation of a Hydrogen Production System Using Cu-Cl Thermochemical Cycle
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 產氫銅-氯熱化學循環系統可用能分析可用能經濟
外文關鍵詞: Hydrogen production, Cu-Cl cycle, Exergy, Exergoeconomic
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近代科技的蓬勃發展,使全球對於能源的需求不斷增加,但目前使用的能源有限,因此發展新一代的替代能源是各國致力發展的目標。由於氫能具有兼顧來源豐富及低汙染等特性,被視為次世代的綠色能源載體。電解水為產氫的方法之一,進料只有水,透過電能將氫與氧分離,是個乾淨低污染的製程,但缺點為需要大量的電能。
    本論文的產氫設計製程是以電解水產氫方法為背景,透過銅-氯熱化學循環系統的幫助,使用外界的廢熱來替代部分電能以減少電能的使用,並以結合熱力學第一、第二定律之「可用能分析法」進行分析此製程,該法比起傳統能量效率多考慮「熵」的熱力學性質,能更客觀的分析此製程各裝置能量損失和效率表現,以及製程的總效率,之後藉由反應曲面優化方法尋找適當的操作條件,降低損失能量提高整體系統效率及氫氣產率。
    另一部分,可用能經濟法為結合能量與經濟概念的評估方法,能準確的分析各裝置在製程之中的經濟重要性;而可用能經濟因子的分析指標能判斷各裝置經濟的損耗是由於硬體與操作成本引起或是由於可用能效率低落而導致,依據其值的大小,可判斷下一步優化的方向,針對弱點進行改善,以得到更好的經濟效益。

    In this study, the simulation model of several Cu-Cl thermochemical cycle for hydrogen production are developed to design and analyze by using the Aspen Plus chemical software. This research used the exergy which is combined first and second law of thermodynamics to identify the potential performance improvements of each device. By the results of Aspen Plus software, we can observe the exergy destruction, reaction heat, and heat efficiency for each model vary with the reaction temperature and feed ratio. The exergy efficiency is found to be 23.1% for the five-step thermochemical process, 25.8% for the four-step process and 28.4% for the three-step process. Then, chose the most high efficiency process to optimize further. Sensitivity analyses are performed to determine the results of various operating parameters on the exergy efficiency, system heat and hydrogen yield. Response Surface Model (RSM) is a collection of mathematical and statistical techniques for empirical model building. It is a powerful method to predict and optimize the results of each process by change the operating parameters like reactor temperature or feed ratio. The overall exergy efficiency of the three-step cycle varies from 28.4 to 45% by using RSM method. Then, using the exergoeconomic analysis to analyze the value of each device and evaluate which one is the most important in the process. Then use Exergoeconomic Factor to predict the device further directions to optimize.

    摘要 I Abstract II 致謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XV 符號表 XVII 第一章 緒論 1 1.1 前言 1 1.2 氫氣 3 1.3 產氫方法簡介 4 1.3.1 石化燃料產氫 4 1.3.2 電解水產氫 4 1.4 熱化學循環 6 1.5 廢熱來源 8 1.6 燃料電池介紹 9 1.7 文獻回顧與研究動機 10 第二章 理論介紹與數學模式建立 11 2.1 前言 11 2.2 熱力學性質 11 2.3 可用能介紹 14 2.3.1 簡介 15 2.3.2 物理可用能 18 2.3.3 化學可用能 20 2.3.4 可用能分析流程 21 2.3.5 可用能分析指標 22 2.4 管式反應器 23 2.4.1 PFR質量守恆 23 2.4.2 PFR能量守恆 24 2.5 其他單元數學式 25 2.5.1 熱交換器 25 2.5.2 變壓吸附單元 27 第三章 製程模擬與系統優化 28 3.1 製程模擬 28 3.1.1 五步驟熱化學循環模擬 28 3.1.2 四步驟熱化學循環模擬 31 3.1.3 三步驟熱化學循環模擬 33 3.1.4 穩態分析之製程比較 37 3.2 可用能分析及最適化 39 3.2.1 可用能分析 39 3.2.2 可用能靈敏度分析 42 3.2.3 反應曲面法 43 3.2.4 多目標最適化 51 3.3 最適化前後比較 53 3.4 熱回收 54 3.5 熱化學循環與電解水比較討論 56 第四章 可用能經濟之評估 58 4.1 前言 58 4.2 可用能經濟評估流程 59 4.2.1 Exergetic analysis 59 4.2.2 Economic analysis 61 4.2.3 Exergy costing 64 4.2.4 Exergoeconomic analysis 67 4.3 可用能經濟因子結果討論 69 第五章 結論 70 參考文獻 71

    [1] G.F. Naterer, S. Suppiah, L. Stolberg, M. Lewis , M. Ferrandon , Z. Wanga, I. Dincer ,K. Gabriel , M.A. Rosen , E. Secnik , E.B. Easton , L. Trevani , I. Pioro , P. Tremaine ,S. Lvov , J. Jiang , G. Rizvi , B.M. Ikeda , L. Luf. Kaye , W.R. Smith , J. Mostaghimi ,P. Spekkens , M. Fowler , J. Avsec ,“Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium, II: Simulations, thermochemical data and materials”, International Journal of Hydrogen Energy, p.15486-15501, 2011.
    [2] G.D.Marin, “Kinetics and transport phenomena in the chemical decomposition of copper oxychloride in the thermochemical Cu-Cl cycle” , International Journal of Hydrogen Energy, 2012.
    [3] M.F.Orhan, I.Dincer, M.A. Rosen ,“Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: Configurations and performance”, International Journal of Hydrogen Energy, p.11309-11320 , 2011.
    [4] A.Ozbilen, I.Dincer, M.A.Rosen, “Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl Cycle: A parametric study” International Journal of Hydrogen Energy, p.9514-9528, 2011.
    [5] T.J. Parry, “Thermodynamics and Magnetism of Cu2OCl2”, 2008.
    [6] Z. L. Wang, G. F. Naterer, K. S. Gabriel, R. Gravelsins, V.N. Daggupati , “New Cu-Cl Thermochemical Cycle for Hydrogen Production with Reduced Excess Steam Requirements”, International Journal of Green Energy, 2009.
    [7] I.Dincer, A.Midilli, H.Kucuk, “Progress in Exergy, Energy,and the environment”, 2014
    [8] I.Dincer, Y.A.Cengel, “Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering” , Entropy, 2001.
    [9] M.A.Bezerra, R.E.Santelli, E.P.Oliveiraa, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry”, Talanta ,2008.
    [10] N.Hajjaji, I.Baccar, M.Pons, “Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming”, Renewable Energy, 2014.
    [11] Z.Wang, R.R.Roberts , G.F.Naterer, “Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies.” International Journal of Hydrogen Energy, p.16287-16301, 2012.
    [12] M.F.Orhan, I.Dincer, M.A.Rosen, “Exergoeconomic analysis of a thermochemical copper–chlorine cycle for hydrogen production using specific exergy cost (SPECO) method.”, Thermochimica Acta, 2009.
    [13] Mécanique, Energétique, G.C.Procédés, “Exergetic Balances and Analysis in a Process Simulator: A Way to Enhance Process Energy Integration”, 2012.
    [14] I.Dincer, T.A.H.Ratlamwala, “Importance of exergy for analysis, improvement, design, and assessment.” John Wiley & Sons, 2012.
    [15] I.Dincer , Y.A.Cengel, “Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering”, Entropy , 2001.
    [16] V.N.Daggupati, G.F. Naterer, K.S. Gabriel, “Equilibrium conversion in Cu–Cl cycle multiphase processes of hydrogen production”, Thermochimica Acta, p.117-123 , 2009.
    [17] MF. Orhan, I.Dincer, M.A.Rosen,“An Exergy–Cost–Energy–Mass Analysis of a Hybrid Copper–Chlorine Thermochemical Cycle for Hydrogen Production.” International Journal of Hydrogen Energy,, p. 4831-38, 2009.
    [18] S. Aghahosseini, I.Dincer, G.F.Naterer, “Integrated Gasification and Cu–Cl Cycle for Trigeneration of Hydrogen, Steam and Electricity.” International Journal of Hydrogen Energy, p. 2845-2854, 2011.
    [19] M.F.Orhan, I.Dinçer, M.A.Rosen, “Efficiency Comparison of Various Design Schemes for Copper–chlorine (Cu–Cl) Hydrogen Production Processes Using Aspen Plus Software.” Energy Conversion and Management, vol. 63, p. 70-86, 2012.
    [20] M.F.Orhan, I.Dincer, M.A.Rosen, “Simulation and Exergy Analysis of a Copper-Chlorine Thermochemical Water Decomposition Cycle for Hydrogen Production”, 2014
    [21] M.F.Orhan, I.Dincer, M.A.Rosen, “Design of systems for hydrogen production based on the CueCl thermochemical water decomposition cycle: Configurations and performance”, International Journal of Hydrogen Energy, p. 11309-11320, 2011.
    [22] C.Zamfirescu, G.F.Naterer, I.Dincer, “Kinetics Study of The Copper, Hydrochloric Acid Reaction for Thermochemical Hydrogen Production.” International Journal of Hydrogen Energy, p. 4853-4860, 2010.
    [23] M.Serban, M.A.Lewis, J.K.Basco, “Kinetic Study of the Hydrogen and Oxygen Production Reactions in the Copper–Chloride Thermochemical Cycle.” AIChE Spring National Meeting,p. 25–29, 2004.
    [24] W.S.Duff , “Optimization of a centrifugal electrospinning process using response surface methods and artificial neural networks”, 2014.
    [25] S.Sayadi, G.Tsatsaronis, C.Duelk, “Exergoeconomic analysis of vehicular PEM (proton exchange membrane) fuel cell systems with and without expander”, Energy, p.608-622 , 2014.
    [26] A.Abusoglu, M.Kanoglu, “Exergoeconomic analysis and optimization of combined heat and power production: A review”, Renewable and Sustainable Energy Reviews, p.2295-2308, 2009.
    [27] N.Shokati, F.Mohammadkhani, M.Yari, “A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles”, Sustainability, p.2474-2489, 2014.
    [28] M.Sadeghi, S.M.S.Mahmoudi, R.K.Saray , “Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine”, Energy Conversion and Management ,p.403-417, 2015.
    [29] M.T.Balta, I.Dincer, A.Hepbasli, “Exergoeconomic analysis of a hybrid copper chlorine cycle driven by geothermal energy for hydrogen production” International Journal of Hydrogen Energy, p. 11300-11308, 2011.
    [30] M.Modesto, S.A.Nebra, “Exergoeconomic analysis of the power generation system using blast furnace and coke oven gas in a Brazilian steel mill”, Applied Thermal Engineering, p2127-2136, 2009.
    [31] M.Mehrpooya, H.Ansarinasab , “Exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes”, Energy Conversion and Management, p.400-413, 2015.
    [32] 林睦軒,“可用能分析與經濟評估獨立混合式發電系統, 國立成功大學化學工程所碩士論文,民國102年。
    [33] Felicia Wijayanti, “Economic Analysis of a Heat-integrated Hydrogen Production System Using Cu-Cl Thermochemical Cycle”, 國立成功大學化學工程所碩士論文,民國103年。
    [34] 林文祥 (2009) 節能技術與案例介紹
    [35] 詹益亮 (2010) 工業節能技術與案例介紹

    無法下載圖示 校內:2020-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE