簡易檢索 / 詳目顯示

研究生: 陳詩璇
Chen, Shih-Hsuan
論文名稱: 超級橢圓板在非線性彈性基礎上的工程分析
Engineering Analysis of Super Elliptical Plate on Nonlinear Elastic Foundation
指導教授: 賴新一
Lai, Hsin-Yi
陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 雙側逼近法加權殘值法數學規劃基因演算法超級橢圓形
外文關鍵詞: double side approach method, the weighted residual method, mathematical programming, genetic algorithms, super ellipse
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是呈現非線性彈性超級橢圓平板的力學分析,在本文內容中分成兩個部分做討論。第一部分探討改變次方的不同尺寸超級橢圓平板力學分析情形,第二部分應用基因演算法在超級橢圓平板上求得近似解。超級橢圓的形狀決定於次方大小。當次方越大,則近似方形,次方為一,則為圓形。在本文中詳細的探討具非線性彈性超級橢圓平板在不同形狀下的力學行為特性。
    文中首先對微分方程式最大值原理,殘差關於解之單調性提出驗證,接著將雙側逼近法求得的解與單調性殘差方程的數值解相互比較其中差異。為了解決上述提及的問題,雙側逼近法需先採用傳統之加權殘值法,將一求解微分方程之問題,轉換為一具有限制條件之數學規劃問題。透過結合最佳化法則從兩側逼近正確解,逼近的條件為分別找出正確解之最小偏大近似解與最大偏小近似解。於本文中利用加權殘值法中之配點法轉換求解之微分方程,再進而採用基因演算法做為我們求解上下界之最佳化法則。
    本文將雙側逼近法應用超級橢圓平板之靜態行為分析,於過去之文獻中,多為探討矩形、圓形、橢圓形等一般形狀之問題,鑑於對於超級橢圓形相關資訊之缺乏,因此先使用Galerkin’s Method求得近似解,再將基因演算法所求解之結果與解析解比對,均相當地令人滿意,驗證了此方法在邊界值問題上應用之可行性與正確性。

    This thesis presents the engineering analysis of a super elliptical plate on a nonlinear foundation. The content is divided into two parts including (1) the behavior of the structure under different size of the elliptical plates for various power of orders, and (2) the application of genetic algorithms to several special cases of elliptical plates to obtain approximate solutions. The shapes of super ellipse are characterized by different power of the orders. As the power becomes large enough, the shape of the ellipse is shaped to be rectangle-like. And as the power equals to one, the shape of the ellipse is shaped to be circle-like. In this thesis, detailed description of nonlinear engineering structural behavior of elliptical plates under different geometric shapes thoroughly detailed.
    Differential equations are derived first based on the maximum principle, and then the monotony of the residual solutions are presented with rigor validation. Followed by that the results obtained by a double side approach method and the monotony of the residual equation of the numerical solution are presented and compared with each other to show the difference. In order to solve the above-mentioned problem, the traditional method of weighted residuals by double side approach is employed, and the problem for solving the differential equations is further converted into a mathematical programming problem with constraints. By combining the optimization algorithms to obtain the accurate solutions from bilateral sides, the conditions to find minimal upper approximate solution and maximal lower approximate solution are formulated and incorporated into the solution process. The weighted residual method and collocation method for solving the differential equations are programming into the code with the genetic algorithms (GA) to solve for the bounds to comply with optimization rules given in the context.
    This thesis elaborates the details of the application of algorithm to analyze of the static structural behavior of thin super ellipse. In the past, many researchers work studied the linear behavior of the circular, ellipse and other general shape of the plate separately. The employment of super-ellipse to accommodate the structural behavior of various shapes in general, not available, applies the Galerkin's Method for analytical solutions. This paper, therefore, as compared with the results of genetic algorithms with other analytical solution, the results of genetic algorithms are found much satisfactory for dealing with boundary value problems, somehow superior to the solutions of others obtained by traditional analytical approaches.

    目錄 1. 簡介 1.1 本文動機 1 1.2 本文結構 2 2. 加權殘差法 (MWR) 4 2.1 加權殘值法文獻回顧 4 2.2 加權殘值法基本觀念 9 2.3 加權殘值法副方法 12 2.4 試函數 16 3. 最大值原理 19 3.1 一維的最大值定理與其單調性 19 3.1.1 一維最大值原理之基礎理論 19 3.1.2 邊界值條件的單調性 21 3.1.3 初始值條件的單調性 22 3.1.4 非線性問題的單調性 24 3.2 橢圓方程最大值定理與其單調性 24 3.2.1 橢圓方程最大值定理 24 3.2.2 橢圓方程的單調性 25 3.3 單調性證明 26 3.3.1 向量方程的微分運算子 27 3.3.2 彎曲平板的單調性證明 27 4. 雙側逼近法 32 4.1 雙側逼近法步驟 32 4.2 基因演算法 33 4.2.1 基因演算法之文獻回顧 34 4.2.2 基因演算法之特色 35 4.2.3運算子及基本程序 36 5. 實例應用與結果討論 40 5.1 超級橢圓 41 5.2 橢圓平板力學行為分析 52 5.2.1 Galerkin’s method 52 5.2.2 配點法 54 6. 結論與未來展望 62 6.1 結論 62 6.2 未來展望 63 文獻回顧 64 表目錄 表2.1 加權殘差法之發展簡介 4 表2.2 加權殘差法之子方法 16 表5.1 在不同n值試函數下的未知係數值(k=10,a=1) 42 表5.2 均勻負載下隨a與k值變化的未知係數表(q=D=b=1) 43 表5.3 在中心點隨a與k值變化的撓度變化表(n=2,q=D=b=1) 57 圖目錄 圖1.1 超級橢圓板在非線性彈性基礎上的顯示圖.................................2 圖4.1 基因演算法步驟流程圖 38 圖5.1 超級橢圓的圖形描述 41 圖5.2 在a=1下不同k值的撓度比較圖 44 圖5.3 在a=2下不同k值的撓度比較圖 44 圖5.4 在a=4下不同k值的撓度比較圖 45 圖5.5 k=10 a=1的撓度立體圖 46 圖5.6 k=10 a=2的撓度立體圖 46 圖5.7 k=10 a=4的撓度立體圖 47 圖5.8 n=2 a=1的x-y軸分布 48 圖5.9 n=2 a=2的x-y軸分布 48 圖5.10 n=2 a=4的x-y軸分布 49 圖5.11 n=1 k=10下撓度與y軸關係圖 50 圖5.12 n=1 k=10下撓度立體圖 50 圖5.13 n=6 k=10下撓度與y軸關係圖 51 圖5.14 n=6 k=10下撓度立體圖 51 圖5.15 在橢圓平板上的配點位置 56 圖5.16 當a=1隨y軸變化的上下值以及近似解 (a) k=10 (b) k=20 (c) k=30 (d) k=40 (e) k=50 59 圖5.17 當a=2隨y軸變化的上下值以及近似解 (a) k=10 (b) k=20 (c) k=30 (d) k=40 (e) k=50 60 圖5.18 當a=4隨y軸變化的上下值以及近似解 (a) k=10 (b) k=20 (c) k=30(d)k=40 (e) k=50 61 符號表 a:長軸寬度 b:短軸寬度 ci:未定係數 E:楊氏係數 h:平板厚度 k:彈性係數 n:超級橢圓形狀方程的次方 ni:垂直邊界方向 pz:反應力函數 q:邊緣均勻分佈負載 R:殘差方程 w:撓度 w(x,y):試函數方程 ŭ:近似解最小上界 :近似解最大下界 ũ:最佳近似解 μ: poisson ratio

    [1] Crandall, S. H.: Engineering Analysis, McGraw-Hill, 1956.
    [2] Finlayson, B. A.: The Method of Weighted Residuals and Variational Principles, Academic Press., New York and London, 1972.
    [3] Finlayson, B. A. and Seroven, L. E., “The Method of Weighted Residuals,” A Review, Applied Mechanics Reviews, vol. 19, no. 9, 1968.
    [4] Appl, F. C. and Hing, H. M., “A principle for convergent upper and lower bounds,” Int. J. Mech. Sci., vol. 6, pp 381-389, 1964.
    [5] Baluch, M. H., Mohsen, M. F. and Ali, A. I., "Method of weighted residuals as applied to nonlinear differential equation," Appl. Math. Modelling, vol. 7, pp. 362-365, 1983.
    [6] Gupta, U. S., Jain, S. K. and Jain, D., "Method of collocation by derivatives in the study of axisymmetric vibrations of circular plates," Computer & Structures, vol. 57, pp. 841-845, 1995.
    [7] Segerlind, L. J., "Weighted residual solutions in the time domain," International Journal for Numerical Methods in Engineering, vol. 28, pp. 679-685, 1989.
    [8] Neuman, C. P. and Schonbach, D. I., "Discrete weighted residual methods : Multi-interval methods," Int. J. Systems Sci., vol. 8, no. 11, pp. 1281-1298, 1977.
    [9] Spall, R., "Spectral collocation methods for one-dimensional phase-change problems," Int. J. Heat Mass Transfer, vol. 38, no. 15, pp. 2743-2748, 1995.
    [10] Lepik, U., "Axisymmetric vibrations of elastic-plastic cylindrical shells by Galerkin's method," Int. J. Impact Eng., vol. 18, no. 5, pp. 489-504, 1996.
    [11] Adomaitis, R. A. and Lin, Y. H., "A technique for accurate collocation residual calculations," Chemical Engineering Journal, vol. 71, pp. 127-134, 1998.
    [12] Hoon, K. H. and Khong, P. W., "The semi-energy and the lower bound methods to the post-buckling of plate," Computers & Structures, vol. 58, no. 1, pp. 107-113, 1996.
    [13] Mahajerin, E. and Burgess, G., "Fundamental collocation method applied to plane thermoelasticity problems," Computers & Structures, vol. 57, no. 5, pp. 795-797, 1995.
    [14] Vitanov, N. K., "Upper bounds on the heat transport in a porous layer," Physica D, vol. 136, pp. 322-339, 2000.
    [15] Chen, C. K., Chen, C. L. and Lin, J. M., “Error bound estimate of weighted residuals method using genetic algorithms,” Applied Mathematics and Computation, vol. 81, pp. 207-219, 1997.
    [16] Young, J. D., "Linear program approach to linear differential problems," Int. J. Eng. Sci., vol. 2, pp. 413-416, 1964.
    [17] Chen, S., Qiu, Z. and Song, D., "A new method for computing the upper and lower bounds on frequencies of structures with interval parameters," Mechanics Research Communications, vol. 22, no. 5, pp. 431-439, 1995.
    [18] Collatz, L.: The numerical treatment of differential equations, Springer-Verlag, Berlin, 1960.
    [19] Potter, M. H. and Weinberger, H. F.: Maximum principles in differential equations, Prentice-Hall, 1967.
    [20] Sperb, R. P.: Maximum principles and their applications, Academic Press, New York, 1981.
    [21] Bagley, J. D.: The behavior of adaptive system which employ genetic and correlation algorithms, PhD. Dissertation, University of Michigan, 1967.
    [22] Holland, J.: Adaptation in natural and artificial system, The University of Michigan Press, 1975.
    [23] Lawrence, D.: Handbook of genetic algorithms, Van Nostrand Reinhold, New York, 1991.
    [24] Goldberg, D. E.: Genetic Algorithms in Search. Optimization and Machine Learning, Addison-Wesley, Reading, Ma, 1989.
    [25] Davis, L.: Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
    [26] Jenkis, W. M., “Towards structural optimization via the genetic algorithm”, Computers & Structures, vol. 40, pp. 1321-1327, 1991.
    [27] Yokota, T., Gen, M. and Li, Y. X., "Genetic algorithm for non-linear mixed integer programming problems and its applications," Computers and Eng., vol. 30, no. 4, pp. 905-917, 1996.
    [28] Riche, R. L. and Haftka, R. T., "Improved genetic algorithm for minimum thickness composite laminate design," Composites Engineering, vol. 5, no. 2
    [29] Wang, B. P. and Chen, J. L., "Application of genetic algorithm for the support location optimization of beams," Computers & Structures, vol. 58, no. 4, pp. 797-800, 1996.
    [30] Zhang, Y. E., Sun, J. P. and Ji, A. B., "A solution of fuzzy possibilistic linear program problems with equality constraint," Journal of Hebei University, vol. 19, no. 2, pp. 116-118, 1999. (in Chinese)
    [31] Gao, F., Hu, Q., Wang, Z. and Wang, D., "Improved evolutionary direction way for genetic algorithms and structural design," Journal of Northeastern University, vol. 19, no. 1, pp. 79-82, 1998. (in Chinese)
    [32] Liu, S., Zheng, B. and Wang, M., "Algorithm design based on genetic algorithm for integer programming problem," Journal of Northeastern University, vol. 19, no. 2, pp. 198-200, 1998. (in Chinese)
    [33] Chen, Y. H. and Fang, S. C., "Solving convex programming problems with equality constraints by Neural Networks," Computers Math. Appl., vol. 36, no. 7, pp. 41-68, 1998.
    [34] Srinivas, M. and Patmaik, L. M., “Genetic algorithms-A survey”, Computer, Vol. 27 (6), pp. 17-26, 1994.
    [35] Gen, M. and Cheng, R., “Genetic algorithms and engineering design,” John Wiley & Sons, New York, 1997.
    [36] Leipholz, H.: Theory of elasticity. Noordhoff international publishing leyden, 1974.
    [37] Timoshenko, S. and Woinowsky-Krieger, S.: Theory of plates and shells, McGraw-Hill, New York, 1959.
    [38] Çeribaşı, S., Altay, G. and Dökmeci, M. C., “Static analysis of superelliptical clamped plates by Galerkin’s method,” Thin-Walled Structures, vol. 46, pp. 122-127, 2008.
    [39] Cristian Enache , “Maximum principles and symmetry results for a class of fully nonlinear elliptic PDEs ”, Nonlinear Differ. Equ. Appl. 17 (2010).591-600
    [40] A. Mareno , “Maximum principles and bounds for a class of fourth order elliptic equations ”, J. Math. Anal. Appl. 377 (2011).495-500
    [41] 徐次達, “固體力學加權殘值法,” 同濟大學出版社, 1987.
    [42] 徐次達, “加權殘值法計算力學在我國18年中的進展國際近期進展概要與展望,” 西安公路交通大學學報, 1997年增刊.
    [43] 傅作新, “結構與水體的偶合作用問題,” 工程數值方法學術會議論文, 1987.
    [44] 江理平, “彈性薄板彎曲、振動與穩定問題的殘值ODE方法,” 加權殘值法最新進展及其工程應用, pp. 174-179, 1992.
    [45] 趙志崗, “薄殼非線性穩定問題的加權殘數法初步研究,” 加權殘值法最新進展及其工程應用, pp. 237-240, 1992.
    [46] 孫博華, “擾動權餘法及在薄板大撓度問題上的應用,” 固體力學學報, 1986.
    [47] 邱吉寶, “加權殘值法的理論與應用,” 宇航出版社, 1991.
    [48] 朱寶安, “力學問題—現代數學規劃加權殘值法,” 天津科學技術出版社.
    [49] 朱寶安, “數學規劃加權殘值法動態,” 天津大學分校, 1995.
    [50] 雲慶夏, 黃光球, 王戰權, “遺傳算法和遺傳規劃,” 北京, 冶金工業出版社.
    [51] 祁載康, 萬耀青, 梁嘉玉, “工程優化原理及應用,” 北京理工大學出版社.

    下載圖示 校內:立即公開
    校外:2018-07-26公開
    QR CODE