| 研究生: |
馬嘉鉞 MA, KA UT |
|---|---|
| 論文名稱: |
自動導引車彈性編隊導航控制之研究 The Study of Navigation Control for Flexible AGV Formation |
| 指導教授: |
陳敬
Chen, Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 自動導引車 、導航 、嵌入式系統 、協作 、編隊 |
| 外文關鍵詞: | Automated Guided Vehicles, navigation, embedded software, cooperative |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從1956 年歷史上第一個標準化貨櫃投入使用以來,物流運輸業始終傾向於統一貨物大小;因為標準化的貨物體積有利於重型機械作業,亦可減少運輸成本。但貨物體積的統一化也帶來了效率和彈性上的影響。本研究提出一個導航控制方案,以兩台或以上的自動導引車(Automated Guided Vehicles)組成可自定義的隊形,使多台自動導引車以協作形式搬運不同大小的貨物成為可能。
為了提供最大的隊形彈性,自動導引車之間不存在任何物理性連接或固定,因此自動導引車的編隊並無法使用常見於一般車輛基於導向輪的轉向方式。這為維持自動導引車編隊的隊形帶來挑戰,即使是單純的轉向,也需要拆分為多個動作來進行,期間隊伍中各台自動導引車需要精確維持各自的朝向,速度和自動導引車之間的同步,以保證隊形的穩定。為此,設計中包含一個路線計劃器以及一個中央控制器,路線計劃器為隊伍中各台自動導引車規劃其專屬的路線。而中央控制器則用於控制所有自動導引車的動作,記錄其位置和朝向,以穩定維持由多台自動導引車所組成的隊形。本研究中的自動導引車使用差速轉向方式,確保自動導引車擁有原地
轉向的能力。在導航技術方面使用正交編碼器以記錄自動導引車的移動距離,同時在工作環境佈設提供導航資訊的標籤,以保證自動導引車能精準地在工作環境中移動。
本研究包含作為概念驗證的實驗;實驗在一個3 米乘3 米的空間中進行,以三台自動導引車演示本研究提出的導航控制方案。實驗結果顯示在本研究的成果下,自動導引車能組成並維持多種編隊,以運載不同大小的貨物。
有能力以編隊形式完成協作任務的自動導引車在彈性面和成本面皆具有極大的潛力。例如工廠生產線上的運輸任務不必等候能適配特定貨物大小的自動導引車,而只需要因應貨物大小調整參與運輸任務的自動導引車的數量,這大大提升了自動導引車的調度彈性。而工作環境內所有的運輸任務都可以使用單一規格的自動導引車,自動導引車的維護費用也能受益於規格的統一化而得以減縮。
Ever since the first modern container aboard the tanker ship SS Ideal X in 1956, cargo transport tends to retain their freights with a specific size, since a fixed size cargo could significantly reduce the difficulty of sorting cargos with machinery. Having a unified standard for cargo could also bring downsides in the form of flexibility and efficiency. This study intends to design a cooperative method, of which two or more AGVs (Automated Guided Vehicles) in the system could move together in various formations, in order to transport a single cargo cooperatively. Such a system can provide the ability of transporting cargo of different sizes using multiple ordinary AGVs.
In order to provide a highly flexible formation mechanism, there are no physical connections between any two AGVs, which means a group of AGVs cannot take advantage of conventional front/rear wheel steering. This brings challenges for an AGV team in maintaining the formation, and even a simple movement (for example, turning at a corner) would take multiple steps to complete. AGVs in the team need to move together with different yaw angles, speeds, and proper timing. This is achieved in this study by planning the paths for every AGV individually via an off-line planner and having a centralized server to control all the AGVs, in addition to precisely measure the position and angle of every AGV. AGVs employ differential steering to gain the ability to change the direction in place, while a set of landmarks in the workspace and two encoder sensors equipped on an AGV provide a highly accurate navigation solution.
For the purpose of proof of concept, a 3m by 3m workspace is set up for experiments. Three AGVs participate to demonstrate the ability of forming different formations and maintaining the formation during the course of carrying out a transportation task.
The ability to form various formations and work cooperatively brings a great potential in terms of flexibility and cost reduction. For example, a transport requirement does not need to wait for a specific AGV due to the cargo size. Single type of AGV could reduce the maintenance cost since they use the same parts, and the maintenance staff can specialize in repairing the same type of AGV, which can increase productivity.
[1] Hyla, P. and J. Szpytko, Automated guided vehicles: the survey. Journal of KONES, 2017. 24.
[2] Pjevčević, D., et al., Application of DEA to the analysis of AGV fleet operations in a port container terminal. Procedia-Social and Behavioral Sciences, 2011. 20: p. 816-825.
[3] Ma, N., C. Zhou, and A. Stephen, Simulation model and performance evaluation of battery-powered AGV systems in automated container terminals. Simulation Modelling Practice and Theory, 2021. 106: p. 102146.
[4] Pjevcevic, D., et al., Data envelopment analysis of AGV fleet sizing at a port container terminal. International Journal of Production Research, 2017. 55(14): p.4021-4034.
[5] Zhong, M., et al., Multi-AGV scheduling for conflict-free path planning in automated container terminals. Computers & Industrial Engineering, 2020. 142: p. 106371.
[6] Winkler, J.N.a.M., Ports turn to machinery sans drivers, in Bloomberg News. 2015.
[7] Toyota, Toyota Industries Report 2013, in Toyota Industries’ Container Transport AGV System Contributing to Evolution of Port Logistics. 2013. p. 16-20.
[8] Martín-Soberón, A.M., et al., Automation in port container terminals. Procedia-Social and Behavioral Sciences, 2014. 160: p. 195-204.
[9] Corp, e., Goods-to-Person or Person-to-Goods? 10 Factors to Consider When Determining the Right Order Fulfillment Solution. 2017: MHI.
[10] Roodbergen, K.J. and I.F. Vis, A survey of literature on automated storage and retrieval systems. European journal of operational research, 2009. 194(2): p. 343-362.
[11] Wulfraat, M., Is Kiva systems a good fit for your distribution center? An unbiased distribution consultant evaluation. MWPVL International White Papers, 2012.
[12] Jurczak, M. Logistics 4.0 in practice. Miniload technology uses maximum of warehouse space. 2018.
[13] Lynch, L., et al. Automated ground vehicle (agv) and sensor technologies-a review. in 2018 12th International Conference on Sensing Technology (ICST). 2018. IEEE.
[14] Knight, S., Tesla to pause Model S/X production for 18 days. 2020: TECHSPOT.
[15] Ansari, A.a.N., Mohammad, Quick Response Code and ITS Use in Libraries: A Recent Trend. 2014.
[16] ParkPlusInc. 3-space AutomatedParking System on the 2nd subterranean level. 2020 1/6/2020 [cited 10/11/2021]; Available from:
https://twitter.com/parkplusinc/status/1278309054599790594.
[17] gigazine, Amazon が倉庫ロボット1 万5000 台を導入し最大1000 億円の人件費削減へ, in gigazine. 2014.
[18] Gao, Y., et al., INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors, 2015. 15(9): p. 23286-23302.
[19] Kaplan, E.D. and C. Hegarty, Understanding GPS/GNSS: principles and applications. 2017: Artech house.
[20] Chuixin, C. and C. Hanxiang. AGV Robot Based on Computer Vision and Deep Learning. in 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS). 2019. IEEE. 79
[21] Long, J. and C.L. Zhang. The summary of AGV guidance technology. in Advanced Materials Research. 2012. Trans Tech Publ.
[22] Stouten, B. and A.-J. de Graaf. Cooperative transportation of a large objectdevelopment of an industrial application. in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004. 2004. IEEE.
[23] Rampinelli, V., et al. Embedding obstacle avoidance in the control of a flexible multirobot formation. in 2010 IEEE International Symposium on Industrial Electronics. 2010. IEEE.
[24] Machado, T., et al., Attractor dynamics approach to joint transportation by autonomous robots: theory, implementation and validation on the factory floor. Autonomous Robots, 2019. 43(3): p. 589-610.
[25] Silva, E.O.C., E. Bicho, and W. Erlhagen, The potential field method and the nonlinear attractor dynamics approach: what are the differences? 2006.
[26] Hougen, D.F., et al. A miniature robotic system for reconnaissance and surveillance.
in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). 2000. IEEE.
[27] Jennings, J.S., G. Whelan, and W.F. Evans. Cooperative search and rescue with a team of mobile robots. in 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97. 1997. IEEE.
[28] INCORPORATED, D.W. Information capacity and versions of the QR Code. [cited 2021 11/14]; Available from: https://www.qrcode.com/en/about/version.html.
[29] Lee, S. and J.-B. Song. Robust mobile robot localization using optical flow sensors and encoders. in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004. 2004. IEEE.
[30] Solihin, Y., Fundamentals of parallel multicore architecture. 2015: CRC Press.
[31] Foundation, R.P. Raspberry Pi 3 Model B+. [cited 2021 10/02]; Available from:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.
[32] HowToMechatronics, L298N Motor Driver – Arduino Interface, How It Works, Codes, Schematics.
[33] Ltd., C. Get Ubuntu Server. [cited 2021 10/05]; Available from:
https://ubuntu.com/download/server.
[34] OpenCV. [cited 2021 10/05]; Available from: https://opencv.org/.
[35] dlbeer. Quirc. 2021 [cited 2021 23/10]; Available from:
https://github.com/dlbeer/quirc.
[36] Li, J.-t. and H.-j. Liu, Design optimization of amazon robotics. Automation, Control and Intelligent Systems, 2016. 4(2): p. 48-52.
[37] Alliance®, W.-F. Discover Wi-Fi. [cited 2021 10/06]; Available from:
https://www.wi-fi.org/discover-wi-fi.
[38] The JSON Data Interchange Format, 2nd edition. 2017 [cited 2021 10/06]; Available from: https://www.ecma- international.org/publications-andstandards/standards/ecma-404/.
[39] DaveGamble. cJSON. 2021 25/08/2021 [cited 2021 23/10]; Available from: https://github.com/DaveGamble/cJSON.