簡易檢索 / 詳目顯示

研究生: 許君漢
Hsu, Chun-Han
論文名稱: 以模板法合成中孔洞材料
Synthesis of Mesoporous Materials by Templating Technology
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 高分子混摻明膠中孔洞氧化矽碳材
外文關鍵詞: mesoporous silica, carbon, polymer blend, gelatin
相關次數: 點閱:149下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化矽孔洞材料與碳材因為具有廣泛的應用性,如吸附劑、固態模板、催化擔體及電極材料等,所以引起許多研究的關注。於本論文中,我們將以各種PEO高分子結合矽酸鈉水溶液,於pH 5.0的環境下製備出具有次微米或微米級尺度的氧化矽球。經由水熱反應後,因氧化矽的縮合程度提高及PEO與氧化矽之間的作用力下降,造成於未經燒步驟移除有機物即有中孔洞(mesopore)的產生,此外在不同的pH條件下進行合成,可調控氧化矽材料的孔徑大小。以燒後的氧化矽材料為奈米模板,經由簡易的含浸法將工業級、低成本的碳源-酚醛樹脂導入,皆可簡易地製備出中孔洞碳材。

    此外,本研究嘗試以高分子混摻的概念,合成出中孔洞氧化矽材料與碳材。以中性高分子與酚醛樹脂混摻物為模板,經由快速的矽質化過程,產生PEO—PF resin—silica的複合體,經燒移除有機物後,即可得到具有高表面積( 300 ~ 700 m2g-1)與較大孔徑( 6.0~8.0 nm)的中孔洞氧化矽材料;若經由100 oC下進行酚醛樹脂的固化反應、1000 oC下進行裂解碳化步驟後,以HF(aq)移除氧化矽,則可得到具有高表面積( 900~1500 m2g-1)與大的孔洞體積( 1.0~2.0 cm3g-1)之中孔洞碳材。

    隨著對界面活性劑的毒性關注日增,使得以環境無害的反應試劑來製備中孔洞氧化矽成為研究方向之一。由於明膠為一水溶性蛋白質,包含許多胺基可與矽酸鈉上的矽烷基以多重氫鍵來形成極強的作用力,所以明膠可以當作模板來合成孔洞氧化矽。另外可將明膠—酚甲醛樹脂兩高分子於混摻後當模板來合成中孔洞氧化矽材料或中孔洞碳材。

    Recently, porous silicas and carbons of high surface area, large pore volume and tunable pore size have attracted much interest of the chemistry and material community due to their potential applications as adsorbents, templates, catalyst supports, and electrode materials.

    In this thesis, we performed the PEO polymers to combine with the sodium silicate solution at pH value of 5.0 to prepare the submicron- or micron-sized PEO-silica spheres. After a hydrothermal treatment, a further silica condensation and interaction mismatching between the PEO and siloxane (Si––O–Si) or Si–O- groups would lead to the meso-voids even without removing PEO polymer. Moreover, the mesopore dimension is dependent on the pH value of the gel solution. The mesoporous carbons have been efficiently prepared via a convenient impregnation method using with calcined mesoporous silica as nanotemplates and commercial-grade phenol-formaldehyde resin as carbon source.

    Based on the concept of polymer blending, we proposed a new method to prepare the mesoporous silicas and carbons by using a polymer blend of neutral polymer and phenol-formaldehyde resin as template. Through a rapid silicification at pH  5.0, a PEO–PF resin–silica composite was generated. After calcination for removing organics, the mesoporous silicas were obtained with surface areas (300–700 m2g-1) and pore sizes ( 6.0–8.0 nm). On the other hand, PEO–PF resin–silica composites can be converted to mesoporous carbons via a consequent processes of polymerization at 100 oC, pyrolysis under N2 atmosphere at 1000 oC and HF-etching . The mesoporous carbons possess the properties of high surface areas ( 900—1500 m2g-1), large pore volume ( 1.0—2.0 cm3g-1).

    With recently increasing concern on the aquatic toxicity of the surfactants, using natural-friendly reagents to prepare the mesoporous silica is much desirable. The gelatin of water-soluble natural proteins which has lots of amine (–NH2) functional groups can have a high affinity to strongly interact with silanol groups on the silicate species via multiple hydrogen bonds. Therefore, the gelatin could be regarded as a new template to synthesize the porous silica. In addition, the gelatin-phenol formaldehyde polymer blend can also be used as the template to synthesize the mesoporous silica or mesoporous carbon after the proper treatments.

    目錄 第一章序論..................................................... 1 1.1 孔洞材料介紹............................................... 1 1.1.1 中孔洞氧化矽(mesoporous silica)材料簡介.................. 1 1.1.2 中孔洞碳材(mesoporous carbon)簡介........................ 2 1.1.3 孔洞性氧化矽材料的研究範疇................................2 1.2 界面活性劑性質簡介......................................... 4 1.2.1 界面活性劑的分類......................................... 4 1.2.2 微胞的形成............................................... 5 1.2.3 界面活性劑聚集體的結......................................6 1.3 矽酸鹽的基本概念........................................... 6 1.4 高分子混摻................................................. 7 1.4.1 混摻的方法............................................... 8 1.5 研究動機與目的............................................. 9 第二章實驗部份................................................ 13 2.1 化學藥品.................................................. 13 2.2 氧化矽孔洞材料與中孔洞碳材的合成方法...................... 14 2.2.1 氧化矽模板-中孔洞氧化矽合成步驟......................... 14 2.2.2 以含浸法製作中孔洞碳材之合成步驟........................ 15 2.2.3 以高分子混摻法製作中孔洞材料之合成步驟.................. 15 2.3 產物的鑑定................................................ 16 2.3.1 熱重分析儀.............................................. 16 2.3.2 X-射線粉末繞射光譜...................................... 17 2.3.3 穿透式電子顯微鏡........................................ 17 2.3.4 掃描式電子顯微鏡........................................ 17 2.3.5 氮氣等溫吸附/脫附測量................................... 17 2.3.6 固態魔角旋轉核磁共振光譜................................ 19 2.3.7 拉曼光譜................................................ 19 第三章以PEO高分子為模板合成中孔洞氧化矽材料並應用於碳材製備....21 3.1 研究動機及目的............................................ 21 3.2 結果與討論................................................ 23 3.2.1 氧化矽材料的合成與鑑定.................................. 23 3.2.2 水熱反應對產物的影響.................................... 26 3.2.3 不同的水熱溫度、水熱pH 值對產物的影響................... 30 3.2.4 合成pH 值對產物的影響................................... 32 3.2.5 改變高分子與矽酸鈉比例的影響............................ 35 3.3 使用不同PEO 分子量的高分子為模板所合成出的產物之比較...... 36 3.3.1 以不同PEO 鏈長的高分子所合成的氧化矽之結構與外觀........ 37 3.3.2 以不同PEO 鏈長的高分子所合成的氧化矽之孔洞性研究........ 38 3.4 以含浸法合成中孔洞碳材.................................... 40 3.4.1 開放系統之含浸法........................................ 40 3.4.2 改變不同酚醛樹脂濃度-密閉系統之含浸法................... 46 3.4.3 直接以含PEO高分子之氧化矽材料模板合成孔洞性碳材......... 47 3.4.4 以含浸法所合成的碳材之基本特性.......................... 49 3.5 以含浸法製備不同形態與介尺度結構的碳材.................... 50 3.5.1 以氧化矽薄膜為模板...................................... 51 3.5.2 以管中管形態的氧化矽為模板.............................. 51 3.5.3 以具有六角堆積結構的氧化矽為模板........................ 52 第四章以混摻型高分子做為模板製備中孔洞氧化矽材料與碳材........ 53 4.1 研究動機與目的............................................ 53 4.2 實驗結果與討論—以高分子混摻製備氧化矽材料................ 54 4.2.1 酚醛樹脂含量對氧化矽孔洞材料性質之影響.................. 55 4.2.2 水熱反應對高分子混摻法之影響............................ 57 4.2.3 氧化矽中空球體之探討.................................... 59 4.2.4 熟化時間(aging time)之探討.............................. 62 4.3 實驗結果與討論—以高分子混摻製備碳材...................... 64 4.3.1 以高分子混摻所合成的碳材之結構與形態.................... 64 4.3.2 水熱反應的合成碳材影響...................................65 4.3.3 添加不同樹脂量的影響.................................... 67 4.3.4 調控不同pH值對產物的影響................................ 68 4.3.5 以簡易方法合成出不同孔徑的碳材.......................... 70 第五章以明膠(Gelatin)為模板合成中孔洞氧化矽材料與碳材......... 73 5.1 研究動機與目的............................................ 73 5.2 研究結果與討論............................................ 74 5.2.1 以明膠為模板合成中孔洞氧化矽之結構與特性................ 74 5.2.2 以開放系統之含浸法合成中孔洞碳材........................ 77 5.2.3 以密閉系統之含浸法合成中孔洞碳材.........................79 5.2.4 以Gelatin-PF樹脂混摻體為模板合成中孔洞碳材.............. 81 第六章結論.................................................... 85 參考資料...................................................... 87

    1. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
    2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992,359, 710.
    3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    4. A. Sayari, Chem. Mater., 1996, 8, 1840.
    5. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
    6. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
    7. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
    8. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
    9. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
    10. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
    11. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
    12. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
    13. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
    (b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
    14. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
    15. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun. 1995, 1617.
    16. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    17. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    18. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    19. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    20. T. Kyotani, Carbon 2000, 38, 269.
    21. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin ,I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
    22. Solovyov L. A.; Zaikovskii V. I.; Shmakov A. N.; Belousov O. V.; Ryoo R., J. Phys. Chem. B 2002, 106, 12198-12202.
    23. Kruk M.; Jaroniec M.; Kim T.-W.; Ryoo R. Chem. Mater. 2003, 15, 2815-2823.
    24. Lee J.; Han S. ; Hyeon T. J. Mater. Chem. 2004, 14, 478-486.
    25. Jun S.; Joo S. H.; Ryoo R.; kruk M.; Jaroniec M.; Liu Z.; Ohsuna T.; Terasaki O. J. Am. Chem. Soc. 2002, 122, 10712-10713
    26. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9, 609.
    27. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    28. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    29. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
    30. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
    31. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
    32. T. Kyotani, Carbon 2000, 38, 269.
    33. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
    34. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
    35. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
    36. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
    37. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
    38. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
    39. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004, 16, 1756-1762.
    40. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem., 2003, 115 , 3254.
    41. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 2002, 12, 3533.
    42. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15, 1385.
    43. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
    44. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
    45. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
    46. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8, 1147.
    47. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
    48. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
    49. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc., 2001, 123, 5014.
    50. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
    51. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. , 2002, 14, 1144.
    52. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
    53. Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin. J. Phys. Chem. B., 2001, 105, 7963
    54. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey. Chem. Mater., 2002, 12, 2448.
    55. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15, 2161.
    56. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 , 951.
    57. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. , 2000, 48, 289.
    58. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
    59. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
    60. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
    61. Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application; Wilcox, Sr., D. L., Berg, M., Bernat, T., Kellerman, D., Cochran, J. K., Jr., Eds.; MRS Proceedings, Vol. 372; Materials Research Society: Pittsburgh, PA, 1995.
    62. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
    63. Jiang, P.; Bertone, J. F.; Colvin, V. L. Science 2001, 291, 453.
    64. Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028-2029.
    65. Huo, Q. S.; Feng, J. L.; Schuth, F.; Stucky, G. D. Chem. Mater.1997, 9, 14-17.
    66. Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J. Nature 1999, 398, 223-226.
    67. Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649-652.
    68. S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
    69. N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
    70. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed., 2002, 41, 1543 .
    71. T. F. Todros, Surfactants, Academic Press : London, 1984.
    72. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    73. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
    74. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
    75. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    76. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301
    77. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3
    78. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky,H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
    79. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
    80. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
    81. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
    82. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677.
    83. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
    84. R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki, manuscript in preparation.
    85. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
    86. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc.1998, 120, 6024.
    87. J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G. D. Stucky, J. Y.Ying, Langmuir 2000, 16, 8219.
    88. Kim, T.-W.; Ryoo, R.; Kruk, M.; Gierszal, K. P.; Jaroniec, M.; Kamiya, S.; Terasaki, O.,J. Phys. Chem. B. 2004, 108(31), 11480-11489.
    89. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater. 2000,12, 1961.
    90. Impe´ror-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925.
    91. Galarneau, A.; Cambon, H.; Di Renzo, F.; Fajula, F. Langmuir 2001, 17, 8328.
    92. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schuth, F. Chem. Mater. 2003; 15(20); 3739-3741.
    93. K. Holmberg, B. Jonsson, B. Kronberg and B. Lindman, Surfactants and Polymers in Aqueous Solution, Wiley press, England, 2002
    94. Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.
    95. Solovyov, L. A.; Kim, T.-W.; Kleitz, F. ;Terasaki, O. ;Ryoo R. Chem. Mater. 2004, 16, 2274-2281
    96. Bandosz, T. J.; Jagiello, J.; Putyera, K.; Schwarz, J. A. Chem. Mater. 1996, 8, 2023.
    97. Kyotani, T.; Tsai, L.-f.; Tomita, A. Chem. Mater. 1996, 8, 2109.
    98. Che, G.; Lakshimi, B. B.; Martin, C. R.; Fisher, E. R.; Ruoff, R. S. Chem. Mater. 1998, 10, 260
    99. Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A. Chem. Mater. 1997, 9, 609.
    100. Johnson, S. A.; Brigham, E. S.; Ollivier, P. J.; Mallouk, T. E. Chem. Mater. 1997, 9, 2448.
    101. Rodriguez-Mirasol, J.; Cordero, T.; Radovic, L. R.; Rodriguez, J. J. Chem. Mater. 1998, 10, 550.
    102. Lee J.-S.; Joo S. H.;Ryoo R. J. AM. CHEM. SOC. 2002 124, 1156
    103. Kim J.Y.;Yoon S. B.;Yu J.-S. Chem. Mater. 2003, 15, 1932-1934
    104. J. Pang, X. Li, D. Wang, Z. Wu, V. T. John, Z. Yang, and Y. Lu, Adv. Mater. 2004, 16, No. 11, 884.
    105. Kim T.-W.;Park I.-S.;Ryoo R. Angew. Chem. 2003, 115, 4511–4515

    下載圖示 校內:2007-07-21公開
    校外:2007-07-21公開
    QR CODE