簡易檢索 / 詳目顯示

研究生: 黃鼎鈞
Huang, Ding-Jun
論文名稱: 膜式/滴式混合型表面於冷凝熱傳增益的探討
Enhancement of Condensation Heat Transfer with Filmwise/Dropwise Hybrid Surface
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 383
中文關鍵詞: 銅表面改質親水性疏水性親疏水混合表面網版印刷冷凝熱傳
外文關鍵詞: copper surface modification, hydrophilicity, hydrophobicity, hybrid wettability surface, screen printing, condensation heat transfer
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探究各種不同的親疏水混合型銅表面的冷凝熱傳增益,利用親疏水混合銅表面的液滴驅動性,可獲得比全疏水表面更好的冷凝熱傳效果。在現今著重於提升能源利用率與節能的發展議題下,本研究的重要性不言而喻,並可應用於各式相變熱控元件、熱交換器與節能系統。
    以過氧化氫氧化法與鐵氟龍塗覆法做為基礎,再以網板印刷方式製作各種親疏水混合型銅表面,其親水區與疏水區的接觸角各約為7°與146°,此親疏水性差異可使液滴受極大非平衡張力而快速驅動。
    以類似樹幹與枝的交叉結構,設計出具有排水廊與水道的混合表面,利用現行的冷凝熱傳方程式與幾何參數配置進行冷凝熱傳熱通量的優化分析,理論的主要參數為親疏水區域面積比與理論液滴最大半徑,本研究所設計的表面的理論熱通量約為現行常見的條狀形混合表面的1.15至1.52倍。
    冷凝熱傳理論中不易獲得之塗層厚度之問題,由本研究提出可行之平面有效厚度計算方式加以解決,利用實驗所得熱通量與最大液滴半徑,比較理論熱通量,可得知塗層厚度於非平面與具有微結構時的合理性,本研究中的鐵氟龍平面有效厚度約250 nm,與實驗量測值20 μm比較下的理論值更符合實驗值,有效地避免實驗量測厚度的誤判。
    冷凝熱傳實驗中,與超疏水鐵氟龍表面相比之下,具有8°三角梯度表面陣列的混合型表面於蒸氣—表面溫差4 K至10 K間的熱通量約1.21倍,具水平三角形水道的混合型表面於3 K至10 K的熱通量約1.03 ~ 1.303倍,具有倒V型水道的混合型表面的熱通量於6 K至10 K約1.07 ~ 1.12倍,而具有三角梯度水道的混和表面的熱通量於2 K 至10 K約1.19 ~ 1.92倍,多半的設計表面也具有高於條狀形混合表面的熱通量,由於其明顯的液滴驅動性,增益了表面冷凝熱傳,足見本研究所設計的表面的實用性。
    本研究以理論分析與實驗探究等方式,配合親疏水混合表面設計實現了膜式/滴式混合形表面的熱通量優化,對現今的相變熱元件發展具有實質的技術貢獻與學術價值。

    Filmwise/dropwise hybrid wettability surfaces have well condensation heat transfer performance than a fully superhydrophobic surface, because of enhanced water transportation. This study mainly investigate the CHT performance of various hybrid copper surfaces designed according to CHT theory. Currently, the issue is very important because of high erergy use effiency and energy-saving are concerned. Also the issue is applicable to kinds of phase change thermal control devices, heat exchangers, energy-saving systems so that energy consumption and waste heat is minimized. The demand for environment protection and the development of thermal science are able to be realized.
    Hybrid wettability surfaces were fabricated by screen printing comprising hydrogen peroxide (H2O2) oxidation and Teflon coating. Superhydrophilic and superhydrophobic regions were present, and water contact angles of both the regions were approximately 7° and 146°, respectively. Thus, the wettability difference with considerable surface tension force inequilibrium induced droplets seating on the surface move fast.
    Hybrid wettability surfaces were designed according to tree-like hybrid structures, so most of them consisted of water galleries and water paths for water transportation. Optimization of theoretical heat flux of the designed hybrid surface was conducted by current condensation heat transfer theory and geometrical features. The main parameters in the theory are superhydrophilic/superhydrophobic area ratios and the theoretically maximum droplet radius on the surface. In comparison, theorecial heat flux of the designed hybrid surface is as 1.15 ~ 1.52 times as that of the surface with rectangular strip water gallery utilized in much related research.
    Effective thickness as planar layer of coating was proposed to replace the general problem of thickness deviation in measurement. The calculation of effective thickness was according to experimentally measured heat flux, maximum droplet radius and comparison among theoretical heat flux values. The effective thickness was appropriate to calculate reasonable thickness of coatings with non-planar morphology and microstructures. In this study, the effective thickness of Teflon coating as a planar layer was about 250 nm, which was close to the experimental result compared with the experimentally measured 20 μm. Thus, the effective thickness eliminated experimental error in measurement.
    In experiment, most designed hybrid surfaces performed condensation heat transfer well and the enhancement relative to the superhydrophobic Teflon-coated surface is higher. For example, the heat flux of hybrid surfaces with triangular gradient pattern array and apex angle 8° is about 1.21 times that of the superhydrophobic Teflon-coated surface within vapor ― surface temperature difference range 4 K to 10 K; the heat flux of hybrid surfaces with horizontal triangular water gallery is about 1.03 ~ 1.303 times within range 3 K to 10 K; the heat flux of hybrid surfaces with reverse V shaped water gallery is about 1.07 ~ 1.12 times within range 6 K to 10 K; the heat flux of hybrid surfaces with triangular gradient gallery is about 1.19 ~ 1.92 times within range 2 K to 10 K; not only was experimental heat flux of most designed hybrid surfaces high, but also was obviously higher than that of he surface with rectangular strip water gallery used as a reference for comparison. The reason why the designed hybrid surface performed well was found due to significant condensate water droplet transportation on the surface, resulting into overwhelming condensation heat transfer. Therefore, the feasibility of the designed hybrid surface in applications is evident without any doubt.
    This study met the optimization of condensation heat transfer performance on superhydrophilic/superhydrophobic hybrid surfaces proposed by theoretical analysis and experimental investigation. It contributed an up-to-date technical idea to current phase change thermal control devices, and revealed a developable field in condensation heat transfer study.

    摘要.......................................................I ABSTRACT..................................................II 致謝與感言.................................................IV ACKNOWLEDGEMENT...........................................VI CONTENTS...................................................X LIST OF TABLES...........................................XII LIST OF FIGURES.........................................XIII NOMENCLATURE.........................................XXXVIII ACRONYMS................................................XLIV 1.1 Surface engineering....................................1 1.2 Surface wettability....................................2 1.3 Surface wettability issues and development.............4 1.4 Application in wettability issues......................7 1.5 Wettability issues in copper and its applications.....10 1.6 Condensation heat transfer (CHT)......................12 1.7 Hybrid/gradient surfaces and applications.............17 1.8 Fabrication of hybrid/gradient surfaces...............22 1.9 Screen printing process...............................24 1.10 Purpose and motivation of study......................24 2.1 Design of triangular hybrid/gradient surface..........96 2.2 Condensation heat transfer (CHT).....................101 2.3 CHT theory for proposed hybrid/gradient surface......102 2.3.1 Thermal resistance through a single condensate water droplet..................................................103 2.3.2 Thermal resistance through a whole condensate water film ................................................... 111 2.3.3 Hybrid surfaces with rectangular water gallery.....112 2.3.4 Hybrid surfaces with horizontal and triangular water gallery..................................................112 2.3.5 Hybrid surfaces with reverse V shaped water gallery..................................................116 3.1 Copper surface modification methods..................164 3.1.1 Ferric chloride etching method.....................164 3.1.2 H2O2 oxidation method..............................165 3.2 Hybrid/gradient wettability copper surfaces..........166 3.2.1 Cu substrate pretreatment..........................166 3.2.2 Pattern design and screen preparation..............167 3.3 CHT experiment for Hphi and Hpho surfaces............169 3.3.1 Types of Cu heat sinks.............................170 3.3.2 Fabrication of SHpho Cu heat sinks.................170 3.3.3 Condensation heat transfer (CHT) experiment........171 3.3.4 CHT theory and analysis............................174 3.4 CHT experiment for hybrid surfaces...................175 3.4.1 Hybrid surfaces with triangular pattern arrays.....175 3.4.2 Hybrid surfaces with rectangular strip water gallery..................................................175 3.4.3 Hybrid surfaces with horizontal and triangular water gallery .................................................175 3.4.4 Hybrid surfaces with reverse V shaped water gallery..................................................176 3.4.5 Hybrid surfaces with triangular gradient water galleries ...............................................176 4.1 Cu surface modification..............................212 4.1.1 Cu cleaning........................................212 4.1.2 Hydrophilic Cu surfaces............................212 4.1.3 Hydrophobic Cu surfaces............................215 4.1.4 Hybrid/gradient wettability Cu surfaces fabrication .............................................216 4.1.5 Triangular hybrid/gradient wettability testing..................................................217 4.2 Condensation heat transfer (CHT).....................218 4.2.1 Features of Cu heat sink...........................218 4.2.2 Durability test and analysis.......................220 4.2.3 Rmax and δcoat in theoretical CHT analysis.................................................222 4.2.4 Surface condensation analysis......................224 4.2.5 Heat transfer analysis.............................231 4.2.6 Heat transfer coefficient vs. temperature difference...............................................242 5.1 Conclusion...........................................321 5.2 Suggesions for future work...........................323 5.2.1 Surface or wettability issues......................323 5.2.2 Screen printing....................................324 5.2.3 CHT related issues.................................324 REFERENCE................................................327 APPENDIX.................................................363 PUBLICATION LIST.........................................381 BRIEF CURRICULUM VITAE...................................383

    [1] P. M. Martin, Introduction to Surface Engineering and Functionally Engineered Materials, John Wiley & Sons, Inc., Hoboken, NJ., U.S.A., pp. 1-565, 2011.
    [2] C. N. Elias, J. H. C. Lima, R. Valiev & M. A. Meyers, Biomedical applications of titanium and its alloys, JOM-Springer, Vol. 60 (3), pp. 46-49, 2008.
    [3] M. Peters, J. Kumpfert, C. H. Ward & C. Leyens, Titanium Alloys for Aerospace Applications, Adv. Eng. Mater., Vol. 5 (6), pp. 419-427, 2003.
    [4] R. R. Boyer, Attributes, characteristics, and applications of titanium and its alloys, JOM-Springer, Vol. 62 (5), pp. 21-24, 2010.
    [5] W. Jia, M. Guo, Z. Zheng, T. Yu, Y. Wang, E. G. Rodriguez & Y. Lei, Vertically Aligned CuO Nanowires Based Electrode for Amperometric Detection of Hydrogen Peroxide, Electroanalysis, Vol. 20 (19), pp. 2153-2157, 2008.
    [6] A. Gu, G. Wang, X. Zhang & B. Fang, Synthesis of CuO nanoflower and its application as a H2O2 sensor, Bull. Mater. Sci., Vol. 33 (1), pp. 17-20, 2010.
    [7] M. Kevin, W. L. Ong, G. H. Lee & G. W. Ho, Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network
    sensing at room temperature, Nanotechnology, Vol. 22 (23), p. 235701, 2011.
    [8] H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu, T. J. Hsueh, S. S. Lin & B. T. Dai, Ethanol Gas Sensor of Crabwise CuO Nanowires Prepared on Glass Substrate, J. Electrochem. Soc., Vol. 158 (4), pp. J106-J109, 2011.
    [9] C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao & D. J. Fu, Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties, Curr. App. Phys., Vol. 12 (5), pp. 1349-1354, 2012.
    [10] P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong & S.
    Choopun, Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction, Ceram. Int., Vol. 35 (2), pp. 649-652, 2009.
    [11] D. Li, J. Hu, R. Wu & J. G. Lu, Conductometric chemical sensor based on individual CuO nanowires, Nanotechnology, Vol. 21 (48), p. 485502, 2010.
    [12] V. P. Srinivasa, D. Sivalingam, J. B. Gopalakrishnan & J. B. B. Rayappan, Nanostructured Copper Oxide Thin Film for Ethanol Vapor Sensing, J. Appl. Sci., Vol. 12 (16), pp. 1656-1660, 2012.
    [13] C. Yuan, Y. Xu, Y. Deng, N. Jiang, N. He & L. Dai, CuO based inorganic–organic hybrid nanowires: a new type of highly sensitive humidity sensor, Nanotechnology, Vol. 21 (41), p. 415501, 2010.
    [14] M. Mashock, K. Yu, S. Cui, S. Mao, G. Lu & J. Chen, Modulating Gas Sensing Properties of CuO Nanowires through Creation of Discrete Nanosized p-n Junctions on Their Surfaces, ACS Appl. Mater. Interfaces, Vol. 4 (8), pp. 4192-4199, 2012.
    [15] A. Gurlo & R. Riedel, In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing, Angew. Chem. Int. Ed., Vol. 46 (21), p. 3826, 2007.
    [16] M. Pashchanka, R. M. Prasad, R. C. Hoffmann, A. Gurlo & J. J. Schneider, Inkjet-Printed Nanoscaled CuO for Miniaturized Gas-Sensing Devices, Eur. J. Inorg. Chem., Vol. 2013 (9), pp. 1481-1487, 2013.
    [17] X. Xiao, L. Miao, G. Xu, L. Lu, Z. Su, N. Wang & S. Tanemura, A facile process to prepare copper oxide thin films as solar selective absorbers, Appl. Surf. Sci., Vol.
    257 (24), pp. 10729-10736, 2011.
    [18] L. Ma, M. Peng, J. Li, Y. Yu & Z. Chen, Cu2O nanorods with large surface area for photodegradation of organic pollutant under visible light, 7th IEEE Conference on
    Nanotechnology, Hong Kong SAR, China, pp. 975-978, 2007.
    [19] Q. Pan, H. Jin, H. Wang & G. Yin, Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance,
    Electrochem. Acta, Vol. 53 (2), pp. 951-956, 2007.
    [20] H. Wang, Q. Pan, J. Zhao, G. Yin & P. Zuo, Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion
    batteries, J. Pow. Sour., Vol. 167 (1), pp. 206-211, 2007.
    [21] T. A. Taton & D. J. Norris, Defective promise in photonics, Nature, Vol. 416, p. 2, 2002.
    [22] O. D. Velev, MATERIALS SCIENCE: Enhanced: Self-Assembly of Unusual Nanoparticle Crystals, Science, Vol. 312 (5772), p. 2, 2006.
    [23] Q. Yan, Z. Zhou & X. S. Zhao, Inward-Growing Self-Assembly of Colloidal Crystal Films on Horizontal Substrates, Langmuir, Vol. 21 (7), p. 7, 2005.
    [24] S.-L. Kuai, X.-F. Hu, H. Alain & V.-V. Truonga, High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique,
    J. Crys. Gro., Vol. 267 (1-2), p. 8, 2004.
    [25] W. Lee, S. A. Pruzinsky & P. V. Braun, Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals, Adv. Mater., Vol. 14 (4), p.
    4, 2002.
    [26] J. H. Lee, Q. Wu & W. Park, Metal nanocluster metamaterial fabricated by the colloidal self-assembly, Opt. Lett., Vol. 34 (4), p. 3, 2009.
    [27] L. Qi, C. Chen & S. Liu, In-situ Formation of Gold Nanoparticles on Self-assembly Monolayer Modified Silicon Substrate Proc. SPIE., Vol. 7493, p. 6, 2009.
    [28] Y.-K. Park & S. Park, Directing Close-Packing of Midnanosized Gold Nanoparticles at a Water/Hexane Interface, Chem. Mater., Vol. 20 (6), p. 6, 2008.
    [29] X. Zhou, C. Liu, Z. Zhang, L. Jiang & J. Li, A novel nanogold multilayer constructed by Langmuir–Blodgett and self-assembly techniques J. Colloid Interface Sci., Vol.
    284 (1), p. 4, 2005.
    [30] Y.-K. Park, S.-H. Yoo & S. Park, Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface, Langmuir, Vol. 23 (21), p. 5, 2007.
    [31] T.-T. Wang, P.-W. Huang & S.-K. Fan, Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting, 19th IEEE International Conference on Micro
    Electro Mechanical Systems, Istanbul, Turkey, p. 174, 2006.
    [32] N. Verplanck, Y. Coffinier, V. Thomy & R. Boukherroub, Wettability Switching Techniques on Superhydrophobic Surfaces, Nanoscale Res. Lett., Vol. 2 (12), pp.577-596, 2007.
    [33] D. J. C. M. 'tMannetje, C. U. Murade, D. V. D. Ende & F. Mugele, Electrically assisted drop sliding on inclined planes, Appl. Phys. Lett., Vol. 98 (1), p. 014102, 2011.
    [34] Y. Li, Y. Mita, L. I. Haworth, W. Parkes, M. Kubota & A. J. Walton, Test Structure for Characterizing Low Voltage Coplanar EWOD System, IEEE Trans. Semicond. Manuf., Vol. 22 (1), pp. 88-95, 2009.
    [35] A. R. Parker & C. R. Lawrence, Water capture by a desert beetle, Nature, Vol. 414, pp. 33-34, 2001.
    [36] H. S. Khoo & F.-G. Tseng, Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces, Appl. Phys. Lett., Vol. 95 (6), p. 063108, 2009.
    [37] K. Liu, X. Yao & L. Jiang, Recent developments in bio-inspired special wettability, Chem. Soc. Rev., Vol. 39 (8), pp. 3240-3255, 2010.
    [38] X. Yao, Y. Song & L. Jiang, Applications of Bio-Inspired Special Wettable Surfaces, Adv. Mater., Vol. 23 (6), pp. 719-734, 2011.
    [39] W. Barthlott & C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, Vol. 202 (1), pp. 1-8, 1997.
    [40] T. Young, An Essay on the Cohesion of Fluids, Phil. Trans. R. Soc. Lond., Vol. 95, pp.65-87, 1805.
    [41] R. N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., Vol. 28 (8), pp. 988-994, 1936.
    [42] A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?, Langmuir, Vol. 19 (20), pp. 8343-8348, 2003.
    [43] A. B. D. Cassie & S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., Vol.40, pp. 546-551, 1944.
    [44] L. Gao & T. J. McCarthy, A Perfectly Hydrophobic Surface (θA/θR = 180°/180°), J. Am. Chem. Soc., Vol. 128 (28), pp. 9052-9053, 2006.
    [45] X. Feng & L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces, Adv. Mater., Vol. 18 (23), pp. 3063-3078, 2006.
    [46] Z. Cheng, H. Lai, N. Zhang, K. Sun & L. Jiang, Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on
    Highly Hydrophobic Silicon Surface, J. Phys. Chem. C, Vol. 116 (35), pp.18796-18802, 2012.
    [47] T. Zhang & T. Cui, Tunable wetting properties of patterned silicon microchannels with varied surface free energy based on layer-by-layer nano self-assembly, J. Micromech. Microeng., Vol. 21 (4), p. 045015, 2011.
    [48] B. He, N. A. Patankar & J. Lee, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, Vol. 19 (12), pp. 4999-5003, 2003.
    [49] M. Callies & D. Quéré, On water repellency, Soft Matter, Vol. 1 (1), pp. 55-61, 2005.
    [50] S. H. Nguyen, H. K. Webb, P. J. Mahon, R. J. Crawford & E. P. Ivanova, Natural Insect and Plant Micro-/Nanostructsured Surfaces: An Excellent Selection of Valuable Templates with Superhydrophobic and Self-Cleaning Properties, Molecules, Vol. 19 (9), pp. 13614-13630, 2014.
    [51] M. Ma & R. M. Hill, Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci., Vol. 11 (4), pp. 193-202, 2006.
    [52] C. Dorrer & J. Rühe, Some thoughts on superhydrophobic wetting, Soft Matter, Vol.5 (1), pp. 51-61, 2009.
    [53] T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala & R. H. A. Ras, Mechanically Durable Superhydrophobic Surfaces, Adv. Mater., Vol. 23 (5), pp. 673-678, 2011.
    [54] X. Zhang, F. Shi, J. Niu, Y. Jiang & Z. Wang, Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem., Vol. 18 (6), pp.
    621-633, 2008.
    [55] L. Wen, Y. Tian & L. Jiang, Bioinspired Super-Wettability from Fundamental Research to Practical Applications, Angew. Chem. Int. Ed., Vol. 54 (11), pp. 3387-3399, 2015.
    [56] E. Celia, T. Darmanin, E. T. d. Givenchy, S. Amigoni & F. Guittard, Recent advances in designing superhydrophobic surfaces, J. Colloid Interface Sci., Vol. 402, pp. 1-18, 2013.
    [57] C. Song & Y. Zheng, Wetting-controlled strategies: From theories to bio-inspiration, J. Colloid Interface Sci., Vol. 427, pp. 2-14, 2014.
    [58] K. Bazaka, M. V. Jacob, W. Chrzanowski & K. Ostrikov, Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification, RSC Adv.,
    Vol. 5 (60), pp. 48739-48759, 2015.
    [59] J. Hasan, R. J. Crawford & E. P. Ivanova, Antibacterial surfaces: the quest for a new generation of biomaterials, Trends Biotechnol., Vol. 31 (5), pp. 295-304, 2013.
    [60] Y. C. Jung & B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces, Scr. Mater., Vol. 57 (12), pp. 1057-1060, 2007.
    [61] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto & T. Watanabe, Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, Vol. 16 (13), pp. 5754-5760, 2000.
    [62] D. Öner & T. J. McCarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, Vol. 16 (20), pp. 7777-7782, 2000.
    [63] P. G. Wapner & W. P. Hoffman, Partial Wetting Phenomena on Nonplanar Surfaces and in Shaped Microchannels, Langmuir, Vol. 18 (4), pp. 1225-1230, 2002.
    [64] A. Lafuma & D. Quéré, Superhydrophobic states, Nat. Mater., Vol. 2, pp. 457-460, 2003.
    [65] D. Quéré, A. Lafuma & J. Bico, Slippy and sticky microtextured solids, Nanotechnology, Vol. 14 (10), pp. 1109-1112, 2003.
    [66] N. A. Patankar, Transition between Superhydrophobic States on Rough Surfaces, Langmuir, Vol. 20 (17), pp. 7097-7102, 2004.
    [67] J. Lee, B. He & N. A. Patankar, A roughness-based wettability switching membrane device for hydrophobic surfaces, J. Micromech. Microeng., Vol. 15 (3), p. 022, 2005.
    [68] L. Gao & T. J. McCarthy, Contact Angle Hysteresis Explained, Langmuir, Vol. 22 (14), pp. 6234-6237, 2006.
    [69] B. Li, M. Zhou, K. Qian & L. Cai, Design and Fabrication of Super-Hydrophobic Surfaces on Silicon Wafers and Study of Effects to Hydrophobicity, Chinese J. Mech.
    Eng., Vol. 21 (4), pp. 18-21, 2008.
    [70] Y. Wu, Study of the Movement of Water Droplets on Super-hydrophobic Surface, Guangdong Chem. Ind., Vol. 37 (1), pp. 23-24, 29, 2010.
    [71] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder & H. F. Bohn, The Salvinia Paradox:
    Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water, Adv. Mater., Vol. 22 (21), pp. 2325-2328, 2010.
    [72] A. Otten & S. Herminghaus, How Plants Keep Dry: A Physicist's Point of View, Langmuir, Vol. 20 (6), pp. 2405-2408, 2004.
    [73] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia & L. Jiang, Petal Effect: A Superhydrophobic State with High Adhesive Force, Langmuir, Vol. 24 (8), pp.4114-4119, 2008.
    [74] X. Gao & L. Jiang, Biophysics: Water-repellent legs of water striders, Nature, Vol.432, pp. 36-37, 2004.
    [75] T. Onda, S. Shibuichi, N. Satoh & K. Tsujii, Super-Water-Repellent Fractal Surfaces, Langmuir, Vol. 12 (9), pp. 2125-2127, 1996.
    [1] P. M. Martin, Introduction to Surface Engineering and Functionally Engineered Materials, John Wiley & Sons, Inc., Hoboken, NJ., U.S.A., pp. 1-565, 2011.
    [2] C. N. Elias, J. H. C. Lima, R. Valiev & M. A. Meyers, Biomedical applications of titanium and its alloys, JOM-Springer, Vol. 60 (3), pp. 46-49, 2008.
    [3] M. Peters, J. Kumpfert, C. H. Ward & C. Leyens, Titanium Alloys for Aerospace Applications, Adv. Eng. Mater., Vol. 5 (6), pp. 419-427, 2003.
    [4] R. R. Boyer, Attributes, characteristics, and applications of titanium and its alloys, JOM-Springer, Vol. 62 (5), pp. 21-24, 2010.
    [5] W. Jia, M. Guo, Z. Zheng, T. Yu, Y. Wang, E. G. Rodriguez & Y. Lei, Vertically Aligned CuO Nanowires Based Electrode for Amperometric Detection of Hydrogen Peroxide, Electroanalysis, Vol. 20 (19), pp. 2153-2157, 2008.
    [6] A. Gu, G. Wang, X. Zhang & B. Fang, Synthesis of CuO nanoflower and its application as a H2O2 sensor, Bull. Mater. Sci., Vol. 33 (1), pp. 17-20, 2010.
    [7] M. Kevin, W. L. Ong, G. H. Lee & G. W. Ho, Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature, Nanotechnology, Vol. 22 (23), p. 235701, 2011.
    [8] H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu, T. J. Hsueh, S. S. Lin & B. T. Dai, Ethanol Gas Sensor of Crabwise CuO Nanowires Prepared on Glass Substrate, J. Electrochem. Soc., Vol. 158 (4), pp. J106-J109, 2011.
    [9] C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao & D. J. Fu, Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties, Curr. App. Phys., Vol. 12 (5), pp. 1349-1354, 2012.
    [10] P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong & S. Choopun, Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction, Ceram. Int., Vol. 35 (2), pp. 649-652, 2009.
    [11] D. Li, J. Hu, R. Wu & J. G. Lu, Conductometric chemical sensor based on individual CuO nanowires, Nanotechnology, Vol. 21 (48), p. 485502, 2010.
    [12] V. P. Srinivasa, D. Sivalingam, J. B. Gopalakrishnan & J. B. B. Rayappan, Nanostructured Copper Oxide Thin Film for Ethanol Vapor Sensing, J. Appl. Sci., Vol. 12 (16), pp. 1656-1660, 2012.
    [13] C. Yuan, Y. Xu, Y. Deng, N. Jiang, N. He & L. Dai, CuO based inorganic–organic hybrid nanowires: a new type of highly sensitive humidity sensor, Nanotechnology, Vol. 21 (41), p. 415501, 2010.
    [14] M. Mashock, K. Yu, S. Cui, S. Mao, G. Lu & J. Chen, Modulating Gas Sensing Properties of CuO Nanowires through Creation of Discrete Nanosized p-n Junctions on Their Surfaces, ACS Appl. Mater. Interfaces, Vol. 4 (8), pp. 4192-4199, 2012.
    [15] A. Gurlo & R. Riedel, In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing, Angew. Chem. Int. Ed., Vol. 46 (21), p. 3826, 2007.
    [16] M. Pashchanka, R. M. Prasad, R. C. Hoffmann, A. Gurlo & J. J. Schneider, Inkjet-Printed Nanoscaled CuO for Miniaturized Gas-Sensing Devices, Eur. J. Inorg. Chem., Vol. 2013 (9), pp. 1481-1487, 2013.
    [17] X. Xiao, L. Miao, G. Xu, L. Lu, Z. Su, N. Wang & S. Tanemura, A facile process to prepare copper oxide thin films as solar selective absorbers, Appl. Surf. Sci., Vol. 257 (24), pp. 10729-10736, 2011.
    [18] L. Ma, M. Peng, J. Li, Y. Yu & Z. Chen, Cu2O nanorods with large surface area for photodegradation of organic pollutant under visible light, 7th IEEE Conference on Nanotechnology, Hong Kong SAR, China, pp. 975-978, 2007.
    [19] Q. Pan, H. Jin, H. Wang & G. Yin, Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance, Electrochem. Acta, Vol. 53 (2), pp. 951-956, 2007.
    [20] H. Wang, Q. Pan, J. Zhao, G. Yin & P. Zuo, Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries, J. Pow. Sour., Vol. 167 (1), pp. 206-211, 2007.
    [21] T. A. Taton & D. J. Norris, Defective promise in photonics, Nature, Vol. 416, p. 2, 2002.
    [22] O. D. Velev, MATERIALS SCIENCE: Enhanced: Self-Assembly of Unusual Nanoparticle Crystals, Science, Vol. 312 (5772), p. 2, 2006.
    [23] Q. Yan, Z. Zhou & X. S. Zhao, Inward-Growing Self-Assembly of Colloidal Crystal Films on Horizontal Substrates, Langmuir, Vol. 21 (7), p. 7, 2005.
    [24] S.-L. Kuai, X.-F. Hu, H. Alain & V.-V. Truonga, High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique, J. Crys. Gro., Vol. 267 (1-2), p. 8, 2004.
    [25] W. Lee, S. A. Pruzinsky & P. V. Braun, Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals, Adv. Mater., Vol. 14 (4), p. 4, 2002.
    [26] J. H. Lee, Q. Wu & W. Park, Metal nanocluster metamaterial fabricated by the colloidal self-assembly, Opt. Lett., Vol. 34 (4), p. 3, 2009.
    [27] L. Qi, C. Chen & S. Liu, In-situ Formation of Gold Nanoparticles on Self-assembly Monolayer Modified Silicon Substrate Proc. SPIE., Vol. 7493, p. 6, 2009.
    [28] Y.-K. Park & S. Park, Directing Close-Packing of Midnanosized Gold Nanoparticles at a Water/Hexane Interface, Chem. Mater., Vol. 20 (6), p. 6, 2008.
    [29] X. Zhou, C. Liu, Z. Zhang, L. Jiang & J. Li, A novel nanogold multilayer constructed by Langmuir–Blodgett and self-assembly techniques J. Colloid Interface Sci., Vol. 284 (1), p. 4, 2005.
    [30] Y.-K. Park, S.-H. Yoo & S. Park, Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface, Langmuir, Vol. 23 (21), p. 5, 2007.
    [31] T.-T. Wang, P.-W. Huang & S.-K. Fan, Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting, 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, p. 174, 2006.
    [32] N. Verplanck, Y. Coffinier, V. Thomy & R. Boukherroub, Wettability Switching Techniques on Superhydrophobic Surfaces, Nanoscale Res. Lett., Vol. 2 (12), pp. 577-596, 2007.
    [33] D. J. C. M. 'tMannetje, C. U. Murade, D. V. D. Ende & F. Mugele, Electrically assisted drop sliding on inclined planes, Appl. Phys. Lett., Vol. 98 (1), p. 014102, 2011.
    [34] Y. Li, Y. Mita, L. I. Haworth, W. Parkes, M. Kubota & A. J. Walton, Test Structure for Characterizing Low Voltage Coplanar EWOD System, IEEE Trans. Semicond. Manuf., Vol. 22 (1), pp. 88-95, 2009.
    [35] A. R. Parker & C. R. Lawrence, Water capture by a desert beetle, Nature, Vol. 414, pp. 33-34, 2001.
    [36] H. S. Khoo & F.-G. Tseng, Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces, Appl. Phys. Lett., Vol. 95 (6), p. 063108, 2009.
    [37] K. Liu, X. Yao & L. Jiang, Recent developments in bio-inspired special wettability, Chem. Soc. Rev., Vol. 39 (8), pp. 3240-3255, 2010.
    [38] X. Yao, Y. Song & L. Jiang, Applications of Bio-Inspired Special Wettable Surfaces, Adv. Mater., Vol. 23 (6), pp. 719-734, 2011.
    [39] W. Barthlott & C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, Vol. 202 (1), pp. 1-8, 1997.
    [40] T. Young, An Essay on the Cohesion of Fluids, Phil. Trans. R. Soc. Lond., Vol. 95, pp. 65-87, 1805.
    [41] R. N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., Vol. 28 (8), pp. 988-994, 1936.
    [42] A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?, Langmuir, Vol. 19 (20), pp. 8343-8348, 2003.
    [43] A. B. D. Cassie & S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., Vol. 40, pp. 546-551, 1944.
    [44] L. Gao & T. J. McCarthy, A Perfectly Hydrophobic Surface (θA/θR = 180°/180°), J. Am. Chem. Soc., Vol. 128 (28), pp. 9052-9053, 2006.
    [45] X. Feng & L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces, Adv. Mater., Vol. 18 (23), pp. 3063-3078, 2006.
    [46] Z. Cheng, H. Lai, N. Zhang, K. Sun & L. Jiang, Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on Highly Hydrophobic Silicon Surface, J. Phys. Chem. C, Vol. 116 (35), pp. 18796-18802, 2012.
    [47] T. Zhang & T. Cui, Tunable wetting properties of patterned silicon microchannels with varied surface free energy based on layer-by-layer nano self-assembly, J. Micromech. Microeng., Vol. 21 (4), p. 045015, 2011.
    [48] B. He, N. A. Patankar & J. Lee, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, Vol. 19 (12), pp. 4999-5003, 2003.
    [49] M. Callies & D. Quéré, On water repellency, Soft Matter, Vol. 1 (1), pp. 55-61, 2005.
    [50] S. H. Nguyen, H. K. Webb, P. J. Mahon, R. J. Crawford & E. P. Ivanova, Natural Insect and Plant Micro-/Nanostructsured Surfaces: An Excellent Selection of Valuable Templates with Superhydrophobic and Self-Cleaning Properties, Molecules, Vol. 19 (9), pp. 13614-13630, 2014.
    [51] M. Ma & R. M. Hill, Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci., Vol. 11 (4), pp. 193-202, 2006.
    [52] C. Dorrer & J. Rühe, Some thoughts on superhydrophobic wetting, Soft Matter, Vol. 5 (1), pp. 51-61, 2009.
    [53] T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala & R. H. A. Ras, Mechanically Durable Superhydrophobic Surfaces, Adv. Mater., Vol. 23 (5), pp. 673-678, 2011.
    [54] X. Zhang, F. Shi, J. Niu, Y. Jiang & Z. Wang, Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem., Vol. 18 (6), pp. 621-633, 2008.
    [55] L. Wen, Y. Tian & L. Jiang, Bioinspired Super-Wettability from Fundamental Research to Practical Applications, Angew. Chem. Int. Ed., Vol. 54 (11), pp. 3387-3399, 2015.
    [56] E. Celia, T. Darmanin, E. T. d. Givenchy, S. Amigoni & F. Guittard, Recent advances in designing superhydrophobic surfaces, J. Colloid Interface Sci., Vol. 402, pp. 1-18, 2013.
    [57] C. Song & Y. Zheng, Wetting-controlled strategies: From theories to bio-inspiration, J. Colloid Interface Sci., Vol. 427, pp. 2-14, 2014.
    [58] K. Bazaka, M. V. Jacob, W. Chrzanowski & K. Ostrikov, Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification, RSC Adv., Vol. 5 (60), pp. 48739-48759, 2015.
    [59] J. Hasan, R. J. Crawford & E. P. Ivanova, Antibacterial surfaces: the quest for a new generation of biomaterials, Trends Biotechnol., Vol. 31 (5), pp. 295-304, 2013.
    [60] Y. C. Jung & B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces, Scr. Mater., Vol. 57 (12), pp. 1057-1060, 2007.
    [61] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto & T. Watanabe, Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, Vol. 16 (13), pp. 5754-5760, 2000.
    [62] D. Öner & T. J. McCarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, Vol. 16 (20), pp. 7777-7782, 2000.
    [63] P. G. Wapner & W. P. Hoffman, Partial Wetting Phenomena on Nonplanar Surfaces and in Shaped Microchannels, Langmuir, Vol. 18 (4), pp. 1225-1230, 2002.
    [64] A. Lafuma & D. Quéré, Superhydrophobic states, Nat. Mater., Vol. 2, pp. 457-460, 2003.
    [65] D. Quéré, A. Lafuma & J. Bico, Slippy and sticky microtextured solids, Nanotechnology, Vol. 14 (10), pp. 1109-1112, 2003.
    [66] N. A. Patankar, Transition between Superhydrophobic States on Rough Surfaces, Langmuir, Vol. 20 (17), pp. 7097-7102, 2004.
    [67] J. Lee, B. He & N. A. Patankar, A roughness-based wettability switching membrane device for hydrophobic surfaces, J. Micromech. Microeng., Vol. 15 (3), p. 022, 2005.
    [68] L. Gao & T. J. McCarthy, Contact Angle Hysteresis Explained, Langmuir, Vol. 22 (14), pp. 6234-6237, 2006.
    [69] B. Li, M. Zhou, K. Qian & L. Cai, Design and Fabrication of Super-Hydrophobic Surfaces on Silicon Wafers and Study of Effects to Hydrophobicity, Chinese J. Mech. Eng., Vol. 21 (4), pp. 18-21, 2008.
    [70] Y. Wu, Study of the Movement of Water Droplets on Super-hydrophobic Surface, Guangdong Chem. Ind., Vol. 37 (1), pp. 23-24, 29, 2010.
    [71] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder & H. F. Bohn, The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water, Adv. Mater., Vol. 22 (21), pp. 2325-2328, 2010.
    [72] A. Otten & S. Herminghaus, How Plants Keep Dry: A Physicist's Point of View, Langmuir, Vol. 20 (6), pp. 2405-2408, 2004.
    [73] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia & L. Jiang, Petal Effect: A Superhydrophobic State with High Adhesive Force, Langmuir, Vol. 24 (8), pp. 4114-4119, 2008.
    [74] X. Gao & L. Jiang, Biophysics: Water-repellent legs of water striders, Nature, Vol. 432, pp. 36-37, 2004.
    [75] T. Onda, S. Shibuichi, N. Satoh & K. Tsujii, Super-Water-Repellent Fractal Surfaces, Langmuir, Vol. 12 (9), pp. 2125-2127, 1996.
    [76] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Öner, J. Youngblood & T. J. McCarthy, Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir, Vol. 15 (10), pp. 3395-3399, 1999.
    [77] S. Herminghaus, Roughness-induced non-wetting, Europhys. Lett., Vol. 52 (2), pp. 165-170, 2000.
    [78] A. Marmur, The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, Vol. 20 (9), pp. 3517-3519, 2004.
    [79] C. W. Extrand, Criteria for Ultralyophobic Surfaces, Langmuir, Vol. 20 (12), pp. 5013-5018, 2004.
    [80] N. A. Patankar, Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars, Langmuir, Vol. 20 (19), pp. 8209-8213, 2004.
    [81] B. Krasovitski & A. Marmur, Drops Down the Hill: Theoretical Study of Limiting Contact Angles and the Hysteresis Range on a Tilted Plate, Langmuir, Vol. 31 (9), pp. 3881-3885, 2005.
    [82] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang & X. Li, Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface, J. Am. Chem. Soc., Vol. 126 (10), pp. 3064-3065, 2004.
    [83] Q. Fu, G. V. R. Rao, S. B. Basame, D. J. Keller, K. Artyushkova, J. E. Fulghum & G. P. López, Reversible Control of Free Energy and Topography of Nanostructured Surfaces, J. Am. Chem. Soc., Vol. 126 (29), pp. 8904-8905, 2004.
    [84] R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey & S. T. Picraux, Lotus Effect Amplifies Light-Induced Contact Angle Switching, J. Phys. Chem. B, Vol. 108 (34), pp. 12640-12642, 2004.
    [85] A. Nakajima, Design of a Transparent Hydrophobic Coating, J. Ceram. Soc. Japan, Vol. 112 (10), pp. 533-540, 2004.
    [86] M. J. Kim, J.-E. Park, S. Song & H. H. Lee, Simple "solutal" method for preparing Teflon nanostructures and molds, J. Vac. Sci. Technol. B, Vol. 25 (4), pp. 1412-1415, 2007.
    [87] J. Zhang, J. Li & Y. Han, Superhydrophobic PTFE Surfaces by Extension, Macromol. Rapid Commun., Vol. 25 (11), pp. 1105-1108, 2004.
    [88] B. E. Rapp, A. Voigt, M. Dirschka & K. Länge, Deposition of ultrathin parylene C films in the range of 18 nm to 142 nm: Controlling the layer thickness and assessing the closeness of the deposited films, Thin Solid Films, Vol. 520 (15), pp. 4884-4888, 2012.
    [89] D. J. Preston, D. L. Mafra, N. Miljkovic, J. Kong & E. N. Wang, Scalable Graphene Coatings for Enhanced Condensation Heat Transfer, Nano Lett., Vol. 15 (5), pp. 2902-2909, 2015.
    [90] M. Liu, Y. Zheng, J. Zhai & L. Jiang, Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion, Acc. Chem. Res., Vol. 43 (3), pp. 368-377, 2010.
    [91] T. Darmanin & F. Guittard, Recent advances in the potential applications of bioinspired superhydrophobic materials, J. Mater. Chem. A, Vol. 2 (39), pp. 16319-16359, 2014.
    [92] N. J. Shirtcliffe, G. McHale, S. Atherton & M. I. Newton, An introduction to superhydrophobicity, Adv. Colloid Interface Sci., Vol. 161 (1-2), pp. 124-138, 2010.
    [93] P. Zhang & F. Y. Lv, A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications, Energy, Vol. 82, pp. 1068-1087, 2015.
    [94] R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. McGettrick, L. J. Ward, D. O. H. Teare & J. P. S. Badyal, Mimicking a Stenocara Beetle's Back for Microcondensation Using Plasmachemical Patterned Superhydrophobic-Superhydrophilic Surfaces, Langmuir, Vol. 23 (2), pp. 689-693, 2007.
    [95] S. Nishimoto & B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity, RSC Adv., Vol. 3, pp. 671-690, 2013.
    [96] K. M. Wisdom, J. A. Watson, X. Qu, F. Liu, G. S. Watson & C.-H. Chen, Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate, PNAS, Vol. 110 (20), pp. 7992-7997, 2013.
    [97] H. Zhao & K.-Y. Law, Directional Self-Cleaning Superoleophobic Surface, Langmuir, Vol. 28 (32), pp. 11812-11818, 2012.
    [98] Y. Wang, W. Wang, L. Zhong, J. Wang, Q. Jiang & X. Guo, Super-hydrophobic surface on pure magnesium substrate by wet chemical method, Appl. Surf. Sci., Vol. 256 (12), pp. 3837-3840, 2010.
    [99] Z.-G. Guo, J. Fang, J.-c. Hao, Y.-m. Liang & W.-m. Liu, A Novel Approach to Stable Superhydrophobic Surfaces, Chem. Phys. Chem., Vol. 7 (8), pp. 1674-1677, 2006.
    [100] T. Liu, Y. Yin, S. Chen, X. Chang & S. Cheng, Super-hydrophobic surfaces improve corrosion resistance of copper in seawater, Electrochimica Acta, Vol. 52 (11), pp. 3709-3713, 2007.
    [101] A. V. Rao, S. S. Latthe, S. A. Mahadik & C. Kappenstein, Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate, Appl. Surf. Sci., Vol. 257 (13), pp. 5772-5776, 2011.
    [102] Y. Fan, C. Li, Z. Chen & H. Chen, Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties, Appl. Surf. Sci., Vol. 258 (17), pp. 6531-6536, 2012.
    [103] Y. Huang, D. K. Sarkar, D. Gallant & X.-G. Chen, Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process, Appl. Surf. Sci., Vol. 282, pp. 689-694, 2013.
    [104] P. Wang, Dun. Zhang, R. Qiu, Y. Wan & J. Wu, Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance, Corros. Sci., Vol. 80, pp. 366-373, 2014.
    [105] Y. Shi, W. Yang, J. Bai, X. Feng & Y. Wang, Fabrication of flower-like copper film with reversible superhydrophobicity–superhydrophilicity and anticorrosion properties, Surf. Coat. Technol., Vol. 253, pp. 148-153, 2014.
    [106] S. A. Kulinich & M. Farzaneh, Ice adhesion on super-hydrophobic surfaces, Appl. Surf. Sci., Vol. 255 (18), pp. 8153-8157, 2009.
    [107] S. A. Kulinich, S. Farhadi, K. Nose & X. W. Du, Superhydrophobic Surfaces: Are They Really Ice-Repellent?, Langmuir, Vol. 27 (1), pp. 25-29, 2011.
    [108] S. A. Kulinich & M. Farzaneh, On ice-releasing properties of rough hydrophobic coatings, Cold Reg. Sci. Technol., Vol. 65 (1), pp. 60-64, 2011.
    [109] L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin & J. Aizenberg, Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets, ACS Nano., Vol. 4 (12), pp. 7699-7707, 2010.
    [110] L. B. Boinovich & A. M. Emelyanenko, Anti-icing Potential of Superhydrophobic Coatings, Mendeleev Commun., Vol. 23 (1), pp. 3-10, 2013.
    [111] L. Cao, A. K. Jones, V. K. Sikka, J. Wu & D. Gao, Anti-Icing Superhydrophobic Coatings, Langmuir, Vol. 25 (21), pp. 12444-12448, 2009.
    [112] T. Jing, Y. Kim, S. Lee, D. Kim, J. Kim & W. Hwang, Frosting and defrosting on rigid superhydrohobic surface, Appl. Surf. Sci., Vol. 276, pp. 37-42, 2013.
    [113] P. Tourkine, M. L. Merrer & D. Quéré, Delayed Freezing on Water Repellent Materials, Langmuir, Vol. 25 (13), pp. 7214-7216, 2009.
    [114] Z. Liu, Y. Gou, J. Wang & S. Cheng, Frost formation on a super-hydrophobic surface under natural convection conditions, Int. J. Heat Mass Transfer, Vol. 51 (25-26), pp. 5975-5982, 2008.
    [115] L. Huang, Z. Liu, Y. Liu & Y. Gou, Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil, Int. J. Thermal Sci., Vol. 50 (4), pp. 432-439, 2011.
    [116] N. J. Shirtcliffe, G. McHale, M. I. Newton & Y. Zhang, Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction, ACS Appl. Mater. Interfaces, Vol. 1 (6), pp. 1316-1323, 2009.
    [117] F. Mumm, A. T. J. v. Helvoort & P. Sikorski, Easy Route to Superhydrophobic Copper-Based Wire-Guided Droplet Microfluidic Systems, ACS Nano., Vol. 3 (9), pp. 2647-2652, 2009.
    [118] J. Li, X. Liu, Y. Ye, H. Zhou & J. Chen, Fabrication of Superhydrophobic CuO Surfaces with Tunable Water Adhesion, J. Phys. Chem. C, Vol. 115 (11), pp. 4726-4729, 2011.
    [119] X. Zhu, Z. Zhang, X. Xu, X. Men, J. Yang, X. Zhou & Q. Xue, Rapid Control of Switchable Oil Wettability and Adhesion on the Copper Substrate, Langmuir, Vol. 27 (23), pp. 14508-14513, 2011.
    [120] K.-H. Chu, R. Xiao & E. N. Wang, Uni-directional liquid spreading on asymmetric nanostructured surfaces, Nat. Mater., Vol. 9 (5), pp. 413-417, 2010.
    [121] Y. Zheng, H. Bai, Z. Huang, X. Tian, F.-Q. Nie, Y. Zhao, J. Zhai & L. Jiang, Directional water collection on wetted spider silk, Nature, Vol. 463, pp. 640-643, 2010.
    [122] H. G. Andrews, E. A. Eccles, W. C. E. Schofield & J. P. S. Badyal, Three-Dimensional Hierarchical Structures for Fog Harvesting, Langmuir, Vol. 27 (7), pp. 3798-3802, 2011.
    [123] D.-J. Huang & T.-S. Leu, The Movement of Water Droplet and Analysis on the Fabricated Wettability Gradient Copper Surface, Proceedings of 12th Asian Symposium on Visualization, Tainan, Taiwan ROC, p. 221, 2013.
    [124] J. Ju, K. Xiao, X. Yao, H. Bai & L. Jiang, Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection, Adv. Mater., Vol. 25 (41), pp. 5937-5942, 2013.
    [125] R. L. Agapov, J. B. Boreyko, D. P. Briggs, B. R. Srijanto, S. T. Retterer, C. P. Collier & N. V. Lavrik, Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets, ACS Nano., Vol. 8 (1), pp. 860-867, 2014.
    [126] M. K. Chaudhury, A. Chakrabarti & T. Tibrewal, Coalescence of drops near a hydrophilic boundary leads to long range directed motion, Extreme Mech. Lett., Vol. 1, pp. 104-113, 2014.
    [127] J. Ju, Y. Zheng & L. Jiang, Bioinspired One-Dimensional Materials for Directional Liquid Transport, Acc. Chem. Res., Vol. 47 (8), pp. 2342-2352, 2014.
    [128] C. Liu, J. Ju, J. Ma, Y. Zheng & L. Jiang, Directional Drop Transport Achieved on High-Temperature Anisotropic Wetting Surfaces, Adv. Mater., Vol. 26 (35), pp. 6086-6091, 2014.
    [129] D. Seo, C. Lee & Y. Nam, Influence of Geometric Patterns of Microstructured Superhydrophobic Surfaces on Water-Harvesting Performance via Dewing, Langmuir, Vol. 30 (51), pp. 15468-15476, 2014.
    [130] L. Guo & G. H. Tang, Experimental study on directional motion of a single droplet on cactus spines, Int. J. Heat Mass Transfer, Vol. 84, pp. 198-202, 2015.
    [131] F. Ito, S. Komatsubara, N. Shigezawa, H. Morikawa, Y. Murakami, K. Yoshino & S. Yamanaka, Mechanics of water collection in plants via morphology change of conical hairs, Appl. Phys. Lett., Vol. 106 (13), p. 133701, 2015.
    [132] K. Seo, M. Kim & D. H. Kim, Candle-based process for creating a stable superhydrophobic surface, Carbon, Vol. 68, pp. 583-596, 2014.
    [133] H. Yang, X. Hu, R. Chen, S. Liu, P. Pi & Z.-r. Yang, Fluoropolymer/SiO2 composite films with switchable superoleophilicity and high oleophobicity for "on–off " oil permeation, Appl. Surf. Sci., Vol. 280, pp. 113-116, 2013.
    [134] L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang & D. Zhu, A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem. Int. Ed., Vol. 43 (15), pp. 2012-2014, 2004.
    [135] Q. Wang, Z. Cui, Y. Xiao & Q. Chen, Stable highly hydrophobic and oleophilic meshes for oil–water separation, Appl. Surf. Sci., Vol. 253 (23), pp. 9054-9060, 2007.
    [136] Q. Pan, M. Wang & H. Wang, Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes, Appl. Surf. Sci., Vol. 254 (18), pp. 6002-6006, 2008.
    [137] D.-D. La, T. A. Nguyen, S. Lee, J. W. Kim & Y. S. Kim, A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays, Appl. Surf. Sci., Vol. 257 (13), pp. 5705-5710, 2011.
    [138] Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng & L. Jiang, A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation, Adv. Mater., Vol. 23 (37), pp. 4270-4273, 2011.
    [139] K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao & L. Jiang, Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water, Nature Comm., Vol. 4 (2276), pp. 1-7, 2013.
    [140] M. Basu, A. K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi & T. Pal, Fabrication and Functionalization of CuO for Tuning Superhydrophobic Thin Film and Cotton Wool, J. Phys. Chem. C, Vol. 115 (43), pp. 20953-20963, 2011.
    [141] A. K. Sasmal, C. Mondal, A. K. Sinha, S. S. Gauri, J. Pal, T. Aditya, M. Ganguly, S. Dey & T. Pal, Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation, ACS Appl. Mater. Interfaces, Vol. 6 (24), pp. 22034-22043, 2014.
    [142] X. Liu, J. Gao, Z. Xue, L. Chen, L. Lin, L. Jiang & S. Wang, Bioinspired Oil Strider Floating at the Oil/Water Interface Supported by Huge Superoleophobic Force, ACS Nano., Vol. 6 (6), pp. 5614-5620, 2012.
    [143] J. A. Edwards & J. S. Doolittle, Tetrafluoroethylene promoted dropwise condensation, Int. J. Heat Mass Transfer, Vol. 8 (4), pp. 663-666, 1965.
    [144] C. Sun, X.-W. Zhao, Y.-H. Han & Z.-Z. Gu, Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment, Thin Solid Films, Vol. 516 (12), pp. 4059-4063, 2008.
    [145] X. C. Wang, L. Y. L.Wu, Q. Shao & H. Y. Zheng, Laser micro structuring on a Si substrate for improving surface hydrophobicity, J. Micromech. Microeng., Vol. 19 (8), p. 085025, 2009.
    [146] Z.-H. Yang, C.-Y. Chiu, J.-T. Yang & J. A. Yeh, Investigation and application of an ultrahydrophobic hybrid-structured surface with anti-sticking character, J. Micromech. Microeng., Vol. 19 (8), p. 085022, 2009.
    [147] H. Liu, S. Szunerits, M. Pisarek, W. Xu & R. Boukherroub, Preparation of Superhydrophobic Coatings on Zinc, Silicon, and Steel by a Solution-Immersion Technique, ACS Appl. Mater. Interfaces, Vol. 1 (9), pp. 2086-2091, 2009.
    [148] S. Dash, N. Kumari & S. V. Garimella, Characterization of ultrahydrophobic hierarchical surfaces fabricated using a single-step fabrication methodology, J. Micromech. Microeng., Vol. 21 (10), p. 105012, 2011.
    [149] G. Li, B. Wang, Y. Liu, T. Tan, X. Song, E. Li & H. Yan, Stable superhydrophobic surface: fabrication of interstitial cottonlike structure of copper nanocrystals by magnetron sputtering, Sci. Technol. Adv. Mater., Vol. 9 (2), p. 025006, 2009.
    [150] M. Ulmeanu, M. Zamfirescu & R. Medianu, Self-assembly of colloidal particles on different surfaces, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 338 (1-3), p. 6, 2009.
    [151] M.-H. Chen, T.-H. Hsu, Y.-J. Chuang & F.-G. Tseng, Dual hierarchical biomimic superhydrophobic surface with three energy states, Appl. Phys. Lett., Vol. 95 (2), p. 023702, 2009.
    [152] N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol & C. C. Perry, Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces, Adv. Mater., Vol. 16 (21), pp. 1929-1932, 2004.
    [153] S. L. Dhere, S. S. Latthe, C. Kappenstein, S. K. Mukherjee & A. V. Rao, Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method, Appl. Surf. Sci., Vol. 256 (12), pp. 3967-3971, 2010.
    [154] H. S. Khoo & F.-G. Tseng, Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures Nanotechnology, Vol. 19 (34), p. 345603, 2008.
    [155] M. Xue, W. Wang, F. Wang, J. Ou & W. Li, Design and understanding of superhydrophobic ZnO nanorod arrays with controllable water adhesion, Surf. Coat. Technol., Vol. 258, pp. 200-205, 2014.
    [156] J. Li, H. Wan, Y. Ye, H. Zhou & J. Chen, One-step process for the fabrication of superhydrophobic surfaces with easy repairability, Appl. Surf. Sci., Vol. 258 (7), pp. 3115-3118, 2012.
    [157] J. Yang, Z. Zhang, X. Men, X. Xu & X. Zhu, A simple approach to fabricate regenerable superhydrophobic coatings, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 367 (1-3), pp. 60-64, 2010.
    [158] C. W. J. Berendsen, M. Škereň, D. Najdek & F. Černý, Superhydrophobic surface structures in thermoplastic polymers by interference lithography and thermal imprinting, Appl. Phys. Sci., Vol. 255 (23), pp. 9305-9310, 2009.
    [159] C. Su, Y. Xu, F. Gong, F. Wang & C. Li, The abrasion resistance of a superhydrophobic surface comprised of polyurethane elastomer, Soft Matter, Vol. 6 (24), pp. 6068-6071, 2010.
    [160] M. A. Nilsson, R. J. Daniello & J. P. Rothstein, A novel and inexpensive technique for creating superhydrophobic surfaces using Teflon and sandpaper, J. Phys. D: Appl. Phys., Vol. 43 (4), p. 045301, 2010.
    [161] A. H. Cannon & W. P. King, Hydrophobicity of curved microstructured surfaces, J. Micromech. Microeng., Vol. 20 (2), p. 6, 2009.
    [162] J. Genzer & K. Efimenko, Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers, Science, Vol. 290 (5499), pp. 2130-2133, 2000.
    [163] X. Zhu, Z. Zhang, G. Ren, J. Yang, K. Wang, X. Xu, X. Men & X. Zhou, A novel superhydrophobic bulk material J. Mater. Chem., Vol. 22 (38), pp. 20146-20148, 2012.
    [164] D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney & E. N. Wang, Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics, Appl. Phys. Lett., Vol. 105 (1), p. 011601, 2014.
    [165] G.-r. Kim, H. Lee & R. L. Web, Plasma hydrophilic surface treatment for dehumidifying heat exchangers, Exp. Therm. Fluid Sci., Vol. 27 (1), pp. 1-10, 2002.
    [166] Z. Guo, F. Zhou, J. Hao & W. Liu, Stable Biomimetic Super-Hydrophobic Engineering Materials, J. Am. Chem. Soc., Vol. 127 (45), pp. 15670-15671, 2005.
    [167] B. Qian & Z. Shen, Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates, Langmuir, Vol. 21 (20), pp. 9007-9009, 2005.
    [168] J. Xi, L. Feng & L. Jiang, A general approach for fabrication of superhydrophobic and superamphiphobic surfaces, Appl. Phys. Lett., Vol. 92 (5), p. 053102, 2008.
    [169] K. Liu & L. Jiang, Metallic surfaces with special wettability, Nanoscale, Vol. 3, pp. 825-838, 2011.
    [170] B. Su, S. Wang, Y. Song & L. Jiang, A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals, Nano Res., Vol. 4 (3), pp. 266-273, 2011.
    [171] N. Okamoto, F. Wang & T. Watanabe, Adhesion of Electrodeposited Copper, Nickel and Silver Films on Copper, Nickel and Silver Substrates, Mater. Transact., Vol. 45 (12), pp. 3330-3333, 2004.
    [172] C. Dong, Y. Gu, M. Zhong, L. Li, K. Sezer, M. Ma & W. Liu, Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching, J. Mater. Process. Technol., Vol. 211 (7), pp. 1234-1240, 2011.
    [173] V. S. J. Craig, A. C. Jones & T. J. Senden, Contact Angles of Aqueous Solutions on Copper Surfaces Bearing Self-Assembled Monolayers, J. Chem. Educ., Vol. 78 (3), pp. 345-346, 2001.
    [174] X. Xu, Z. Zhang & J. Yang, Fabrication of Biomimetic Superhydrophobic Surface on Engineering Materials by a Simple Electroless Galvanic Deposition Method, Langmuir, Vol. 26 (5), pp. 3654-3658, 2010.
    [175] W. Geng, A. Hu & M. Li, Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array, Appl. Surf. Sci., Vol. 263, pp. 821-824, 2012.
    [176] T. Oishi, M. Goto, A. Kasahara & M. Tosa, Low frictional copper oxide film prepared with sodium hydroxide solution, Surf. Inter. Anal., Vol. 36, pp. 1259-1261, 2004.
    [177] Y. Li, W.-Z. Jia, Y.-Y. Song & X.-H. Xia, Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template, Chem. Mater., Vol. 19 (23), pp. 5758-5764, 2007.
    [178] C. Gu & T.-Y. Zhang, Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces, Langmuir, Vol. 24 (20), pp. 12010-12016, 2008.
    [179] W. Xu, H. Liu, S. Lu, J. Xi & Y. Wang, Fabrication of Superhydrophobic Surfaces with Hierarchical Structure through a Solution-Immersion Process on Copper and Galvanized Iron Substrates, Langmuir, Vol. 24 (19), pp. 10895-10900, 2008.
    [180] K. M. Holden, J. W. Rose, A. S. Wanniarachchi, P. J. Marto & D. H. Boone, The effective use of heat transfer additives for steam condensation, J. Heat Transfer, Vol. 109 (3), pp. 768-774, 1987.
    [181] B. Qi, L. Zhang, H. Xu & Y. Sun, Experimental Study of the Condensing and Heat Transfer Characteristics of Vapor on Pure Titanium (TA2) Denatured Surfaces, J. Eng. Thermal Energy & Power, Vol. 25 (6), pp. 609-613, 2010.
    [182] M. H. Rausch, A. Leipertz & A. P. Fröba, Dropwise condensation of steam on ion implanted titanium surfaces, Int. J. Heat Mass Transfer, Vol. 53 (1-3), pp. 423-430, 2010.
    [183] B. Qi, L. Zhang, H. Xu & Y. Sun, Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies, Exp. Therm. Fluid Sci., Vol. 35, pp. 211-218, 2011.
    [184] M. Guo, Z. Kang, W. Li & J. Zhang, A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface, Surf. Coat. Technol., Vol. 239, pp. 227-232, 2014.
    [185] B. Su, M. Li, Z. Shi & Q. Lu, From Superhydrophilic to Superhydrophobic: Controlling Wettability of Hydroxide Zinc Carbonate Film on Zinc Plates, Langmuir, Vol. 25 (6), pp. 3640-3645, 2009.
    [186] R. D. Narhe, W. González-Viñas & D. A. Beysens, Water condensation on zinc surfaces treated by chemical bath deposition, Appl. Surf. Sci., Vol. 256 (16), pp. 4930-4933, 2010.
    [187] J. Li, X. Liu, Y. Ye, H. Zhou & J. Chen, A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property, Appl. Surf. Sci., Vol. 258 (5), pp. 1772-1775, 2011.
    [188] Z. Guo, J. Liang, J. Fang, B. Guo & W. Liu, A Novel Approach to the Robust Ti6Al4V-Based Superhydrophobic Surface with Crater-like Structure, Adv. Eng. Mater., Vol. 9 (4), pp. 316-321, 2007.
    [189] J. T. Han, Y. Jang, D. Y. Lee, J. H. Park, S.-H. Song, D.-Y. Ban & K. Cho, Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development, J. Mater. Chem., Vol. 15 (30), pp. 3089-3092, 2005.
    [190] Q. Wang, B. Zhang, M. Qu, J. Zhang & D. He, Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid, Appl. Surf. Sci., Vol. 254 (7), pp. 2009-2012, 2008.
    [191] M. Qu, B. Zhang, S. Song, L. Chen, J. Zhang & X. Cao, Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process, Adv. Funct. Mater., Vol. 17 (4), pp. 593-596, 2007.
    [192] F. Lian, H.-c. Zhang, Y.-z. Gao & L.-y. Pang, Fabrication of Superhydrophobic Surfaces on Ti6Al4V Alloy and Its Wettability, Nanotech. Preci. Eng., Vol. 9 (1), pp. 6-10, 2011.
    [193] T. An, S. J. Cho, W. Choi, J. H. Kim, S. T. Lim & G. Lim, Preparation of stable superhydrophobic mesh with a biomimetic hierarchical structure, Soft Matter, Vol. 7 (21), pp. 9867-9870, 2011.
    [194] M. Nosonovsky, V. Hejazi, A. E. Nyong & P. K. Rohatgi, Metal Matrix Composites for Sustainable Lotus-Effect Surfaces, Langmuir, Vol. 27 (23), pp. 14419-14424, 2011.
    [195] W. QIAO, D.-y. ZHU, H.-y. WEN, Y.-s. WANG & L. LIAO, Fabrication of a Hydrophobic Surface on H62 Brass and Study on Hydrophobic Mechanics, Sci. Tech. Engng., Vol. 9 (24), pp. 7319-7324, 2009.
    [196] M. Momcilovic, J. Limpouch, V. Kmetik, R. Redaelli, J. Savovic, D. Batani, J. Stasic, P. Panjan & M. Trtica, Surface modification of copper using high intensity, 1015 W/cm2, femtosecond laser in vacuum, Appl. Surf. Sci., Vol. 258 (22), pp. 8908-8914, 2012.
    [197] A. D. Sommers, T. J. Brest & K. F. Eid, Topography-Based Surface Tension Gradients to Facilitate Water Droplet Movement on Laser-Etched Copper Substrates, Langmuir, Vol. 29 (38), pp. 12043-12050, 2013.
    [198] Q. Pan, H. Jin & H. Wang, Fabrication of superhydrophobic surfaces on interconnected Cu(OH)2 nanowires via solution-immersion, Nanotechnology, Vol. 18 (35), p. 355605, 2007.
    [199] Z.-G. Guo, W.-M. Liu & B.-L. Su, A stable lotus-leaf-like water-repellent copper, Appl. Phys. Lett., Vol. 92 (6), p. 063104, 2008.
    [200] J. Liu, X. Huang, Y. Li, Z. Li, Q. Chi & G. Li, Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process, Solid State Sci., Vol. 10 (11), pp. 1568-1576, 2008.
    [201] L. Kong, X. Chen, G. Yang, L. Yu & P. Zhang, Preparation and characterization of slice-like Cu2(OH)3NO3 superhydrophobic structure on copper foil, Appl. Surf. Sci., Vol. 254 (22), pp. 7255-7258, 2008.
    [202] Ž. Petrović, M. Metikoš-Huković & R. Babić, Modification of copper with self-assembled organic coatings, Prog. Org. Coat., Vol. 61 (1), pp. 1-6, 2008.
    [203] X. Chen, L. Kong, D. Dong, G. Yang, L. Yu, J. Chen & P. Zhang, Synthesis and characterization of superhydrophobic functionalized Cu(OH)2 nanotube arrays on copper foil, Appl. Surf. Sci., Vol. 255 (7), pp. 4015-4019, 2009.
    [204] Q. Pan & M. Wang, Miniature Boats with Striking Loading Capacity Fabricated from Superhydrophobic Copper Meshes, ACS Appl. Mater. Interfaces, Vol. 1 (2), pp. 420-423, 2009.
    [205] X. Chen, L. Kong, D. Dong, G. Yang, L. Yu, J. Chen & P. Zhang, Fabrication of Functionalized Copper Compound Hierarchical Structure with Bionic Superhydrophobic Properties, J. Phys. Chem. C, Vol. 113 (14), pp. 5396-5401, 2009.
    [206] X. H. Chen, G. B. Yang, L. H. Kong, D. Dong, L. G. Yu, J. M. Chen & P. Y. Zhang, Direct Growth of Hydroxy Cupric Phosphate Heptahydrate Monocrystal with Honeycomb-Like Porous Structures on Copper Surface Mimicking Lotus Leaf, Cryst. Growth. Des., Vol. 9 (6), pp. 2656-2661, 2009.
    [207] D. K. Sarkar & N. Saleema, One-step fabrication process of superhydrophobic green coatings, Surf. Coat. Technol., Vol. 204 (15), pp. 2483-2486, 2010.
    [208] X. Liu, Z. Jiang, J. Li, Z. Zhang & L. Ren, Super-hydrophobic property of nano-sized cupric oxide films, Surf. Coat. Technol., Vol. 204 (20), pp. 3200-3204, 2010.
    [209] L. Jiang, X. Yao, H. Li, Y. Fu, L. Chen, Q. Meng, W. Hu & L. Jiang, “Water Strider” Legs with a Self-Assembled Coating of Single-Crystalline Nanowires of an Organic Semiconductor, Adv. Mater., Vol. 22 (3), pp. 376-379, 2010.
    [210] B. T. McDonald & T. Cui, Superhydrophilic surface modification of copper surfaces by Layer-by-Layer self-assembly and Liquid Phase Deposition of TiO2 thin film J. Colloid Interface Sci., Vol. 354 (1), pp. 1-6, 2011.
    [211] P. Wang, D. Zhang & R. Qiu, Extreme wettability due to dendritic copper nanostructure via electrodeposition, Appl. Surf. Sci., Vol. 257 (20), pp. 8438-8442, 2011.
    [212] S. Yin, D. Wu, J. Yang, S. Lei, T. Kuang & B. Zhu, Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly, Appl. Surf. Sci., Vol. 257 (20), pp. 8481-8485, 2011.
    [213] J. Song, W. Xu, Y. Lu & X. Fan, Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining, Appl. Surf. Sci., Vol. 257 (24), pp. 10910-10916, 2011.
    [214] H.-H. Chen, R. Anbarasan, L.-S. Kuo, C.-C. Hsu, P.-H. Chen & K.-F. Chiang, Fabrication of hierarchical structured superhydrophobic Copper surface by in-situ method with micro/nano scaled particles, Mater. Lett., Vol. 66 (1), pp. 299-301, 2012.
    [215] L. Xu, L. M. Dong & W. Li, A simple "two foil" approach to the fabrication of hierarchical superhydrophobic surfaces, Colloids and Surf. A: Physicochem. Eng. Aspects, Vol. 404, pp. 12-16, 2012.
    [216] L. Hao, Z. Chen, R. Wang, C. Guo, P. Zhang & S. Pang, A non-aqueous electrodeposition process for fabrication of superhydrophobic surface with hierarchical micro/nano structure, Appl. Surf. Sci., Vol. 258 (22), pp. 8970-8973, 2012.
    [217] Y. Wan, Y. Wang, Q. Zhang, Z. Wang, Z. Xu, C. Liu & J. Zhang, Enhanced tribology durability of a self-assembled monolayer of alkylphosphonic acid on a textured copper substrate, Appl. Surf. Sci., Vol. 259, pp. 147-153, 2012.
    [218] Y. Zhang, W. Li, F. Ma, Z. Yu, M. Ruan, Y. Ding & X. Deng, Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes, Appl. Surf. Sci., Vol. 280, pp. 898-902, 2013.
    [219] Z. Gong, J. Wang, L. Wu, X. Wang, G. Lü & L. Liao, Fabrication of Super Hydrophobic Surfaces on Copper by Solution-immersion, Chinese J. Chem. Eng., Vol. 21 (8), pp. 920-926, 2013.
    [220] H. J. Kim, Y. J. Park, J.-H. Choi, H. S. Han & Y. T. Hong, Surface modification of polyimide film by coupling reaction for copper metallization, J. Ind. Eng. Chem., Vol. 15 (1), pp. 23-30, 2009.
    [221] H. Wu, R. Zhang, Y. Sun, D. Lin, Z. Sun, W. Pan & P. Downs, Biomimetic nanofiber patterns with controlled wettability, Soft Matter, Vol. 4 (12), pp. 2429-2433, 2008.
    [222] N. J. Shirtcliffe, G. McHale, M. I. Newton & C. C. Perry, Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces, Langmuir, Vol. 21 (3), pp. 937-943, 2005.
    [223] L. Liu, F. Xu & L. Ma, Facile Fabrication of a Superhydrophobic Cu Surface via a Selective Etching of High-Energy Facets, J. Phys. Chem. C, Vol. 116 (35), pp. 18722-18727, 2012.
    [224] Z. Kang, Q. Ye, J. Sang & Y. Li, Fabrication of super-hydrophobic surface on copper surface by polymer plating, J. Mater. Process. Technol., Vol. 209 (9), pp. 4543-4547, 2009.
    [225] X. Xu, Z. Zhang & W. Liu, Stable Biomimetic Super-Hydrophobic Copper Surface Fabricated by a Simple Wet-Chemical Method, J. Dispers. Sci. Technol., Vol. 31 (4), pp. 488-491, 2010.
    [226] L. Pan, H. Dong & P. Bi, Facile preparation of superhydrophobic copper surface by HNO3 etching technique with the assistance of CTAB and ultrasonication, Appl. Surf. Sci., Vol. 257 (5), pp. 1707-1711, 2010.
    [227] W. Liu, L. Sun, Y. Luo, R. Wu, H. Jiang, Y. Chen, G. Zeng & Y. Liu, Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating, Appl. Surf. Sci., Vol. 280, pp. 193-200, 2013.
    [228] Z. Yuan, J. Bin, X. Wang, C. Peng, M. Wang, S. Xing, J. Xiao, J. Zeng, X. Xiao, X. Fu & H. Chen, Fabrication of superhydrophobic surface with hierarchical multi-scale structure on copper foil, Surf. Coat. Technol., Vol. 254, pp. 151-156, 2014.
    [229] Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gong & D. Zhao, A novel fabrication of a superhydrophobic surface with highly similar hierarchical structure of the lotus leaf on a copper sheet, Appl. Surf. Sci., Vol. 285 (B), pp. 205-210, 2013.
    [230] X. Wu & G. Shi, Production and Characterization of Stable Superhydrophobic Surfaces Based on Copper Hydroxide Nanoneedles Mimicking the Legs of Water Striders, J. Phys. Chem. B, Vol. 110 (23), pp. 11247-11252, 2006.
    [231] W. Xi, Z. Qiao, C. Zhu, A. Jia & M. Li, The preparation of lotus-like super-hydrophobic copper surfaces by electroplating, Appl. Surf. Sci., Vol. 255 (9), pp. 4836-4839, 2009.
    [232] Y. Nam, S. Sharratt, C. Byon, S. J. Kim & Y. S. Ju, Fabrication and Characterization of the Capillary Performance of Superhydrophilic Cu Micropost Arrays, J. Microelectromech. Syst., Vol. 19 (3), pp. 581-588, 2010.
    [233] X. Yao, L. Xu & L. Jiang, Fabrication and Characterization of Superhydrophobic Surfaces with Dynamic Stability, Adv. Funct. Mater., Vol. 20 (19), pp. 3343-3349, 2010.
    [234] Y. Huang, D. K. Sarkar & X.-G. Chen, A one-step process to engineer superhydrophobic copper surfaces, Mater. Lett., Vol. 64 (24), pp. 2722-2724, 2010.
    [235] Z. Chen, L. Hao & C. Chen, A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 401, pp. 1-7, 2012.
    [236] P. Liu, L. Cao, W. Zhao, Y. Xia, W. Huang & Z. Li, Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons, Appl. Surf. Sci., Vol. 324, pp. 576-583, 2015.
    [237] C. Gu, H. Xu & T.-Y. Zhang, Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating, J. Micromech. Microeng., Vol. 19 (6), p. 065011, 2009.
    [238] X. Wu & G. Shi, Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic, Nanotechnology, Vol. 16 (10), pp. 2056-2060, 2005.
    [239] Y. S. Zhao, W. Yang, G. Zhang, Y. Ma & J. Yao, A hierarchical self-assembly of 4,5-diphenylimidazole on copper, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 277 (1-3), pp. 111-118, 2006.
    [240] S. Wang, L. Feng & L. Jiang, One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater., Vol. 18 (6), pp. 767-770, 2006.
    [241] X. Wen, W. Zhang & S. Yang, Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surface, Langmuir, Vol. 19 (14), pp. 5898-5903, 2003.
    [242] V. V. Batrakov & A. G. Makarov, Measuring Contact Angles at Copper Electrodes, Russ. J. Electrochem. , Vol. 39 (12), pp. 1508-1511, 2003.
    [243] K. Tang, X. Wang, W. Yan, J. Yu & R. Xu, Fabrication of superhydrophilic Cu2O and CuO membranes, J. Membr. Sci., Vol. 286 (1-2), pp. 279-284, 2006.
    [244] X. Li & M. Wan, Morphology and Hydrophobicity of Micro/Nanoscaled Cuprous Iodide Crystal, Cryst. Growth. Des., Vol. 6 (12), pp. 2661-2666, 2006.
    [245] Z. Guo, J. Fang, L. Wang & W. Liu, Fabrication of superhydrophobic copper by wet chemical reaction, Thin Solid Films, Vol. 515 (18), pp. 7190-7194, 2007.
    [246] L. Guo, W. Yuan, J. Li, Z. Zhang & Z. Xie, Stable superhydrophobic surfaces over a wide pH range, Appl. Surf. Sci., Vol. 254 (7), pp. 2158-2161, 2008.
    [247] Y. C. Hong, S. C. Cho, D. H. Shin, S. H. Lee & H. S. Uhm, A facile method for the fabrication of super-hydrophobic surfaces and their resulting wettability, Scr. Mater., Vol. 59 (7), pp. 776-779, 2008.
    [248] J. Min, X. Wu & F. Gao, Hydrophilic Treatments of Copper Finned Tube Evaporators, International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, IN 47907 U.S.A., p. 2128, 2008.
    [249] J. Xiao, Y. Chu, Y. Zhuo & L. Dong, Amphiphilic molecule controlled synthesis of CuO nano/micro-superstructure film with hydrophilicity and superhydrophilicity surface, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 352 (1-3), pp. 18-23, 2009.
    [250] X. Zhang, Y. Guo, P. Zhang, Z. Wu & Z. Zhang, Superhydrophobic CuO@Cu2S nanoplate vertical arrays on copper surfaces, Mater. Lett., Vol. 64 (10), pp. 1200-1203, 2010.
    [251] Y. Zhang, X. Yu, Q. Zhou, F. Chen & K. Li, Fabrication of superhydrophobic copper surface with ultra-low water roll angle, Appl. Surf. Sci., Vol. 256 (6), pp. 1883-1887, 2010.
    [252] F.-M. Chang, S.-L. Cheng, S.-J. Hong, Y.-J. Sheng & H.-K. Tsao, Superhydrophilicity to superhydrophobicity transition of CuO nanowire films, Appl. Phys. Lett., Vol. 96 (11), p. 114101, 2010.
    [253] M.-D. Pei, B. Wang, E. Li, X.-h. Zhang, X.-m. Song & H. Yan, The fabrication of superhydrophobic copper films by a low-pressure-oxidation method, Appl. Surf. Sci., Vol. 256 (20), pp. 5824-5827, 2010.
    [254] G. Fan & F. Li, Effect of sodium borohydride on growth process of controlled flower-like nanostructured Cu2O/CuO films and their hydrophobic property, Chem. Eng. J., Vol. 167 (1), pp. 388-396, 2011.
    [255] X. Wang, S. Zhao, H. Wang & T. Pan, Bubble formation on superhydrophobic-micropatterned copper surfaces, Appl. Therm. Eng., Vol. 35, pp. 112-119, 2012.
    [256] C. Y. Lee, B. J. Zhang, J. Park & K. J. Kim, Water droplet evaporation on Cu-based hydrophobic surfaces with nano- and micro-structures, Int. J. Heat Mass Transfer, Vol. 55 (7-8), pp. 2151-2159, 2012.
    [257] N. Miljkovic, D. J. Preston, R. Enright & E. N. Wang, Jumping-droplet electrostatic energy harvesting, Appl. Phys. Lett., Vol. 105 (1), p. 013111, 2014.
    [258] N. Bellakhal, K. Draou, B. G. Cheron & J. L. Brisset, Copper oxides formation by a low pressure RF oxygen plasma, Mater. Sci. Eng. B, Vol. 41 (2), pp. 206-216, 1996.
    [259] N. Bellakhal, K. Draou, B. G. Che´ron & J. L. Brisset, Protective films formed on copper by oxygen plasma treatment, J. Electroanaly. Chem., Vol. 431 (2), pp. 297-299, 1997.
    [260] J. Min & R. L. Webb, Condensate formation and drainage on typical fin materials, Exp. Therm. Fluid Sci., Vol. 25 (3-4), pp. 101-111, 2001.
    [261] I. A. Larmour, S. E. J. B. Dr. & G. C. S. Dr., Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition, Angew. Chem. Int. Ed., Vol. 46 (10), pp. 1710-1712, 2007.
    [262] A. Safaee, D. K. Sarkara & M. Farzaneha, Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction, Appl. Surf. Sci., Vol. 254 (8), pp. 2493-2498, 2008.
    [263] Z. Cao, D. Xiao, L. Kang, Z. Wang, S. Zhang, Y. Ma, H. Fu & J. Yao, Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)2]OH, Chem. Commun., Vol. 2008 (23), pp. 2692-2694, 2008.
    [264] C. Gu, H. Ren, J. Tu & T.-Y. Zhang, Micro/Nanobinary Structure of Silver Films on Copper Alloys with Stable Water-Repellent Property under Dynamic Conditions, Langmuir, Vol. 25 (20), pp. 12299-12307, 2009.
    [265] W. Song, J. Zhang, Y. Xie, Q. Cong & B. Zhao, Large-area unmodified superhydrophobic copper substrate can be prepared by an electroless replacement deposition, J. Colloid Interface Sci., Vol. 329 (1), pp. 208-211, 2009.
    [266] C. D. Gu, X. J. Xu & J. P. Tu, Fabrication and Wettability of Nanoporous Silver Film on Copper from Choline Chloride-Based Deep Eutectic Solvents, J. Phys. Chem. C, Vol. 114 (32), pp. 13614-13619, 2010.
    [267] S. Xie, X. Zhang, D. Xiao, M. C. Paau, J. Huang & M. M. F. Choi, Fast Growth Synthesis of Silver Dendrite Crystals Assisted by Sulfate Ion and Its Application for Surface-Enhanced Raman Scattering, J. Phys. Chem. C, Vol. 115 (20), pp. 9943-9951, 2011.
    [268] L. Qu & L. Dai, Novel Silver Nanostructures from Silver Mirror Reaction on Reactive Substrates, J. Phys. Chem. B, Vol. 109 (29), pp. 13985-13990, 2005.
    [269] S. Wang, L. Feng, H. Liu, T. Sun, X. Zhang, L. Jiang & D. Zhu, Manipulation of Surface Wettability between Superhydrophobicity and Superhydrophilicity on Copper Films, Chem. Phys. Chem., Vol. 6 (8), pp. 1475-1478, 2005.
    [270] C.-Y. Lee, Effects of Surface Modificationon the Performance of a Closed Loop Oscillating Heat Pipe, Master Thesis, National Cheng Kung University, National Cheng Kung University, 2013.
    [271] L. Topper & E. Baer, Dropwise condensation of vapors and heat transfer rates, J. Colloid Sci., Vol. 10 (2), pp. 225-226, 1955.
    [272] S. N. Aksan & J. W. Rose, Dropwise condensation—The effect of thermal properties of the condenser material, Int. J. Heat Mass Transfer, Vol. 16 (2), pp. 461-467, 1973.
    [273] N. Miljkovic & E. N. Wang, Condensation heat transfer on superhydrophobic surfaces, MRS Bulletin, Vol. 38 (5), pp. 397-406, 2013.
    [274] G. Pang, J. D. Dale & D. Y. Kwok, An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry, Int. J. Heat Mass Transfer, Vol. 48 (2), pp. 307-316, 2005.
    [275] Q. Yang & A. Gu, Dropwise Condensation on SAM and Electroless Composite Coating Surfaces, J. Chem. Eng. JPN., Vol. 39 (8), pp. 826-830, 2006.
    [276] Z. Lan, X. Ma, S. Wang, M. Wang & X. Li, Effects of surface free energy and nanostructures on dropwise condensation, Chem. Eng. J., Vol. 156 (3), pp. 546-552, 2010.
    [277] X. Ma, S. Wang, Z. Lan, B. Peng, H. B. Ma & P. Cheng, Wetting Mode Evolution of Steam Dropwise Condensation on Superhydrophobic Surface in the Presence of Noncondensable Gas, J. Heat Transfer, Vol. 134 (2), p. 021501, 2012.
    [278] X.-H. Ma, X.-D. Zhou, Z. Lan, Y.-M. LI & Y. Zhang, Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation, Int. J. Heat Mass Transfer, Vol. 51 (7-8), pp. 1728-1737, 2008.
    [279] A. K. Das, H. P. Kilty, P. J. Marto, G. B. Andeen & A. Kumar, The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes, J. Heat Transfer, Vol. 122 (2), pp. 278-286, 2000.
    [280] S. Vemuri, K. J. Kim, B. D. Wood, S. Govindaraju & T. W. Bell, Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan, Appl. Therm. Eng., Vol. 26 (4), pp. 421-429, 2006.
    [281] S. Vemuri & K. J. Kim, An experimental and theoretical study on the concept of dropwise condensation, Int. J. Heat Mass Transfer, Vol. 49 (3-4), pp. 649-657, 2006.
    [282] M. Izumi, S. Kumagai, R. Shimada & N. Yamakawa, Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves, Exp. Therm. Fluid Sci., Vol. 28 (2-3), pp. 243-248, 2004.
    [283] P. J. Marto, D. J. Looney, J. W. Rose & A. S. Wanniarachchi, Evaluation of organic coatings for the promotion of dropwise condensation of steam, Int. J. Heat Mass Transfer, Vol. 29 (8), pp. 1109-1117, 1986.
    [284] Y. Zhao, Y. Luo, J. Zhu, J. Li & X. Gao, Copper-Based Ultrathin Nickel Nanocone Films with High-Efficiency Dropwise Condensation Heat Transfer Performance, ACS Appl. Mater. Interfaces, Vol. 7 (22), pp. 11719-11723, 2015.
    [285] L. C. F. Blackman, M. J. S. Dewar & H. Hampson, An investigation of compounds promoting the dropwise condensation of steam, J. Appl. Chem., Vol. 7 (4), pp. 160-171, 1957.
    [286] L. Chen, S. Liang, R. Yan, Y. Cheng, X. Huai & S. Chen, n-Octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam, J. Thermal Sci., Vol. 18 (2), pp. 160-165, 2009.
    [287] C.-H. Chen, Q. Cai, C. Tsai, C.-L. Chen, G. Xiong, Y. Yu & Z. Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Appl. Phys. Lett., Vol. 90 (17), p. 173108, 2007.
    [288] X. Chen, J. Wu, R. Ma, M. Hua, N. Koratkar, S. Yao & Z. Wang, Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation, Adv. Funct. Mater., Vol. 21 (24), pp. 4617-4623, 2011.
    [289] J. Cheng, A. Vandadi & C.-L. Chen, Condensation heat transfer on two-tier superhydrophobic surfaces, Appl. Phys. Lett., Vol. 101 (13), p. 131909, 2012.
    [290] T.-S. Leu, H.-W. Lin & T.-H. Wu, Applications of Surface Modification Techniques in Enhancement of Phase Change Heat Transfer, Mod. Phys. Lett. B, Vol. 24 (13), pp. 1381-1384, 2010.
    [291] K. O. Zamuruyev, H. K. Bardaweel, C. J. Carron, N. J. Kenyon, O. Brand, J.-P. Delplanque & C. E. Davis*†, Continuous Droplet Removal upon Dropwise Condensation of Humid Air on a Hydrophobic Micropatterned Surface, Langmuir, Vol. 30 (33), pp. 10133-10142, 2014.
    [292] D.-J. Huang & T.-S. Leu, Condensation Heat Transfer Enhancement by Surface Modification on a Monolithic Copper Heat Sink, Appl. Therm. Eng., Vol. 75, pp. 908-917, 2015.
    [293] N. Miljkovic, D. J. Preston, R. Enright & E. N. Wang, Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces, ACS Nano., Vol. 7 (12), pp. 11043-11054, 2013.
    [294] S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith & K. K. Varanasi, Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces, ACS Nano., Vol. 6 (11), pp. 10122-10129, 2012.
    [295] H. W. Hu & G. H. Tang, Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube, Appl. Therm. Eng., Vol. 62 (2), pp. 671-679, 2014.
    [296] X. Liu & P. Cheng, Dropwise condensation theory revisited: Part I. Droplet nucleation radius, Int. J. Heat Mass Transfer, Vol. 83, pp. 833-841, 2015.
    [297] X. Liu & P. Cheng, Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux, Int. J. Heat Mass Transfer, Vol. 83, pp. 842-849, 2015.
    [298] B. Qi, J. Wei, L. Zhang & H. Xu, A fractal dropwise condensation heat transfer model including the effects of contact angle and drop size distribution, Int. J. Heat Mass Transfer, Vol. 83, pp. 259-272, 2015.
    [299] K. Cheng, S. Kim, S. Lee & K. J. Kim, Internal dropwise condensation: Modeling and experimental framework for horizontal tube condensers, Int. J. Heat Mass Transfer, Vol. 83, pp. 99-108, 2015.
    [300] S. Lee, H. K. Yoon, K. J. Kim, S. Kim, M. Kennedy & B. J. Zhang, A dropwise condensation model using a nano-scale, pin structured surface, Int. J. Heat Mass Transfer, Vol. 60, pp. 664-671, 2013.
    [301] M. Roudgar & J. DeConinck, Condensation heat transfer coefficient versus wettability, Appl. Surf. Sci., Vol. 338, pp. 15-21, 2015.
    [302] R. Enright, N. Miljkovic, N. Dou, Y. Nam & E. N. Wang, Condensation on Superhydrophobic Copper Oxide Nanostructures, J. Heat Transfer, Vol. 135 (9), p. 091304, 2013.
    [303] F. F. Czubinski, M. B. H. Mantelli & J. C. Passos, Condensation on downward-facing surfaces subjected to upstream flow of air–vapor mixture, Exp. Therm. Fluid Sci., Vol. 47, pp. 90-97, 2013.
    [304] A. Umur & P. Griffith, Mechanism of Dropwise Condensation, J. Heat Transfer, Vol. 87 (2), pp. 275-282, 1965.
    [305] H. Tanaka, Further Developments of Dropwise Condensation Theory, J. Heat Transfer, Vol. 101 (4), pp. 603-611, 1979.
    [306] M. Mei, B. Yu, M. Zou & L. Luo, A numerical study on growth mechanism of dropwise condensation, Int. J. Heat Mass Transfer, Vol. 54, pp. 2004-2013, 2011.
    [307] H. Tanaka, A Theoretical Study of Dropwise Condensation, J. Heat Transfer, Vol. 97 (1), pp. 72-78, 1975.
    [308] F. Shao, J. S. Wang, D. T. Chong, J. P. Liu & J. J. Yan, Modeling study on heat transfer in dropwise condensation, 2015 International Workshop on Heat Transfer Advances for energy Conservation and Pollution Control, Taipei, Taiwan, pp. IWHT2015-1067, 2015.
    [309] G. Q. Li, M. H. Alhosani, S. J. Yuan, H. R. Liu, A. A. Ghaferi & T. J. Zhang, Microscopic Droplet Formation and Energy Transport Analysis of Condensation on Scalable Superhydrophobic Nanostructured Copper Oxide Surfaces, Langmuir, Vol. 30 (48), pp. 14498-14511, 2014.
    [310] C.-H. Yung, Experimental Study of Condensation Heat Transfer by using Electrowetting Techniques, Master Thesis, National Cheng Kung University, Tainan, 2012.
    [311] X.-W. Chen & T.-S. Leu, Optimization Design of Asymmetric Coplanar EWOD Electrodes, 24th National Conference on Combustion and Energy, Tainan, Taiwan ROC, p. 050, 2014.
    [312] C. Yamali & H. M. Jr., Influence of sweeping on dropwise condensation with varying body force and surface subcooling, Int. J. Heat Mass Transfer, Vol. 42 (15), pp. 2943-2953, 1999.
    [313] X. Chen, S. Yao & Z. Wang, Evaporation of Condensate Droplets on Structured Surfaces with Gradient Roughness, J. Heat Transfer, Vol. 137 (8), p. 080903, 2015.
    [314] W. Wang, S. Zhang, Jian. Yang, J. Zheng, X. Ding, M. Chou, P. Tang & X. Zhan, Effects of Distribution Channel Dimensions on Flow Distribution and Pressure Drop in a Plate-Fin Heat Exchanger, Chem. Eng. Technol., Vol. 36 (4), pp. 657-667, 2013.
    [315] D.-J. Huang & T.-S. Leu, The Study on Flow Uniformity within Copper Fins-composed Channels by using the Design of Manifolds on Entrance and Existence, 20th National Computational Fluid Dynamics Conference, Nantou, Taiwan ROC, pp. 20-22, 2013.
    [316] C.-H. Huang & C.-H. Wang, The design of uniform tube flow rates for Z-type compact parallel flow heat exchangers, Int. J. Heat Mass Transfer, Vol. 57 (2), pp. 608-622, 2013.
    [317] C.-H. Huang & C.-H. Wang, The study on the improvement of system uniformity flow rate for U-type compact heat exchangers, Int. J. Heat Mass Transfer, Vol. 63, pp. 1-8, 2013.
    [318] C.-C. Wang, K.-S. Yang, J.-S. Tsai & I. Y. Chen, Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header, Appl. Therm. Eng., Vol. 31 (16), pp. 3226-3234, 2011.
    [319] C.-C. Wang, K.-S. Yang, J.-S. Tsai & I. Y. Chen, Characteristics of flow distribution in compact parallel flow heat exchangers, part II: Modified inlet header, Appl. Therm. Eng., Vol. 31 (16), pp. 3235-3242, 2011.
    [320] G. Kumaraguruparan, R. M. Kumaran, T. Sornakumar & T. Sundararajan, A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink, Int. Commun. Heat Mass transfer, Vol. 38 (10), pp. 1349-1353, 2011.
    [321] J. Zhang & W. Li, Condensation of R410a in mini horizontal elliptical and circular tubes: a numerical work, 2015 International Workshop on Heat Transfer Advances for energy Conservation and Pollution Control, Taipei, Taiwan, pp. IWHT2015-1067, 2015.
    [322] J. Cruz, I. Amaya & R. Correa, Optimal rectangular microchannel design, using simulated annealing, unified particle swarm and spiral algorithms, in the presence of spreading resistance, Appl. Thermal Eng., Vol. 84, pp. 126-137, 2015.
    [323] A. V. Thomas, N. Koratkar & Y. Peles, Dehumidification heat transfer on copper surfaces, Int. J. Heat Mass Transfer, Vol. 55 (25–26), pp. 7858-7864, 2012.
    [324] R. W. BonnerIII, Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination, Int. J. Heat Mass Transfer, Vol. 61, pp. 245-253, 2013.
    [325] E. E. Gose, A. N. Mucciardi & E. Baer, Model for dropwise condensation on randomly distributed sites, Int. J. Heat Mass Transfer, Vol. 10 (1), pp. 15-22, 1967.
    [326] C. Mu, J. Pang, Q. Lu & T. Liu, Effects of surface topography of material on nucleation site density of dropwise condensation, Chem. Eng. Sci., Vol. 63 (4), pp. 874-880, 2008.
    [327] W. Xu, B. Peng, R.-F. Wen, Z. Lan & X. Ma, Experimental Study on the Nucleation Sites Distribution of Chemical Etched Surface, J. Eng. Thermo., Vol. 34 (3), pp. 538-541, 2013.
    [328] J. B. Boreyko & C.-H. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces, Phys. Rev. Lett., Vol. 103, p. 184501, 2009.
    [329] C. Dorrer & J. Rühe, Condensation and Wetting Transitions on Microstructured Ultrahydrophobic Surfaces, Langmuir, Vol. 23 (7), pp. 3820-3824, 2007.
    [330] X. Ma, Z. Lan, W. Xu, M. Wang & S. Wang, Effect of surface free energy difference on steam-ethanol mixture condensation heat transfer, Int. J. Heat Mass Transfer, Vol. 55 (4), pp. 531-537, 2012.
    [331] P. Brunet, J. Eggers & R. D. Deegan, Motion of a drop driven by substrate vibrations, Eur. Phys. J. Special Topics, Vol. 166 (1), pp. 11-14, 2009.
    [332] E. L. Decker & S. Garoff, Using Vibrational Noise To Probe Energy Barriers Producing Contact Angle Hysteresis, Langmuir, Vol. 12 (8), pp. 2100-2110, 1996.
    [333] T. Yasuda, J. Nakamura, K. Nakayama & M. Yamanaka, Generation of a Microliquid Concentration Series Using Wettability Gradient and Electrowetting, 16th international Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, pp. 1456-1458, 2012.
    [334] H. Haidara, L. Vonna & J. Schultz, Surfactant induced Marangoni motion of a droplet into an external liquid medium, J. Chem. Phys., Vol. 107 (2), pp. 630-637, 1997.
    [335] D.-J. Huang & T.-S. Leu, Fabrication of High Wettability Gradient on Copper Substrate, Appl. Surf. Sci., Vol. 280, pp. 25-32, 2013.
    [336] M. H. Alheshibri, N. G. Rogers, A. D. Sommers & K. F. Eid, Spontaneous movement of water droplets on patterned Cu and Al surfaces with wedge-shaped gradients, Appl. Phys. Lett., Vol. 102 (17), p. 174103, 2013.
    [337] J. Qu, H. Wu & P. Cheng, Effects of functional surface on performance of a micro heat pipe, Int. Commun. Heat Mass transfer, Vol. 35 (5), pp. 523-528, 2008.
    [338] M. Faustini, D. R. Ceratti, B. Louis, M. Boudot, P.-A. Albouy, C. Boissière & D. Grosso, Engineering Functionality Gradients by Dip Coating Process in Acceleration Mode, ACS Appl. Mater. Interfaces, Vol. 6 (19), pp. 17102-17110, 2014.
    [339] Y. N. Shin, B. S. Kim, H. H. Ahn, J. H. Lee, K. S. Kim, J. Y. Lee, M. S. Kim, G. Khang & H. B. Lee, Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment, Appl. Surf. Sci., Vol. 255 (2), pp. 293-296, 2008.
    [340] H. Gau, S. Herminghaus, P. Lenz & R. Lipowsky, Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips, Science, Vol. 283 (5398), pp. 46-49, 1999.
    [341] H. Bai, X. Tian, Y. Zheng, J. Ju, Y. Zhao & L. Jiang, Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks, Adv. Mater., Vol. 22 (48), pp. 5521-5525, 2010.
    [342] H. Bai, J. Ju, R. Sun, Y. Chen, Y. Zheng & L. Jiang, Controlled Fabrication and Water Collection Ability of Bioinspired Artificial Spider Silks, Adv. Mater., Vol. 23 (32), pp. 3708-3711, 2011.
    [343] X. Tian, Y. Chen, Y. Zheng, H. Bai & L. Jiang, Controlling Water Capture of Bioinspired Fibers with Hump Structures, Adv. Mater., Vol. 23 (46), pp. 5486-5491, 2011.
    [344] H. Bai, J. Ju, Y. Zheng & L. Jiang, Functional Fibers with Unique Wettability Inspired by Spider Silks, Adv. Mater., Vol. 24 (20), pp. 2786-2791, 2012.
    [345] X. Yao, H. Bai, J. Ju, D. Zhou, J. Li, H. Zhang, B. Yang & L. Jiang, Running droplet of interfacial chemical reaction flow, Soft Matter, Vol. 8 (22), pp. 5988-5991, 2012.
    [346] A. R. Betz, J. Jenkins, C.-J. Kim & D. Attinger, Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces, Int. J. Heat Mass Trans., Vol. 57 (2), pp. 733-741, 2013.
    [347] S. Daniel, M. K. Chaudhury & J. C. Chen, Fast Drop Movements Resulting from the Phase Change on a Gradient Surface, Science, Vol. 291 (5504), pp. 633-636, 2001.
    [348] M. K. Chaudhury & G. M. Whitesides, How to Make Water Run Uphill, Science, Vol. 256 (5063), pp. 1539-1541, 1992.
    [349] J. Zhang, L. Xue & Y. Han, Fabrication Gradient Surfaces by Changing Polystyrene Microsphere Topography, Langmuir, Vol. 21 (1), pp. 5-8, 2005.
    [350] X. Yu, Z. Wang, Y. Jiang & X. Zhang, Surface Gradient Material: From Superhydrophobicity to Superhydrophilicity, Langmuir, Vol. 22 (10), pp. 4483-4486, 2006.
    [351] T.-S. Leu & D.-J. Huang, Fabrication of Copper Gradient Surface for Condensation Heat Transfer Applications, 2nd International Symposium on Experimental Mechanics, Taipei, Taiwan ROC, p. B105, 2012.
    [352] J. Feng, Y. Pang, Z. Qin, R. Ma & S. Yao, Why Condensate Drops Can Spontaneously Move Away on Some Superhydrophobic Surfaces but Not on Others, ACS Appl. Mater. Interfaces, Vol. 4 (12), pp. 6618-6625, 2012.
    [353] H. Bai, L. Wang, J. Ju, R. Sun, Y. Zheng & L. Jiang, Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns, Adv. Mater., Vol. 26 (29), pp. 5025-5030, 2014.
    [354] A. Yamauchi, S. Kumagai & T. Takeyama, Condensation heat transfer on various dropwise-filmwise coexisting surfaces, Heat Transfer JPN. Res., Vol. 15, pp. 50-64, 1986.
    [355] X.-h. Ma, L. Wang, J.-b. Chen, X.-B. Zhu & J.-M. An, Condensation heat transfer of steam on vertical dropwise and filmwise coexisting surfaces with a thick organic film promoting dropwise mode, Exp. Heat Transfer, Vol. 16 (4), pp. 239-253, 2003.
    [356] A. Chatterjee, M. M. Derby, Y. Peles & M. K. Jensen, Condensation heat transfer on patterned surfaces, Int. J. Heat Mass Transfer, Vol. 66, pp. 889-897, 2013.
    [357] A. Chatterjee, M. M. Derby, Y. Peles & M. K. Jensen, Enhancement of condensation heat transfer with patterned surfaces, Int. J. Heat Mass Transfer, Vol. 71, pp. 675-681, 2014.
    [358] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly & C. M. Megaridis, Enhancing Dropwise Condensation through Bioinspired Wettability Patterning, Langmuir, Vol. 30 (43), pp. 13103-13115, 2014.
    [359] B. Peng, X. Ma, Z. Lan, W. Xu & R. Wen, Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect, Int. J. Heat Mass Transfer, Vol. 77, pp. 785-794, 2014.
    [360] B. Peng, X. Ma, Z. Lan, W. Xu & R. Wen, Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces, Int. J. Heat Mass Transfer, Vol. 83, pp. 27-38, 2015.
    [361] D. T. Wasan, A. D. Nikolov & H. Brenner, Droplets Speeding on Surfaces, Science, Vol. 291 (5504), pp. 605-606, 2001.
    [362] S. Daniel & M. K. Chaudhury, Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration, Langmuir, Vol. 18 (9), pp. 3404-3407, 2002.
    [363] Q. Liao, H. Wang, X. Zhu & M. Li, Liquid droplet movement on horizontal surface with gradient surface energy, Sci. China Ser. E, Vol. 49 (6), pp. 733-741, 2006.
    [364] H. Suda & S. Yamada, Force Measurements for the Movement of a Water Drop on a Surface with a Surface Tension Gradient, Langmuir, Vol. 19 (3), pp. 529-531, 2003.
    [365] X. Zhu, H. Wang, Q. Liao, Y. D. Ding & Y. B. Gu, Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces, Exp. Therm. Fluid Sci., Vol. 33 (6), pp. 947-954, 2009.
    [366] Y.-H. Lai, J.-T. Yang & D.-B. Shieh, A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces, Lab. Chip, Vol. 10 (4), pp. 499-504, 2010.
    [367] Y.-H. Lai, M.-H. Hsu & J.-T. Yang, Enhanced mixing of droplets during coalescence on a surface with a wettability gradient, Lab. Chip, Vol. 10 (22), pp. 3149-3156, 2010.
    [368] S. Morgenthaler, S. Lee, S. Zürcher & N. D. Spencer, A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients, Langmuir, Vol. 19 (25), pp. 10459-10462, 2003.
    [369] Y. Zhang, J. Cheng & Z.-r. Yang, Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate–butyl acrylate) films, Appl. Surf. Sci., Vol. 315, pp. 163-168, 2014.
    [370] L. Wang, B. Peng & Z. Su, Tunable Wettability and Rewritable Wettability Gradient from Superhydrophilicity to Superhydrophobicity, Langmuir, Vol. 26 (14), pp. 12203-12208, 2010.
    [371] J. Cheng, A. Zhao, Y.-f. Sun, J.-x. Wu, Z.-h. Huang & S.-p. Xu, Preparation and characterization of high wettability gradient surface on copper substrate, J. Funct. Mater., Vol. 8 (46), pp. 08138-08143, 2015.
    [372] E. Yakhshi-Tafti, H. J. Cho & R. Kumar, Discrete Droplet Manipulation on Liquid Platforms using Thermal Gradients, Procedia Chem., Vol. 1 (1), pp. 1519-1522, 2009.
    [373] K. Ichimura, S.-K. Oh & M. Nakagawa, Light-Driven Motion of Liquids on a Photoresponsive Surface, Science, Vol. 288 (5471), pp. 1624-1626, 2000.
    [374] P. C. Zielke & J. A. Szymczyk, Experimental investigation of the motion and deformation of droplets on surfaces with a linear wettability gradient, Eur. Phys. J. Spec. Top., Vol. 166, pp. 155-158, 2009.
    [375] B. Chandesris, U. Soupremanien & N. Dunoyer, Uphill motion of droplets on tilted and vertical grooved substrates induced by a wettability gradient, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 434, pp. 126-135, 2013.
    [376] D. Julthongpiput, M. J. Fasolka, W. Zhang, T. Nguyen & E. J. Amis, Gradient Chemical Micropatterns: A Reference Substrate for Surface Nanometrology, Nano Lett., Vol. 5 (8), pp. 1535-1540, 2005.
    [377] B. A. Malouin, N. A. Koratkar, A. H. Hirsa & Z. Wang, Directed rebounding of droplets by microscale surface roughness gradients, Appl. Phys. Lett., Vol. 96 (23), p. 234103, 2010.
    [378] P. Hao, C. Lv, X. Zhang, Z. Yao & F. He, Driving liquid droplets on microstructured gradient surface by mechanical vibration, Chem. Eng. Sci., Vol. 66 (10), pp. 2118-2123, 2011.
    [379] D.-J. Huang & T.-S. Leu, Fabrication of Wettability Gradient Surface on Copper by Screen Printing Techniques, J. Micromech. Microeng., Vol. 25 (8), p. 085007, 2015.
    [380] Wikipedia, Screen printing, Wikimedia Foundation Inc., http://en.wikipedia.org/wiki/Screen_printing, 2014.
    [381] D. Smith & D. Klenk, Development of MOEMS technology in maskless lithography, Proc. SPIE, Vol. 7210, p. 72100K, 2009.
    [382] C. Zhao, Y. Shi, Z. Zhong & T. Ma, Screen-printed Pt counter electrodes exhibiting high catalytic activity, Chinese J. Catal., Vol. 35 (2), pp. 219-226, 2014.
    [383] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong & S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., Vol. 5, pp. 574-578, 2010.
    [384] J. F. Salmerón, F. Molina-Lopez, D. Briand, J. J. Ruan, A. Rivadeneyra, M. A. Carvajal, L. F. Capitán-Vallvey, N. F. deRooij & A. J. Palma, Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas, J. Electron. Mater., Vol. 43 (2), pp. 604-617, 2014.
    [385] R. Guo, Y. Yu, Z. Xie, X. Liu, X. Zhou, Y. Gao, Z. Liu, F. Zhou, Y. Yang & Z. Zheng, Matrix-Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors, Adv. Mater., Vol. 25 (24), pp. 3343-3350, 2013.
    [386] T. Feng, L. Dai, J. Jiang, X. Wang, X. Liu, S. Zou, Q. Li & J. Xu, Memory emission of printed carbon nanotube cathodes, Appl. Phys. Lett., Vol. 88 (20), p. 203108, 2006.
    [387] A. Hosono, T. Shiroishi, K. Nishimura, F. Abe, Z. Shen, S. Nakata & S. Okuda, Emission characteristics of printed carbon nanotube cathodes after laser treatment, J. Vac. Sci. Technol. B, Vol. 24 (3), pp. 1423-1427, 2006.
    [388] S. K. Kang, J. H. Choi, J. H. Park, J.-H. Han, J.-B. Yoo, J.-W. Nam, C. K. Lee & J. M. Kim, Relationship between field emission property and composition of carbon nanotube paste for large area cold cathode, J. Vac. Sci. Technol. B, Vol. 22 (3), pp. 13445-11347, 2004.
    [389] C.-W. Cheng, C.-M. Chen & Y.-C. Lee, Laser surface treatment of screen-printed carbon nanotube emitters for enhanced field emission, Appl. Surf. Sci., Vol. 255 (11), pp. 5770-5774, 2009.
    [390] M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen & Z. Sun, Electron field emission from screen-printed graphene films, Nanotechnology, Vol. 20 (42), p. 425702, 2009.
    [391] W. Su, P. Li, L. Yao, F. Yang, L. Liang & J. Chen, Direct Patterning of Copper on Polyimide by Site-Selective Surface Modification via a Screen-Printing Process, Chem. Phys. Chem., Vol. 12 (6), pp. 1143-1147, 2011.
    [392] F. Yang, Wei. Su, L. B. Yao, L. F. Liang, Y. X. Liu, S. J. Yu & Y. F. Zhu, Screen-Printing-Based Fabrication of Silver Patterns on Polyimide Substrate, Adv. Mater. Res., Vol. 510, pp. 176-181, 2012.
    [393] F. Yang, P. Li, X. Li, L. Huo, J. Chen, R. Chen, W. Na, W. Tang, L. Liang & W. Su, Polymer grafting surface as templates for the site-selective metallization, Appl. Surf. Sci., Vol. 274, pp. 241-247, 2013.
    [394] Y. Wang, Y. Shi, C. X. Zhao, J. I. Wong, X. W. Sun & H. Y. Yang, Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices, Nanotechnology, Vol. 25 (9), p. 094010, 2014.
    [395] M. M. Derby, A. Chatterjee, Y. Peles & M. K. Jensen, Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns, Int. J. Heat Mass Transfer, Vol. 68, pp. 151-160, 2014.
    [396] H.-W. LIN, The experiment research of surface modification techniques and it's application to vapor condensation, National Cheng Kung University, Tainan, Taiwan ROC, 2005.
    [397] A. W. Neumann & D. Y. Kwok, Contact angles and surface energetics, Prog. Coll. Poly. Sci., Vol. 109, pp. 170-184, 1998.
    [398] T.-S. Leu & P.-Y. Chang, Pressure barrier of capillary stop valves in micro sample separators, Sens. Actuators, A, Vol. 115 (2-3), pp. 508-515, 2004.
    [399] A.-O. Mousa, Modeling of heat transfer in dropwise condensation, Int. J. Heat Mass Transfer, Vol. 41 (1), pp. 81-87, 1998.
    [400] H. W. Wen & R. M. Jer, On the heat transfer in dropwise condensation, Chem. Eng. J., Vol. 12 (3), pp. 225-231, 1976.
    [401] V. P. Carey, Liquid-Vapor Phase-Change Phenomena, CRC Press, New York, NY., U.S.A., pp. 1-742, 2008.
    [402] Y. A. Ҫengel, Heat Transfer: A Practical Approach, McGraw-Hill Education, New York, NY., U.S.A., 2004.
    [403] S. Kim & K. J. Kim, Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces, J. Heat Transfer, Vol. 133 (8), p. 081502, 2011.
    [404] E. J. LeFevre & J. W. Rose, A theory of heat transfer by dropwise condensation, Proceedings of the 3rd international heat transfer conference, Chicago, IL., U.S.A., pp. 362-375, 1966.
    [405] C. Graham & P. Griffith, Drop size distributions and heat transfer in dropwise condensation, Int. J. Heat Mass Transfer, Vol. 16 (2), pp. 337-346, 1973.
    [406] J. W. Rose, Further aspects of dropwise condensation theory, Int. J. Heat Mass Transfer, Vol. 19 (12), pp. 1363-1370, 1976.
    [407] J. W. Rose & L. R. Glicksman, Dropwise condensation—The distribution of drop sizes, Int. J. Heat Mass Transfer, Vol. 16 (2), pp. 411-425, 1973.
    [408] D.-J. Huang & T.-S. Leu, Experimental and Theoretical Studies of Droplet Motion on Triangular Wettability Gradient Surfaces, 25th National Conference on Combustion and Energy, Kaohsiung, Taiwan, 2015.
    [409] D.-J. Huang & T.-S. Leu, Condensation heat transfer enhancement by wettability gradient surface modification on a monolithic copper heat sink, 2015 International Workshop on Heat Transfer Advances for energy Conservation and Pollution Control, Taipei, Taiwan, pp. IWHT2015-1091, 2015.
    [410] DuPont™ Teflon® AF Amorphous Fluoropolymer, DuPont™, Wilmington, DE., U.S.A., 2006.
    [411] 3M Novec™ EGC-1720 Electronic Coating, 3M Inc., St. Paul, MN., U.S.A., 2003.
    [412] DuPont™ Teflon® AF 1601S and 2400S, Amorphous Fluoroplastic Solutions, DuPont™, Wilmington, DE., U.S.A., 2013.
    [413] E. R. Delsman, A. Pierik, M. H. J. M. D. Croon, G. J. Kramer & J. C. Schouten, Microchannel Plate Geometry Optimization for Even Flow Distribution at High Flow Rates, Chem. Eng. Res. Des., Vol. 82 (2), pp. 267-273, 2004.
    [414] E. J. LeFevre & J. W. Rose, Heat-transfer measurements during dropwise condensation of steam, Int. J. Heat Mass Transfer, Vol. 7 (2), pp. 272-273, 1964.
    [415] Y. Lu, Y. Yin, Z.-Y. Li & Y. Xia, Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids, Nano Lett., Vol. 2 (7), p. 4, 2002.
    [416] O. Çakir, H. Temel & M. Kiyak, Chemical etching of Cu-ETP copper, J. Mater. Process. Tech., Vol. 162-163, pp. 275-279, 2005.
    [417] Y.-J. Chang, C.-Y. Hu & C.-H. Lin, A Novel Application of Ferrofluid Actuation with PDMS Microchannel, 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, pp. 1-4, 2010.
    [418] C.-H. Xue & J.-Z. Ma, Long-lived superhydrophobic surfaces, J. Mater. Chem. A, Vol. 1 (13), pp. 4146-4161, 2013.
    [419] C.-H. Xue, P. Zhang, J.-Z. Ma, P.-T. Ji, Y.-R. Li & S.-T. Jia, Long-lived superhydrophobic colorful surfaces, Chem. Commun., Vol. 49 (34), pp. 3588-3590, 2013.
    [420] O. Cakir, Copper etching with cupric chloride and regeneration of waste etchant, J. Mater. Process. Tech., Vol. 175 (1-3), pp. 63-68, 2006.
    [421] J. Liu, X. Huang, Y. Li, K. M. Sulieman, X. He & F. Sun, Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology, Cryst. Growth. Des., Vol. 6 (7), pp. 1690-1696, 2006.
    [422] D. P. Singh, A. K. Ojha & O. N. Srivastava, Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route, J. Phys. Chem. C, Vol. 113 (9), pp. 3409-3418, 2009.
    [423] Y. Liu, X. Chen & J. H. Xin, Can superhydrophobic surfaces repel hot water?, J. Mater. Chem., Vol. 19 (31), pp. 5602-5611, 2009.
    [424] Z. Ghalmi & M. Farzaneh, Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy, Appl. Surf. Sci., Vol. 314, pp. 564-569, 2014.
    [425] H. Tavana, N. Petong, A. Hennig, K. Grundke & A. W. Neumann, Contact Angles and Coating Film Thickness, Vol. 81, pp. 29-39, 2005.
    [426] D. V. S. Rao, K. Muraleedharan & C. J. Humphreys, TEM specimen preparation techniques Microscopy: Sci. Technol. Appl. Edu., Badajoz, Spain, pp. 1232-1244, 2010.
    [427] X. Li, H. Dai, S. Tan, X. Zhang, H. Liu, Y. Wang, N. Zhao & J. Xu, Facile preparation of poly(ethyl α-cyanoacrylate) superhydrophobic and gradient wetting surfaces, J. Colloid Int. Sci., Vol. 340 (1), pp. 93-97, 2009.
    [428] X. Tian, J. Li & X. Wang, Anisotropic liquid penetration arising from a cross-sectional wettability gradient, Soft Matter, Vol. 8 (9), pp. 2633-2637, 2012.
    [429] A. W. Neumann, A. H. Abdelmessih & A. Hameed, The role of contact angles and contact angle hysteresis in dropwise condensation heat transfer, Int. J. Heat Mass Transfer, Vol. 21 (7), pp. 947-953, 1978.
    [430] H.-M. Huang, Experimental Studies of Condensation Heat Transfer on Surface Modified Copper Tubes, Master thesis, National Cheng Kung university, Tainan, Taiwan ROC, 2015.
    [431] X. Ma, X.-D. Zhou, Z. Lan, T.-Y. Song & J. Ji, Experimental Investigation of Enhancement of Dropwise Condensation Heat Transfer of Steam-Air Mixture: Falling Droplet Effect, J. Enhanc. Heat Transf., Vol. 14 (4), pp. 295-305, 2007.
    [432] M. H. Rausch, A. P. Fröba & A. Leipertz, Dropwise condensation heat transfer on ion implanted aluminum surfaces, Int. J. Heat Mass Transfer, Vol. 51 (5-6), pp. 1061-1070, 2008.
    [433] K. C. Hansen, C. Rungaroonthaikul, T. M. Aminabhavi & C. L. Yaws, Gaseous Thermal Conductivity of Silane, Dichlorosilane, Trichlorosilane, Tetrachlorosilane, and Tetrafluorosilane in the Temperature Range from 28 to 350 °C, J. Chem. Eng. Data, Vol. 40 (1), pp. 15-17, 1995.
    [434] E. J. LeFevre & J. W. Rose, An experimental study of heat transfer by dropwise condensation, Int. J. Heat Mass Transfer, Vol. 8 (8), pp. 1117-1133, 1965.
    [435] E. Citakoglu & J. W. Rose, Dropwise condensation—some factors influencing the validity of heat-transfer measurements, Int. J. Heat Mass Transfer, Vol. 11 (3), pp. 523-537, 1968.
    [436] E. S. Cho, J. W. Choi, J. S. Yoon & M. S. Kim, Experimental study on microchannel heat sinks considering mass flow distribution with non-uniform heat flux conditions, Int. J. Heat Mass Transfer, Vol. 53 (9-10), pp. 2159-2168, 2010.
    [437] C.-K. Liu, S.-J. Yang, Y.-L. Chao, K. Y. Liou & C.-C. Wang, Effect of non-uniform heating on the performance of the microchannel heat sinks, Int. Commun. Heat Mass transfer, Vol. 43, pp. 57-62, 2013.
    [438] L. Sack, C. Scoffoni, A. D. McKown, K. Frole, M. Rawls, J. C. Havran, H. Tran & T. Tran, Developmentally based scaling of leaf venation architecture explains global ecological patterns, Nat. Commun., Vol. 32012.
    [439] Y. Hou, M. Yu, X. Chen, Z. Wang & S. Yao, Filmwise-to-Dropwise Condensation Transition Enabled by Patterned High Wetting Contrast, J. Heat Transfer, Vol. 137 (8), p. 080907, 2015.
    [440] H. Lan, J. L. Wegener, B. F. Armaly & J. A. Drallmeier, Developing Laminar Gravity-Driven Thin Liquid Film Flow Down an Inclined Plane, J. Fluid Eng., Vol. 132 (8), p. 081301, 2010.
    [441] S. K. Dahikar, A. A. Ganguli, M. S. Gandhi, J. B. Joshi & P. K. Vijayan, Heat transfer and flow pattern in co-current downward steam condensation in vertical pipes-I: CFD simulation and experimental measurements, Can. J. Chem. Eng., Vol. 91 (5), pp. 959-973, 2013.
    [442] Y.-A. Lee, L.-S. Kuo, T.-W. Su, C.-C. Hsu & P.-H. Chen, Orientation effects of nanoparticle-modified surfaces with interlaced wettability on condensation heat transfer, Appl. Therm. Eng., Vol. 98, pp. 1054-1060, 2016.
    [443] D. W. Tanner, C. J. Potter, D. Pope & D. West, Heat transfer in dropwise condensation—Part I The effects of heat flux, steam velocity and non-condensable gas concentration, Int. J. Heat Mass Transfer, Vol. 8 (3), pp. 419-426, 1965.
    [444] G. A. O'neill & J. W. Westwater, Dropwise condensation of steam on electroplated silver surfaces, Int. J. Heat Mass Transfer, Vol. 27 (9), pp. 1539-1549, 1984.
    [445] S. Hatamiya & H. Tanaka, Dropwise condensation of steam at low pressures, Int. J. Heat Mass Transfer, Vol. 30 (3), pp. 497-507, 1987.
    [446] T. Haraguchi, R. Shimada, S. Kumagai & T. Takeyama, The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation, Int. J. Heat Mass Trans., Vol. 34 (12), pp. 3047-3054, 1991.
    [447] S. Kumagai, S. Tanaka, H. Katsuda & R. Shimada, ON THE ENHANCEMENT OF FILMWISE CONDENSATION HEAT TRANSFER BY MEANS OF THE COEXISTENCE WITH DROPWISE CONDENSATION SECTIONS, Exp. Heat Transfer, Vol. 4 (1), pp. 71-82, 1991.
    [448] T. Hosokawa, Y. Fujiwara, Y. Ogami, Y. Kawasima & Y. Yamasaki, Heat transfer characteristic of dropwise condensation on an inclined circular tube, Heat Recovery Systems & CHP, Vol. 15 (1), pp. 31-39, 1995.
    [449] J. C. Chen, Surface Contact—Its Significance for Multiphase Heat Transfer: Diverse Examples, J. Heat Transfer, Vol. 125 (4), pp. 549-566, 2003.
    [450] X. Ma, B. Tao, J. Chen, D. Xu & J. Lin, Dropwise condensation heat transfer of steam on a polytethefluoroethylene film, J. Therm. Sci., Vol. 10 (3), pp. 247-253, 2001.
    [451] X. Ma, J. Chen, D. Xu, J. Lin, C. Ren & Z. Long, Influence of processing conditions of polymer film on dropwise condensation heat transfer, Int. J. Heat Mass Transfer, Vol. 45 (16), pp. 3405-3411, 2002.
    [452] B.-J. Chung, S. Kim & M. C. Kim, Film condensations of flowing mixtures of steam and air on an inclined flat plate, Int. Comm. Heat Mass transfer, Vol. 32 (1-2), pp. 233-239, 2005.
    [453] A. B. Kananeh, M. H. Rausch, A. P. Fröba & A. Leipertz, Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes, Int. J. Heat Mass Transfer, Vol. 49 (25-26), pp. 5018-5026, 2006.
    [454] J. W. Rose, Enhanced Condensation Heat Transfer, JSME Int. J. Series B, Vol. 49 (3), pp. 626-635, 2006.
    [455] X.-h. MA, T.-y. SONG, Z. LAN & X.-d. ZHOU, The Effect of Dividing Surface on Heat Transfer Characteristics of Dropwise Condensation, Chin. J. Proc. Eng., Vol. 7 (3), pp. 472-475, 2007.
    [456] S. WANG, Z. LAN, A. WANG & X. MA, Dropwise condensation of steam and steam-air mixture on super-hydrophobic surfaces, J. Chem. Ind. Eng., Vol. 61 (3), pp. 607-611, 2010.
    [457] R. W. BonnerIII, DROPWISE CONDENSATION LIFE TESTING OF SELF ASSEMBLED MONOLAYERS, 2010 14th International Heat Transfer Conference, Washington DC, U.S.A., pp. 221-226, 2010.
    [458] Y. Li, G. Wang, J. Yan & J. Wang, A Semi-Empirical Model for Condensation Heat Transfer Coefficient of Mixed Ethanol-Water Vapors, J. Heat Transfer, Vol. 133 (6), p. 061501, 2011.
    [459] K. Cheng, B. J. Zhang, C. Y. Lee, M. Kennedy, S. Kim, H. Yoon, K. J. Kim, J. Liu & G. Skandan, Biomimetic super-hydrophobic surfaces for use in enhanced dropwise condensation, Bioinspiration, Biomimetics, and Bioreplication, San Diego, CA, United States, pp. 79750Y-79751, 2011.
    [460] J. R. Lara & M. T. Holtzapple, Experimental investigation of dropwise condensation on hydrophobic heat exchangers part I: Dimpled-sheets, Desalination, Vol. 278 (1-3), pp. 165-172, 2011.
    [461] Z. Chen & Y. Utaka, Characteristics of condensate drop movement with application of bulk surface temperature gradient in Marangoni dropwise condensation, Int. J. Heat Mass Trans., Vol. 54 (23-24), pp. 5049-5059, 2011.
    [462] L. Zhang, S. Yang & H. Xu, Experimental study on condensation heat transfer characteristics of steam on horizontal twisted elliptical tubes, Appl. Energy, Vol. 97, pp. 881-887, 2012.
    [463] M. H. M. Grooten & C. W. M. VanDerGeld, Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage, Int. J. Therm. Sci., Vol. 54, pp. 220-229, 2012.
    [464] N. Miljkovic, R. Enright & E. N. Wang, Modeling and Optimization of Superhydrophobic Condensation, J. Heat Transfer, Vol. 135 (11), p. 111004, 2013.
    [465] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack & E. N. Wang, Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces, Nano Lett., Vol. 13 (1), pp. 179-187, 2012.
    [466] S. Lee, K. Cheng, V. Palmre, M. M. H. Bhuiya, K. J. Kim, B. J. Zhang & H. Yoon, Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface, Int. J. Heat Mass Transfer, Vol. 65, pp. 619-626, 2013.
    [467] Y. Hou, M. Yu, X. Chen, Z. Wang & S. Yao, Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface, ACS Nano., Vol. 9 (1), pp. 71-81, 2015.
    [468] J. Xi & L. Jiang, Biomimic Superhydrophobic Surface with High Adhesive Forces, Ind. Eng. Chem. Res., Vol. 47 (17), pp. 6354-6357, 2008.
    [469] R. Xiao, N. Miljkovic, R. Enright & E. N. Wang, Immersion condensation on scalable oil-infused nanostructures for high performance thermal management, Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, pp. 2807-2810, 2013.

    下載圖示 校內:2019-07-31公開
    校外:2021-07-31公開
    QR CODE