| 研究生: |
涂淮崴 Tu, Huai-Wei |
|---|---|
| 論文名稱: |
基於絕熱捷徑理論之鈮酸鋰薄膜波導寬頻分波器設計與應用 Design and Application of a Broadband Wavelength Demultiplexer in Thin-Film Lithium Niobate Waveguide Using Shortcuts to Adiabaticity |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 分波多功器 、寬頻 、絕熱耦合器 、鈮酸鋰薄膜波導 |
| 外文關鍵詞: | Wavelength Division Multiplexing(WDM), Broadband Operation, Adiabatic Coupler, Thin-Film Lithium Niobate(TFLN), Parametric Amplification |
| 相關次數: | 點閱:16 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在設計具有寬頻且結構短小的積體光路(Photonic Integrated Circuit, PIC)元件,利用絕熱理論設計基於鈮酸鋰薄膜波導(Thin Film Lithium Niobate, TFLN)平台的 800nm 與 488nm 波長之分波多工器(Wavelength Division Multiplexer, WDM)。此元件將在全光調製器中的輸入端將泵浦端(Pump)的 488nm TE 入射光與信號端(Signal)的 800nm TE 入射光結合;在輸出端將 Pump 與 Signal+idler 分開,以此產生參量頻率轉換(Parametric Frequency Conversion)及參量放大(Parametric Amplification)。為滿足使用需求,需要設計一個在 800nm 具有寬頻(750-850nm)及 488nm 具有穩定低損耗的分波器。過去文獻大多使用傳統光學元件進行,故本文設計此元件以期將全光調製器完全積體化,並將整體損耗目標訂為小於 -1.5dB。
此篇研究分別利用模態耦合 (Mode Coupling) 與模態演化 (Mode Evolution) 針對波長 800nm 入射光設計絕熱耦合器,並藉由絕熱捷徑 (Shortcut to adiabacity, STA) 縮短元件尺寸,使波長 488nm 入射光來不及耦合至第二根波導進而達成寬頻分波的功能。其原理為短波長的光源在相同波導中相較於長波長光源之侷限性 (Confinment) 更佳,即光場被侷限在光波導之中,進而導致短波長會需要更長的耦合距離。我們藉由設計針對 800nm 光源的耦合器,並利用絕熱捷徑縮短耦合區長度,使得 800nm 的長波長光源可以順利耦合;而 488nm 的短波長光源則來不及耦合並保留在原始波導,進而達成寬頻分波的效果。設計理論參照量子物理,利用波導模態演化過程與二階量子系統的相似性,帶入絕熱理論進行優化,並找出模態最佳演化路徑,進而縮短元件尺寸並提升頻寬與製程容忍度。
本文提出兩種 STA 優化方式,分別為 Lewis-Riesenfeld不變協定與逆向工程 (Lewis-Riesenfeld Invariant-based Inverse Engineering, LRIIE) ,及快速準絕熱動態 (Fast Quasiadiabatic Dynamics, FAQUAD)。使用 FAQUAD 設計的結果在 800nm 皆有損耗為 -0.17dB 的輸出;488nm 則有損耗小於 -1.15dB,整體結構長度(包含S-bend) 114um。LRIIE 設計分別為 -0.74dB 及 -2.07dB,長度 150um;先進行 LRIIE 再 FAQUAD 的結果則為 -0.23dB 及 -1.20dB,長度為um。考慮頻寬與製程容忍度後最佳的結果為進行 FAQUAD。成功實現具備寬頻的低損耗分光結構。各結構與光場分布如圖2。經模擬驗證後可有效分光,同時除模態展開法驗證外,我們也使用 FDTD 再次複查,其結果也與模態展開法近似。
In this thesis, we propose and demonstrate a broadband, compact photonic integrated circuit (PIC) device utilizing adiabatic theory. A wavelength division multiplexer (WDM) based on the thin-film lithium niobate (TFLN) waveguide platform is designed to efficiently multiplex and demultiplex optical signals at wavelengths of 800 nm and 488 nm. This component serves as the input coupler of an all-optical modulator, combining the 488 nm pump and 800 nm signal beams at the input port. At the output, it separates the pump from the signal and idler, thereby facilitating parametric frequency conversion and amplification. For practical integration, the WDM should exhibit broadband performance across the 800 nm band (750–850 nm) and maintain consistently low insertion loss at 488 nm. The losses target is set as below -1.5 dB.
[1] Jian-Yu Chen, Yong Meng Sua, Hao Fan, and Yu-Ping Huang. Photon conversion and interaction in a quasi-phase-matched microresonator. Physical Review Applied, 16(6):064004, 2021.
[2] Andreas Boes, Bill Corcoran, Lin Chang, John Bowers, and Arnan Mitchell. Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits. Laser & Photonics Reviews, 12(4):1700256, 2018.
[3] Hamed Saghaei, Payam Elyasi, and P. Shastri. Sinusoidal and rectangular waveguide Bragg grating filters. Journal of Applied Physics, 132(6):064501, 2022.
[4] Manfred Hammer, Kirankumar R. Hiremath, and Remco Stoffer. Analytical approaches to the description of optical microresonator devices. In AIP Conference Proceedings. AIP, 2004.
[5] W. Shi, X. Wang, N. A. F. Jaeger, and L. Chrostowski. Contradirectional couplers in silicon-on-insulator rib waveguides. Optics Letters, 36(20):3999–4001, 2011.
[6] Xiao Ma, Qiongchan Shao, Jiamei Gu, Tingting Lang, Xiang Guo, and Jian-Jun He. Integrated broadband filter with sharp transition edges based on SiN and SiON composite waveguide coupler. Photonics, 10(11):1285, 2023.
[7] Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani, and Alireza Marandi. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Nature Photonics, 17:940–946, 2023.
[8] Kenneth Owen Hill and Gerald Meltz. Fiber bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15:1263–1276, 1997.
[9] Satoshi Ishimaru, editor. Optical Fibers for Biomedical Applications. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, 2015.
[10] Daoxin Dai, Jian Wang, and Yi Shi. Silicon mode (de)multiplexer enabling wdm integration on-chip. IEEE Photonics Technology Letters, 30(11):1031–1034, 2018.
[11] Qianfan Xu, Bradley Schmidt, Sameer Pradhan, and Michal Lipson. Micrometer-scale silicon electro-optic modulator. Nature, 435(7040):325–327, 2005.
[12] Allan W. Snyder and John D. Love. Optical Waveguide Theory. Springer Science & Business Media, New York, NY, USA, 2012.
[13] Daoxin Dai and Sailing He. Silicon photonic integrated devices for on-chip multiplexing and demultiplexing. Progress in Quantum Electronics, 37(5):259–281, 2013.
[14] Amnon Yariv. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 9(9):919–933, 1973.
[15] Daoxin Dai and John E. Bowers. Novel concepts and configurations of silicon photonic waveguide couplers for wavelength and mode division multiplexed optical communication. Laser & Photonics Reviews, 12(2):1700104, 2018.
[16] G. Ghosh. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics Communications, 163(1-3):95–102, 1999.
[17] Robert G. Hunsperger. Integrated Optics: Theory and Technology. Springer, New York, 6 edition, 2009.
[18] Max Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, 7 edition, 1999.
[19] Long Jin, Wei Jin, Jian Ju, and Yiping Wang. Coupled local-mode theory for strongly modulated long period gratings. J. Lightwave Technol., 28(12):1745–1751, Jun 2010.
[20] W. P. Huang. Coupled-mode theory for optical waveguides: an overview. Journal of the Optical Society of America A, 11(3):963–983, 1994.
[21] E. A. J. Marcatili. Dielectric rectangular waveguide and directional coupler for integrated optics. Bell System Technical Journal, 48(7):2071–2102, 1969.
[22] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum Mechanics. Wiley, 1977.
[23] Max Born and Vladimir Fock. Beweis des adiabatenansatzes. Zeitschrift für Physik, 51(3-4):165–180, 1928.
[24] Xi Chen, Ion Lizuain, Andreas Ruschhaupt, David Guéry-Odelin, and J Gonzalo Muga. Shortcut to adiabatic passage in two- and three-level atoms. Physical Review Letters, 105(12):123003, 2010.
[25] Erik Torrontegui, Sara Ibanez, Sofia Martinez-Garaot, Michele Modugno, Adolfo del Campo, David Guéry-Odelin, Andreas Ruschhaupt, Xi Chen, and J Gonzalo Muga. Shortcuts to adiabaticity. Advances in Atomic, Molecular, and Optical Physics, 62:117–169, 2013.
[26] M L F Botelho, M A de Ponte, and M H Y Moussa. Lewis–riesenfeld invariants and shortcuts to adiabaticity. Journal of Physics A: Mathematical and Theoretical, 54(25):255301, 2021.
[27] Chi-Hung Wu. Design of ta2o5 higher-order mode coupler using shortcuts to adiabaticity. Master’s thesis, National Cheng Kung University, 2016. Advisor: Shuo-Yen Tseng.
[28] Peter Bienstman and Roel Baets. Optical modelling of photonic crystals and vcsel using eigenmode expansion and perfectly matched layers. Optical and Quantum Electronics, 33(4-5):327–341, 2001.
[29] Manfred Hammer. Hybrid analytical/numerical coupled-mode modeling of guided wave devices. Journal of Lightwave Technology, 25(9):2287–2298, 2007.
[30] Kazuo Okamoto. Fundamentals of Optical Waveguides. Academic Press, 2nd edition, 2006.
[31] A. Syahriar, V. M. Schneider, and S. Al-Bader. The design of mode evolution couplers. Journal of Lightwave Technology, 16(10):1907–1914, 1998.
[32] Xiaofei Wang, Hui Yu, Qikai Huang, Zhaoyang Zhang, Zhiyan Zhou, Zhilei Fu, Penghui Xia, Yuehai Wang, Xiaoqing Jiang, and Jianyi Yang. Polarization-independent fiber-chip grating couplers optimized by the adaptive genetic algorithm. Optics Letters, 46(2):314–317, 2021.