簡易檢索 / 詳目顯示

研究生: 唐宜萱
Tang, Yi-Hsuan
論文名稱: 無電鍍銀暨火花電漿燒結製備碲化鉛/銀塊材及其熱電性質之研究
Thermoelectric properties of PbTe/Ag bulk materials fabricated by electroless silver plating and spark plasma sintering
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: 無電鍍火花電漿燒結熱電性質
外文關鍵詞: electroless plating, spark plasma sintering, thermoelectric properties
相關次數: 點閱:126下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為調變熱電塊材的載子濃度,進而增加塊材的電傳導率與 Seebeck 係數,以提升功率因子 (power factor),本研究以無電鍍製程將 Ag 披覆於 PbTe 粉體上形成複合粉體,再以火花電漿燒結 (spark plasma sintering, SPS) 於 300 ~ 400 oC 、 50 MPa 壓力下製成 PbTe/Ag 複合塊材,檢討銀添加量及火花電漿燒結溫度對塊材的顯微結構及熱電性質的影響。
    於製程上,披覆於 PbTe 粉體上的銀粒子的量是由適當添加還原劑量的控制而得。披覆的銀粒子其大小為 100 ~ 200 nm 。披覆的銀經 SPS 燒結後除形成微米尺度的團聚銀並存在於 PbTe 晶界上外,亦會於 PbTe 中產生兩種固溶形式,分別為主要的間隙型固溶與部分的取代型固溶 (Ag 取代 Pb位置)。
    PbTe/Ag 塊材的電傳行為是隨銀添加量而異,≤ 2.18 wt% Ag 者為 p 型,> 6.81 wt% Ag 者轉變成 n 型摻雜半導體的電傳行為。此外,功率因子 (S2σ) 則隨銀添加量與量測溫度之增加而增加,而銀含量 6.81 wt% 之 PbTe/Ag 複合粉體以 SPS 於 400 oC 燒結所得之塊材,其熱電優值 (ZT) 於 610 K 時有最大值 0.27。
    n 型傳導的 PbTe/Ag (含 8.96 wt% Ag) 塊材其室溫載子濃度是隨SPS燒結溫度之增加而減少;而塊材之相對密度、載子遷移率及 Seebeck 係數亦隨隨燒結溫度之增加而增加,其中銀含量 8.96 wt% 之 PbTe/Ag-400 oC 塊材的功率因子在 609 K 時有最大值 1.15 mW/m-K2,其功率為未添加銀的 PbTe-400 oC 塊材之功率因子 (0.04 mW/m-K2) 的 28.4 倍。

    For changing carrier concentration and increasing electrical conductivity and Seebeck coefficient, and then enhancing the power factor of the PbTe/Ag bulk materials, in this study, PbTe/Ag hybrid powders were prepared using the electroless plating methods and sintered by spark plasma sintering (SPS) at 50 MPa from 300 oC to 400 oC. Effects of Ag comtents and SPS temperatures on the microstructures and thermoelectric properties of PbTe/Ag bulks were investigated.
    The amounts of silver particles coating on the PbTe powders could be controled by adding the suitable amounts of the reducing agent, and the sizes of silver particles were 100 ~ 200 nm. After SPS sintering, the silver not only agglomerated in micro-scale on the grain boundaries of the PbTe but also formed solid solution in PbTe, including interstitial mainly and substitutional solid solutions.
    The electric conductivity of PbTe/Ag bulks could be transformed from p-type to n-type with the increase of silver. The power factor of PbTe/Ag bulks increased with the silver contents and the sintering temperatures. The maximum ZT value, 0.27, was obtained from the PbTe/Ag bulk material prepared by SPS at 400 oC with 6.81 wt% silver measured at 610 K.
    The carrier concentration of the n-type PbTe/Ag (with 8.96 wt% Ag) bulk materials at room temperature decreased with increasing SPS sintering temperatures. The relative densities, carrier mobilities and Seebeck coefficients of the bulk materials all increased with sintering temperatures. of The PbTe/Ag-400 oC bulk material with 8.96 wt% sliver had the maximum power factor,1.15 mW/m-K2 at 609 K, which was 28 times higher than PbTe-400 oC bulk without silver.

    中文摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 基礎理論與文獻回顧 6 2-1 無電鍍技術原理 6 2-1-1 無電鍍原理 6 2-1-2 敏化活化處理 6 2-2 基本熱電效應及其應用 7 2-2-1 Seebeck 效應 7 2-2-2 Peltier 效應 8 2-2-3 Thomson 效應 8 2-2-4 熱電優質 (Figure of merit) 與能源轉換效率 9 2-3 熱電材料的介紹 11 2-3-1 熱電材料的種類 11 2-3-2 提高熱電材料性能的方法 13 2-4 熱電塊材的製備方法 15 2-4-1 熔煉法 15 2-4-2 粉末冶金法 17 2-4-3 火花電漿燒結技術 17 2-5 碲化鉛物系之相關背景與研究動態 18 2-5-1 碲化鉛化合物簡介 18 2-5-2 相關研究之最新發展 19 第三章 實驗方法與步驟 41 3-1 實驗藥品及原料 41 3-2 實驗流程 42 3-3 碲化鉛/銀複合粉體之製備 42 3-3-1 敏化劑 (Sensitizer) 42 3-3-2 金屬鍍液 42 3-3-3 還原劑 43 3-3-4 無電鍍銀製程 43 3-4 碲化鉛/銀塊材之製備 44 3-4-1 生坯成形 44 3-4-2 火花電漿燒結 (Spark Plasma Sintering, SPS) 44 3-5 碲化鉛/銀複合粉體及其塊材之材料特性分析 45 3-5-1 相鑑定分析 45 3-5-2 顯微結構觀察 45 3-5-3 粉體成分分析 46 3-5-4 塊材密度量測 46 3-5-5 塊材成分分析 47 3-6 碲化鉛/銀塊材之熱電性質量測 47 3-6-1 電傳導率與 Seebeck 係數量測 48 3-6-2 載子濃度與遷移率量測 48 3-6-3 熱傳導率量測 49 第四章 結果與討論 57 4-1 還原劑添加量對 PbTe/Ag 複合粉體之影響 57 4-1-1 PbTe/Ag 複合粉體的相鑑定分析 57 4-1-2 PbTe/Ag 複合粉體的顯微結構及成分分析 57 4-2 還原劑添加量對 PbTe/Ag 塊材之影響 59 4-2-1 PbTe/Ag 塊材的相鑑定及晶格常數分析 59 4-2-2 PbTe/Ag 塊材的顯微結構及成分分析 59 4-3 銀添加量對 PbTe/Ag 塊材的熱電性質之影響 61 4-3-1 不同銀添加量的 PbTe/Ag 塊材之載子濃度、遷移率及電傳導率 61 4-3-2 不同銀添加量的 PbTe/Ag 塊材之 Seebeck 係數與功率因子 63 4-3-3 不同銀添加量的 PbTe/Ag 塊材之熱傳導率與熱電優值 65 4-4 火花電漿燒結溫度對 PbTe/Ag 塊材之影響 66 4-4-1 不同燒結溫度的 PbTe/Ag 塊材之相鑑定及晶格常數分析 67 4-4-2 不同燒結溫度的 PbTe/Ag 塊材之顯微結構及成分分析 68 4-5 火花電漿燒結溫度對 PbTe/Ag 塊材的熱電性質之影響 69 4-5-1 不同燒結溫度的 PbTe/Ag 塊材之載子濃度、遷移率及電傳導率 69 4-5-2 不同燒結溫度的 PbTe/Ag 塊材之 Seebeck 係數與功率因子 73 第五章 結論 103 參考文獻 104

    1. D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, USA, (1995).
    2. G. S. Nolas, J. W. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg (2001).
    3. D. M. Rowe, Thermoelectrics Handbook: Micro to Nano, CRC Press, New York (2006).
    4. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,” Science, 303, 818 (2004).
    5. E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis and M. G. Kanatzidis, “Nanostructuring, Compositional Fluctuations and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions,” J. Am. Chem. Soc., 127, 9177 (2005).
    6. X. Ji, B. Zhang, Z. Su, T. Holgate, J. He and T. M. Tritt, “Nanoscale Granular Boundaries in Polycryatalline Pb0.75Sn0.25Te: An Innovative Approach to Enhance the Thermoelectric Figure of Merit, ” Phys. Status A, 206, 2, 211 (2009).
    7. Y. Q. Cao, T. J. Zhu and X. B. Zhao, “Low Thermal Conductivity and improved Figure of Merit in Fine-Grained Binary PbTe Thermoelectric Alloys,” J. Phys. D: Appl. Phys., 42, 015406 (2009).
    8. Y. Pei, N. A. Heinz, A. LaLonde and G. J. Snyder, “Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride,” Energy Environ. Sci., 4, 3640 (2011).
    9. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P. K. Vasuder, and C. H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration,” J. Electrochem. Soc., 144, 898 (1997).
    10. G. O. Mallory and J. B. Hajdu, Electroless Plating Fundamentals & Applications, American Electroplaters and Surface Finishers Society (1990).
    11. H. H. Hsu, C. C. Hsie, M. H. Chen, S. J. Lin, and J. W. Yeh, “Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition,” J. Electrochem. Soc., 148, 590 (2001).
    12. T. H. Wu, “Spark plasma sintering of PbTe/Ag hybrid powders for thermoelectric application,” Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (2009).
    13. M. Tokita, “Mechanism of Spark Plasma Sintering,” Sumitomo Coal Mining Company, Ltd., East Bldg. 108, Kanagawa Science Park KSP.
    14. Y. W. Chou, “ Spark Plasma Sintering Method and Effect on the Development of Thermoelectric Material,” Industrial Mater., 287, 11, 142 (2010).
    15. Z. H. Dughaish, “Lead telluride as a thermoelectric material for thermoelectric power generation ,” Phys. B, 322, 205 (2002).
    16. J. C. Lin, K. C. Hsieh, R. C. Sharme and Y. A. Chang, “The Pb-Te (Lead-Tellurium) System,” Bulletin of Alloy Phase Diagrams, ASM International, 10, 4, 340 (1989).
    17. R. F. Brebrik and R. S. Allgaier, “Composition Limits of Stability of PbTe,” J. Chem. Phys., 32, 1826 (1960).
    18. Q. Y. Zhang and X. B. Lei, “Progress of Research on Bulk Thermoelectric Material PbTe in Foreign Countries,” Journal of Xihua University (Natural Science), 31, 3, 81 (2012).
    19. J. R. Sootsman, H. Kong, C. Uher, J. J. D’Angelo, C. I. Wu, T. P. Hogan, T. Caillat, and M. G. Kanatzidis, “Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring,” Angew. Chem., 120, 8746 (2008).
    20. P. F. P. Poudeu, A. Guéguen, C. I. Wu,T. Hogan and M. G. Kanatzidis, “High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials,” Chem. Mater., 22, 1046 (2010).
    21. Y. Pei , J. Lensch-Falk , E. S. Toberer , D. L. Medlin and G. J. Snyder, “High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping,” Adv. Funct. Mater., 21, 241–249 (2011)
    22. C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou, and C. S. Hwang, “p-Type PbTe Thermoelectric Bulk Materials with Nanograins Fabricated by Attrition Milling and Spark Plasma Sintering,” J. Electron. Mater., 38, 9, 1956 (2009).
    23. C. H. Kuo, H. S. Chien, C. S. Hwang, Y. W. Chou, M. S. Jeng and M. Yoshimura, “Thermoelectric Properties of Fine-Grained PbTe Bulk Materials Fabricated by Cryomilling and Spark Plasma Sintering,” Mater. Trans., 52, 4, 795 (2011).
    24. J. Q. Li, S. P. Li, Q. B. Wang, L. Wang, F. S. Liu and W. Q. AO, “Effect of Ce-Doping on Thermoelectric Properties in PbTe Alloys Prepared by Spark Plasma Sintering,” J. Electron. Mater., 40, 10, 2063 (2011).
    25. J. P. Heremans, C. M. Thrush, and D. T. Morelli, “Thermopower enhancement in lead telluride nanostructures,” Phys. Rev. B, 70, 115334 (2004).
    26. J. P. Heremans, C. M. Thrush, and D. T. Morelli, “Thermopower enhancement in PbTe with Pb precipitates,” J. Appl. Phys., 98, 063703 (2005).
    27. J. Martin and G. S. Nolas, “PbTe Nanocomposites Synthesized from PbTe Nanocrystals,” Appl. Phys. Lett., 90, 222112 (2007).
    28. C. Y. Li, Q. Wang, C. Wang, H. X. Guo, “Fabricating Ag/ Al composite powder by electroless silver plating,” J. Funct. Mater., 9, 41, 1525 (2010).
    29. A. J. Strauss, “Effect of Pb- and Te-saturation on carrier concentrations in impurity-doped PbTe,” J. Electron. Mater., 2, 4, 553 (1973).
    30. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, 321, 554 (2008).
    31. M. Orihashia, Y. Nodab, L. D. Chen, T. Goto, T. Hirai, “Effect of tin content on thermoelectric properties of p-type lead tin telluride,” J. Phys. and Chem. of Solids, 61, 919 (2000).
    32. R. J. Cava, H. Ji, M. K. Fuccillo, Q. D. Gibson and Y. S. Hor, “Crystal Structure and Chemistry of Topological Insulators,” J. Mater. Chem. C, 1, 3176 (2013).
    33. M. Schenk, H. Berger, A. Klimakow, M. Müilberg, M. Wienecke, “Nonstoichiometry and Point Defects in PbTe,” Cryst. Res. Technol., 23, 1, 77 (1988).
    34. I. B. Cadoff, E. Miller, Thermoelectric Materials and Devices, Reinhold, New York (1960).
    35. Y. Pei, A. F. May and G. J. Snyder, “Self-Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance,” Adv. Energy Mater., 1, 291 (2011).
    36. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature, 473, 66 (2011).
    37. Y. Pei, A. D. LaLonde, N. A. Heinz and G. J. Snyder, “High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe,” Adv. Energy Mater., 2, 670 (2012)
    38. M. Ohta, K. Biswas, S. H. Lo, J. He, D. Y. Chung, V. P. Dravid and M. G. Kanatzidis, “Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p -type PbTe Doped with Na2Te,” Adv. Energy Mater., 2, 1117 (2012)
    39. P. K. Rawat, B. Paul, and P. Banerji, “Thermoelectric properties of PbSe0.5Te0.5: x (PbI2) with endotaxial nanostructures: a promising n-type thermoelectric material,” Nanotechnology, 24, 215401 (2013)
    40. K. Ahn, K. Biswas, J. He, I. Chung, V. Dravid and M. G. Kanatzidis, “Enhanced thermoelectric properties of p-type nanostructured PbTe–MTe (M = Cd, Hg) materials,” Energy Environ. Sci., 6, 1529 (2013)
    41. C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, New York (2005).
    42. C. H. Kuo, “Thermoelectric properties of telluride bulk materials fabricated by ball milling and spark plasma sintering,” Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (2010).

    下載圖示 校內:2018-08-26公開
    校外:2018-08-26公開
    QR CODE