| 研究生: |
余俊鋒 Eng, Chun-Fong |
|---|---|
| 論文名稱: |
以粒子群優化法分析纖維、半纖維及木質素焙燒和裂解之反應動力式 Torrefaction and pyrolysis kinetics of cellulose, hemicelluloses and lignin analyzed by particle swarm optimization |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 優化演算法 、獨立平行反應式 、粒子群優化法 、動力式分析 、纖維素 、半纖維素 、木質素 、等溫焙燒 、裂解 、熱重分析儀 、傅里葉轉換紅外光譜儀 |
| 外文關鍵詞: | Evolutionary computation, Independent parallel reaction (IPR), Particle swarm optimization (PSO), Kinetics, Celluloses, Hemicelluloses, Lignin, Isothermal Torrefaction, Pyrolysis, Thermogravimetric analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR) |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球人口的增加和生活水平的提高,過去幾十年來全球範圍內的能源需求大量增加。在眾多正在開發的可再生能源和替代燃料中,生質能源是最有前途的可再生能源之一,並且可以滿足替代化石燃料及減少溫室氣體排放的需求。氣化、液化、裂解和發酵等方式都是常見可將生質物轉化為氣體或液體燃料的前處理過程。生質物中的成分包含了纖維素(一種聚合物葡聚醣),半纖維素(也稱為多醣),木質素(一種複雜的酚醛聚合物),有機萃取物和無機礦物質(也稱為灰分)。 其中纖維素,半纖維素和木質素為生質物的主要組成成分,含量佔了其重量百分比超過90%。本研究也透過粒子群優化法輔助動力學模型計算出等溫焙燒和裂解反應下之活化能和前置因子,並有助於反應器之設計和有效地產生生物燃料和生質能。
第一部分主旨是為了透過使用等溫焙燒的兩步法模型與粒子群優化法相結合併使用傅里葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy, FTIR)來鑑定焙乾過程中釋放出的氣體,研究纖維素,半纖維素和木質素的焙燒動力學。在250 °C等溫焙燒前半纖維擁有最嚴重的重量損失,而在300 °C等溫焙燒中,纖維素成為重量損失最大的成分,其次是半纖維素,最後則是木質素。此外,使用TG-FTIR收集並分析了等溫焙燒過程中木質纖維素的三種主要成分所釋放的揮發性氣體。在等溫焙燒下,纖維和半纖維收集的氣體中CO和CO2占主要成分,而木質素測得擁有CH4的產生。纖維素,半纖維素和木質素的焙燒動力學分別在166-260、48-55和59-70 kJ mol-1的範圍內。根據等溫焙燒動力學計算,在300 °C的焙燒下,纖維素具有最大的揮發性產物,其次是最終產物C。在半纖維素的等溫焙燒下,最終產物C的產率約為60.04-74.05 %,第二多普遍的產物是中間固體B,其含量為3.34-8.20 %。木質素在300 °C之前的等溫焙燒下產生的中間固體B最多,佔86.41-97.50 %。最後,在等溫焙燒兩步法中,反應二擁有相較於反應一來的大的的活化能。
在本研究的第二部分中,為了更深入的了解木質纖維素生質物的複雜熱裂解過程,本篇研究使用了熱重分析儀(Thermogravimetric analyzer, TGA)對纖維素,半纖維素和木質素進行熱裂解反應。此外,本研究成功使用了粒子群優化(PSO)法結合了獨立平行反應(IPR)進行動力學模型計算。纖維素,半纖維素和木質素的IPR動力學模型可分別使用1個偽反應,4個偽反應和5個偽反應進行建模,並且可以獲得高於95 %的良好擬合質量(少數情況適用於木質素)。本研究也探討了分別採用1、5、20和40 °C·min-1四種不同的加熱速率在對熱解過程的影響。由於樣品與加熱環境之間發生熱滯效應,因此造成導數熱重分析曲線(derivative thermogravimetric, DTG)峰移至更高的溫度範圍。總體而言,纖維素,半纖維素和木質素的熱降解溫度範圍分別在269-394、170-776和127-791 °C之內。木質纖維素熱解的動力學有利於反應器設計,以有效地產生生物燃料和生物能。
With an increasing global population and increasing living standards, there has been a massive increase in energy demand worldwide over the last few decades. Among the renewable energy and alternative fuels under development, biomass energy or bioenergy is one of the promising resources to match the requirements of substituted fossil fuels for reducing greenhouse gas emissions. Torrefaction, pyrolysis, combustion, and gasification are the common thermochemical conversion processes to convert lignocellulosic and non-lignocellulosic biomass into biofuels. Cellulose, hemicelluloses, and lignin are the three main components of lignocellulosic biomass. Torrefaction is a thermochemical process that produces solid energy carriers with improved fuel characteristics. This process involves heating of biomass at a temperature range of 200–300 °C and in an inert or oxygen-reduced environment within a desired time interval.
The first part aims to investigate the thermal degradation kinetics of cellulose, hemicelluloses, and lignin by using a two-step model of isothermal torrefaction combined with an optimized algorithm and using the Fourier Transform Infrared Spectroscopy to identify the gas released during the torrefaction process. The most severe weight loss in isothermal torrefaction before 250 °C is hemicelluloses, while using 300 °C isothermal torrefaction, cellulose became the component with the largest weight loss, followed by hemicelluloses, and finally lignin. In addition, using the TG-FTIR collected and analyzed the volatile gas released by the cellulose, hemicelluloses, and lignin during isothermal torrefaction. Under isothermal torrefaction, CO and CO2 dominate in the gas collected by cellulose and hemicellulose while CH4 production has been measured by lignin. The torrefaction kinetics of cellulose, hemicelluloses, and lignin are in the range of 166-260, 48-55, and 59-70 kJ/mol, respectively. From the calculation by the torrefaction kinetics, at 300 °C torrefaction, cellulose has the most volatile products, followed by the final residual C. Under the isothermal torrefaction of hemicelluloses, the final residual C yield is approximately 60.04-74.05 % and the second most prevalent product is the intermediate solid B with 3.34-8.20 %. Lignin produced the most intermediate solid B under isothermal torrefaction before 300 °C, accounting for 86.41-97.50 %. Finally, the activation energy of reaction number two appears to be greater than that of the isothermal torrefaction reaction number one under two stages.
For the second part, to understand the complex pyrolysis process of lignocellulosic biomass, three model components of cellulose, hemicelluloses (xylan), and lignin were pyrolyzed using a thermogravimetric analyzer. An independent parallel reaction (IPR) kinetic model was optimized using a particle swarm optimization (PSO) algorithm. The IPR kinetic models of cellulose, hemicelluloses, and lignin could be modeled with 1 pseudo-reaction, 4 pseudo-reactions, and 5 pseudo-reactions, respectively, and good fit qualities higher than 95% can be achieved (except a few cases for lignin). Four different heating rates of 1, 5, 20, and 40 °C·min-1 were applied to examine the effect of heating rate on the pyrolysis process. When increasing the heating rate, the derivative thermogravimetric (DTG) peaks shifted to a higher temperature range, stemming from the thermal lag between the samples and heating environment. Overall, the temperature ranges of the thermal decomposition for cellulose, hemicelluloses, and lignin were within 269-394, 170-776, and 127-791 °C, respectively. The kinetics of lignocellulosic pyrolysis is beneficial for reactor design to efficiently produce biofuel and bioenergy.
[1] Wood N, Roelich K. Tensions, capabilities, and justice in climate change mitigation of fossil fuels. Energy Research & Social Science 2019;52:114-22.
[2] Jenkins N, Ekanayake J. Renewable Energy Engineering. Cambridge: Cambridge University Press; 2017.
[3] Patel M, Zhang X, Kumar A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews 2016;53:1486-99.
[4] Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 2017;62:33-86.
[5] Chen WH, Lin BJ, Huang MY, Chang JS. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresource technology 2015;184:314-27.
[6] Lam SS, Wan Mahari WA, Ma NL, Azwar E, Kwon EE, Peng W, et al. Microwave pyrolysis valorization of used baby diaper. Chemosphere 2019;230:294-302.
[7] Bridgwater AV. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 2003;91(2-3):87-102.
[8] Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 2015a;44:847-66.
[9] Nocquet T, Dupont C, Commandre J-M, Grateau M, Thiery S, Salvador S. Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 – Experimental study. Energy 2014;72:180-7.
[10] Prins MJ. Thermodynamic analysis of biomass gasification and torrefaction. 2005.
[11] van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 2011;35(9):3748-62.
[12] Shankar Tumuluru J, Sokhansanj S, Hess JR, Wright CT, Boardman RD. A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology 2011;7(5):384-401.
[13] Wan Mahari WA, Chong CT, Cheng CK, Lee CL, Hendrata K, Yuh Yek PN, et al. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy 2018;162:309-17.
[14] Lam SS, Wan Mahari WA, Ok YS, Peng W, Chong CT, Ma NL, et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews 2019;115.
[15] Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Wan Mahari WA, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal 2020;389.
[16] Azwar E, Wan Mahari WA, Chuah JH, Vo D-VN, Ma NL, Lam WH, et al. Transformation of biomass into carbon nanofiber for supercapacitor application – A review. International Journal of Hydrogen Energy 2018;43(45):20811-21.
[17] Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 2019;258:116168.
[18] Wu Y, Wu S, Zhang H, Xiao R. Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts. Fuel Processing Technology 2018;179:436-42.
[19] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel 2010;89(5):913-33.
[20] Bahng MK, Mukarakate C, Robichaud DJ, Nimlos MR. Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 2009;651(2):117-38.
[21] Chen WH, Chu YS, Liu JL, Chang JS. Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Conversion and Management 2018;160:209-19.
[22] Di Blasi C, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. Journal of Analytical and Applied Pyrolysis 1997;40-41:287-303.
[23] Chiou B-S, Cao T, Valenzuela-Medina D, Bilbao-Sainz C, Avena-Bustillos RJ, Milczarek RR, et al. Torrefaction kinetics of almond and walnut shells. Journal of Thermal Analysis and Calorimetry 2018;131(3):3065-75.
[24] Prins MJ, Ptasinski KJ, Janssen FJJG. Torrefaction of wood. Journal of Analytical and Applied Pyrolysis 2006;77(1):28-34.
[25] Chen W-H, Kuo P-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011;36(11):6451-60.
[26] Silveira EA, Lin B-J, Colin B, Chaouch M, Pétrissans A, Rousset P, et al. Heat treatment kinetics using three-stage approach for sustainable wood material production. Industrial Crops and Products 2018;124:563-71.
[27] Ong HC, Chen W-H, Singh Y, Gan YY, Chen C-Y, Show PL. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. Energy Conversion and Management 2020;209:112634.
[28] Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ, et al. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 2013;139:161-9.
[29] Bach Q-V, Khalil R, Tran K, Skreiberg O. Torrefaction kinetics of Norwegian biomass fuels. Chemical Engineering Transactions 2014:49-54.
[30] Peng J, Bi XT, Lim J, Sokhansanj S. Development of torrefaction kinetics for British Columbia softwoods. International Journal of Chemical Reactor Engineering 2012;10(1).
[31] Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand 1966;70(6):487-523.
[32] Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 1964;6(1):183-95.
[33] Lim ACR, Chin BLF, Jawad ZA, Hii KL. Kinetic Analysis of Rice Husk Pyrolysis Using Kissinger-Akahira-Sunose (KAS) Method. Procedia Engineering 2016;148:1247-51.
[34] Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 2011;102(10):6230-8.
[35] Santos KG, Lira TS, Gianesella M, Lobato FS, Murata VV, Barrozo MAS. BAGASSE PYROLYSIS: A COMPARATIVE STUDY OF KINETIC MODELS. Chemical Engineering Communications 2012;199(1):109-21.
[36] Vamvuka D, Sfakiotakis S. Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics. Renewable Energy 2011;36(9):2433-9.
[37] Li T, Remón J, Shuttleworth PS, Jiang Z, Fan J, Clark JH, et al. Controllable production of liquid and solid biofuels by doping-free, microwave-assisted, pressurised pyrolysis of hemicellulose. Energy Conversion and Management 2017;144:104-13.
[38] Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability 2010;95(5):733-9.
[39] Zhang J, Chen T, Wu J, Wu J. A novel Gaussian-DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin. RSC Advances 2014;4(34):17513-20.
[40] Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 2014;123:230-40.
[41] Mani T, Murugan P, Mahinpey N. Determination of Distributed Activation Energy Model Kinetic Parameters Using Simulated Annealing Optimization Method for Nonisothermal Pyrolysis of Lignin. Industrial & Engineering Chemistry Research 2009;48(3):1464-7.
[42] Wang S, Ru B, Dai G, Sun W, Qiu K, Zhou J. Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples. Bioresour Technol 2015;190:211-8.
[43] Damayanti, Wu HS. Pyrolysis kinetic of alkaline and dealkaline lignin using catalyst. Journal of Polymer Research 2017;25(1).
[44] Wang S, Ru B, Lin H, Luo Z. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresource Technology 2013;143:378-83.
[45] Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta 2013;566:36-43.
[46] Zhang C, Ho S-H, Chen W-H, Xie Y, Liu Z, Chang J-S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy 2018;220:598-604.
[47] Chen W-H, Lin B-J, Huang M-Y, Chang J-S. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology 2015b;184:314-27.
[48] Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 2015;44:847-66.
[49] Shang L, Ahrenfeldt J, Holm JK, Bach LS, Stelte W, Henriksen UB. Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor. Journal of Analytical and Applied Pyrolysis 2014;108:109-16.
[50] Bach Q-V, Chen W-H, Eng CF, Wang C-W, Liang K-C, Kuo J-Y. Pyrolysis characteristics and non-isothermal torrefaction kinetics of industrial solid wastes. Fuel 2019;251:118-25.
[51] Wannapeera J, Fungtammasan B, Worasuwannarak N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 2011;92(1):99-105.
[52] Rueda-Ordóñez YJ, Tannous K. Drying and thermal decomposition kinetics of sugarcane straw by nonisothermal thermogravimetric analysis. Bioresource Technology 2018;264:131-9.
[53] Liu J-L, Lin J-H. Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization. Engineering Optimization 2007;39(3):287-305.
[54] Gai C, Zhang Y, Chen W-T, Zhang P, Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresource Technology 2013;150:139-48.
[55] Chen W-H, Kuo P-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011;36(2):803-11.
[56] Yan W, Acharjee TC, Coronella CJ, Vasquez VR. Thermal pretreatment of lignocellulosic biomass. Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers 2009;28(3):435-40.
[57] Wen J-L, Sun S-L, Yuan T-Q, Xu F, Sun R-C. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy 2014;121:1-9.
[58] Bach QV, Chen WH, Chu YS, Skreiberg O. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour Technol 2016;215:239-46.
[59] Shen DK, Gu S, Bridgwater AV. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers 2010;82(1):39-45.
[60] Chen W-H, Eng CF, Lin Y-Y, Bach Q-V. Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Conversion and Management 2020;221:113165.
[61] Lv P, Almeida G, Perré P. TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations. BioResources 2015;10(3):4239-51.
[62] Gao N, Li A, Quan C, Du L, Duan Y. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis 2013;100:26-32.
[63] Piskorz J, Radlein D, Scott DS. On the mechanism of the rapid pyrolysis of cellulose. Journal of Analytical and Applied pyrolysis 1986;9(2):121-37.
[64] Scheirs J, Camino G, Tumiatti W. Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal 2001;37(5):933-42.
[65] Chen D, Gao A, Cen K, Zhang J, Cao X, Ma Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Conversion and Management 2018;169:228-37.
[66] Raspolli Galletti AM, D’Alessio A, Licursi D, Antonetti C, Valentini G, Galia A, et al. Midinfrared FT-IR as a tool for monitoring herbaceous biomass composition and its conversion to furfural. Journal of Spectroscopy 2015;2015:719042.
[67] Zhao C, Jiang E, Chen A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute 2017;90(6):902-13.
[68] Peng F, Ren J-L, Xu F, Bian J, Peng P, Sun R-C. Fractional Study of Alkali-Soluble Hemicelluloses Obtained by Graded Ethanol Precipitation from Sugar Cane Bagasse. Journal of Agricultural and Food Chemistry 2010;58(3):1768-76.
[69] Shen DK, Gu S, Bridgwater AV. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. Journal of Analytical and Applied Pyrolysis 2010;87(2):199-206.
[70] Wang S, Dai G, Ru B, Zhao Y, Wang X, Zhou J, et al. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresour Technol 2016;218:1106-14.
[71] Várhegyi G, Szabó P, Antal MJ. Kinetics of the thermal decomposition of cellulose under the experimental conditions of thermal analysis. Theoretical extrapolations to high heating rates. Biomass and Bioenergy 1994;7(1):69-74.
[72] Angin D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 2013;128:593-7.
[73] Soon VSY, Chin BLF, Lim ACR. Kinetic study on pyrolysis of oil palm frond. IOP Conference Series: Materials Science and Engineering. 121. IOP Publishing; 2016:012004.
[74] Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 2009;100(24):6496-504.
[75] Shen D, Xiao R, Gu S, Luo K. The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Advances 2011;1(9).
[76] Wu S, Shen D, Hu J, Zhang H, Xiao R. Role of β -O-4 glycosidic bond on thermal degradation of cellulose. Journal of Analytical and Applied Pyrolysis 2016;119:147-56.
[77] Burhenne L, Messmer J, Aicher T, Laborie M-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 2013;101:177-84.
[78] Lu J-J, Chen W-H. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy 2015;160:49-57.
[79] Yeo JY, Chin BLF, Tan JK, Loh YS. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute 2019;92(1):27-37.
[80] Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass and Bioenergy 2010;34(3):290-301.
[81] Fan F, Li H, Xu Y, Liu Y, Zheng Z, Kan H. Thermal behaviour of walnut shells by thermogravimetry with gas chromatography-mass spectrometry analysis. R Soc Open Sci 2018;5(9):180331-.
[82] Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. The Journal of Physical Chemistry C 2009;113(46):20097-107.
[83] Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007;86(12-13):1781-8.
[84] Wooten JB, Seeman JI, Hajaligol MR. Observation and Characterization of Cellulose Pyrolysis Intermediates by 13C CPMAS NMR. A New Mechanistic Model. Energy & Fuels 2004;18(1):1-15.
[85] Zhou X, Li W, Mabon R, Broadbelt LJ. A critical review on hemicellulose pyrolysis. Energy Technology 2017;5(1):52-79.
[86] Huang J, Liu C, Tong H, Li W, Wu D. Theoretical studies on pyrolysis mechanism of xylopyranose. Computational and Theoretical Chemistry 2012;1001:44-50.
[87] Biswas B, Singh R, Kumar J, Khan AA, Krishna BB, Bhaskar T. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals. Bioresour Technol 2016;213:319-26.
[88] Fang Z, Sato T, Smith RL, Jr., Inomata H, Arai K, Kozinski JA. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol 2008;99(9):3424-30.
[89] Zhang J, Liu J, Evrendilek F, Zhang X, Buyukada M. TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic, thermodynamic, and machine-learning models. Energy Conversion and Management 2019;195:346-59.
[90] Chen W-H, Chu Y-S, Liu J-L, Chang J-S. Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Conversion and Management 2018;160:209--19.
[91] Sfakiotakis S, Vamvuka D. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Bioresource Technology 2015;197:434-42.
[92] Draman SFS, Daik R, Latif FA, El-Sheikh SM. Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)–based cellulose. BioResources 2014;9(1):8-23.
[93] Suriapparao DV, Ojha DK, Ray T, Vinu R. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. Journal of Thermal Analysis and Calorimetry 2014;117(3):1441-51.
[94] Poletto M, Zattera AJ, Santana RM. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol 2012;126:7-12.
[95] Varhegyi G, Antal Jr MJ, Szekely T, Szabo P. Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy & Fuels 1989;3(3):329-35.