簡易檢索 / 詳目顯示

研究生: 江昱緯
Chiang, Yu-Wei
論文名稱: 探討小光斑與能量密度之二極體雷射系統 應用於除毛的可行性
Investigate Effects of Small Spot Size & Fluence on Hair Removal Using Diode Laser System
指導教授: 鍾高基
Chung, Kao-Chi
曾盛豪
Tseng, Cheng-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 除毛小光斑熱傷害二極體雷射蘭嶼豬
外文關鍵詞: Hair Removal, Small Spot, Heat Injury, Diode Laser, Lanyu Pig
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來科技的進步也帶動了醫學美容發展,而除毛雷射更是目前雷射
    應用中最常被應用的項目。但市面上的除毛雷射系統,多數以高能量較大
    光斑(直徑6~18 mm)進行除毛治療,雖然可縮短除毛療程所需的時間,但
    對於毛囊週邊組織的熱傷害具有較高的發生率。使得復原的時間拉長,治
    療時也較具疼痛感。本研究的目的為探討直徑1mm小光斑與能量密度(20、
    30、40 J/cm2 ) 之二極體雷射系統應用於除毛的可行性。
    本研究特定目標:(1)蒙地卡羅模擬光子於組織內部的能量分佈;(2) 小
    光斑二極體雷射除毛系統雛型設計;(3)應用動物皮膚組織實驗驗證系統於
    除毛的可行性。先運用蒙地卡羅法模擬不同雷射光斑大小在組織間的能量
    分佈,考量小光斑雷射除毛的臨床需求與功能設計,並進行小光斑二極體
    雷射除毛系統雛型系統設計及校正,最後以蘭嶼豬為動物模型,將耳翼、
    頸部腹面部、前肢內側、前肢外側、腹部、後肢鼠蹊外側等部位建立資料
    庫,並找出與人相近的部位,以直徑1 mm 小光斑與20、30、40 J/cm2 能
    量密度於蘭嶼豬皮膚3cm × 3cm 標記範圍內,針對單一毛孔進行雷射,以
    切片染色觀察毛囊形態學的影響,評估小光斑雷射應用於除毛的可行性。
    結果顯示:(1) 不同光斑的大小進入表皮層的能量衰減均相同,光斑面積
    大小並不影響能量的穿透率,在表皮層下2.25mm 處時穿透率皆約為入射
    能量的0.87%;(2) 完成小光斑二極體雷射除毛系統雛型,可達到1.5×1.5cm
    毛孔辨識偵測範圍,達到1mm 小光斑飛點掃描之功能;(3) 部位選用實驗
    發現蘭嶼豬耳翼皮膚部位的毛囊、汗腺、皮脂腺較具完整性,表皮與真皮
    層比例約1:12 與人類最相近,適合進行雷射除毛實驗;(4) 小光斑二極體
    雷射除毛動物實驗發現於能量密度30J/cm2 小光斑雷射照射的耳翼皮膚,
    切片下可見,表皮層結構、細胞型態完整,毛根處黑色素細胞有部分燒灼
    壞死,毛髮皮質破壞,毛囊內、外根鞘可見部分融解,顯見當雷射能量高
    於30J/cm2 可達到毛囊破壞之效果驗證小光斑雷射系統於除毛的可行性。
    本研究未來可改進及持續研究的項目:(1)持續針對1.5、2mm 光斑直
    徑參數進行動物實驗並找出合適雷射除毛參數,並建立皮膚膚色及部位資
    料庫,提高影像辨識度;(2)可針對毛囊破壞程度判讀加入科學量化評分。

    In recent years, the improvment of science and technology promote
    Medicine cosmetology, and laser hair removal is often much more used.In
    order to achieve the efficacy of Laser hair removal, laser system usually adopt
    a large spot (Diameter 6~18 mm) for treatment. Although the treatment time
    could be reduced, big spot will cause unnecessary tissue thermal injury near
    hair follicle. The purpose of this research is to investigate small spot size on
    hair removal (Diameter 1、mm) and Fluence (20、30、40 J/cm2). This research
    utilizes animal testing (Lanyu pig) to probe the feasibility of hair removal by
    small spot size and laser diode system.
    The specific purposes of this research is : (A) Using Monte Carlo photons
    to simulate energy distribution within the tissue. (B) To design the prototype of
    small spot size laser diode system. (C) Design the animal test on Lanyu pig.
    First we use Monte Carlo to simulate different spot size laser energy
    distribution between tissues. Then we design and calibrate the small-spot diode
    laser hair removal system prototype system according to clinical needs.Finally,
    using the Lanyu pig as animal model, a database was created to identify parts
    that are close to human’s. The parts include: the leading edge of the ears, the
    side of right neck, the interior of forelimb, forelimb lateral, abdomen and groin
    of limbs outside. Laser with 1 mm diameter small spot and 20,30,40 J/cm2
    energy density is used to illuminate single pores within a 3cm × 3cm marked
    area on the skin. After treatment, we biopsy skin tissues Within the marked area,
    and stain the hair follicle to observe it’s morphology, And estimate the
    feasibility of hair removal using small spot laser system.
    The results showed that: (1) The different spot size of the energy
    attenuation into the epidermis are the same. The spot size does not affect the
    energy penetration, and the incident energy under 2.25mm of the epidermis
    penetration are about 0.87%; (2) Completing the small spot diode laser hair
    removal system prototype can reach the detection of pores identify in the range
    of 1.5 × 1.5cm, and achieve the function of scanning the small spot in the size
    of 1mm ; (3) The experiments of selecting sites on Lanyu pig’s surface of
    III
    itsear skin has found in the hair follicles, sweat glands, and sebaceous glands
    are more integral. The ratio of epidermis and dermis is about 1:12 is the most
    similar to humans, and suitable for laser hair removal experiment; (4)
    Small spot diode laser hair removal in animal experiments irradiated ear skin
    by biopsy .The results show that when conditions are within 1 mm spot size,
    fluence 30 J/cm2, we can find out the structure of the cuticular layer and cell
    form is unbroken, some root of melanocytes with necrosis, the damage of crinal
    cortex, and part melt of the hair follicles and outer root sheath. Therefore, it
    proves that there is the feasibility of a new treatment of laser hair removal
    when the laser energy is higher than 30 J/cm2.
    In this study, future research can improve and sustain the project:(1)
    continue searching for appropriate animal hair removal laser parameters hair
    removal parameters using 1.5,2 mm diameter spot sizes and establish database
    for skin surface color and location to improve the image recognizing system;(2)
    scientifically quantitative the damage of hair follicle.

    中文摘要..................................................................................................Ⅰ Abstract...................................................................................................Ⅱ 誌謝..........................................................................................................Ⅲ 目錄..........................................................................................................Ⅳ 表目錄......................................................................................................Ⅵ 圖目錄......................................................................................................Ⅶ 第一章 緒論....................................................................................................1 1.1 雷射與醫學美容簡介..............................................................................1 1.1.1 雷射於醫學美容的應用..........................................................3 1.1.2 光與生物組織間的交互作用原理.............................................4 1.1.3 雷射的原理特性與參數變量.................................................12 1.2 雷射除毛的生理機制........................................................................18 1.2.1 皮膚與毛髮的功能性解剖及生理機轉...................................18 1.2.2 雷射除毛的機制.....................................................................24 1.2.3 雷射除毛臨床上的應用與文獻回顧.....................................25 1.3 蒙地卡羅模擬光進入組織間的交互作用........................................28 1.3.1 蒙地卡羅法概述....................................................................28 1.3.2 蒙地卡羅模擬光進入多層組織間的光子追跡......................29 1.3.3 光斑大小及能量在組織間能量衰減之文獻回顧...................35 1.4 研究動機與目的....................................................................................37 第二章 材料與方法.....................................................................................39 2.1 小光斑二極體雷射除毛系統設計........................................................40 2.1.1 蒙地卡羅模擬光斑大小於組織間光子能量分佈...................40 2.1.2 小光斑除毛臨床需求與功能性設計....................................43 2.1.3 小光斑二極體雷射除毛系統雛型設計...................................44 2.1.4 小光斑二極體雷射除毛系統雛型校正..................................63 VI 2.2 小光斑二極體雷射除毛動物實驗..................................................74 2.2.1 動物模型選用................................................................75 2.2.2 儀器設備.....................................................................77 2.2.3 實驗設計與實驗流程.....................................................80 2.2.4 資料分析........................................................................87 第三章 結果與討論.....................................................................................88 3.1 蒙地卡羅模擬光斑大小於組織間光子能量分佈............................88 3.2 小光斑二極體雷射除毛系統雛型....................................................90 3.3 小光斑二極體雷射除毛動物實驗結果............................................100 第四章 結論與未來展望..........................................................................109 參考文獻........................................................................................................111 附錄.....................................................................................................................115

    [1]. 美國整形美容外科協會(ASAPS)
    [2]. G.B. Altshuler, PhD, R.R. Anderson, MD, D. Manstein, MD, H.H. Zenzie,
    MS, and M.Z. Smirnov, PhD Extended Theory of Selective
    Photothermolysis Lasers in Surgery and Medicine 29, 2001
    [3]. 行政院國家科學委員會光電小組雷射醫學-原理及臨床應用;行政院
    國家科學委員會 2001
    [4]. Leon Goldman, MD; Donald J. Blaney, MD, PhD; Alan Freemond, MD
    The Biomedical Aspects of Lasers JAMA. Vol. 188(3) : 302-306,1964
    [5]. 李希敏 醫學美容市場發展趨勢與商機探討-儀器設備;工研院IEK, 2005
    [6]. 黃彥臻 2009~10 醫療器材產業年鑑;工研院產經與趨勢研究中心, 2009
    [7]. The Oregon Medical Laser Center (OMLC)
    [8]. Anderson RR, Parrish JA. Selective photothermolysis : Precise
    microsurgery by selective absorption of pulsed radiation. Science; Vol.
    220:524–527, 1983
    [9]. Markolf H. Niemz Laser-Tissue Interactions: Fundamentals and
    Applications. Third Edition, Springer-Verlag, 2007
    [10]. B.C. Wilson, G Adam A Monte Carlo model for the absorption and flux
    distributions of light in tissue. Medical Physics; Vol.10 (6): 824-830, 1983
    [11]. Phil Harrington Physics for Chiropractors, Part 3:Can Laser Therapy
    Damage Tissue? Dynamic Chiropractic Vol. 28(1). January 1, 2010,
    [12]. Dieter Manstein,G. Scott Herron,R. Kehl Sink,Heather Tanner,R. Rox
    Anderson Fractional Photothermolysis: A New Concept for Cutaneous
    Remodeling Using Microscopic Patterns of Thermal Injury Lasers in
    Surgery and Medicine; Vol.34:426–438, 2004
    [13]. 盧廷昌、王興宗半導體雷射導論;五南圖書出版公司 2008
    [14]. 台大皮膚科部實用皮膚醫學-第二版 ; 國立台灣大學醫學院 2006
    [15]. 許士昌 解剖生理學; 永大書局有限公司 2009
    [16]. 楊燕文 毛囊再生能力及其影響因素中國美容醫學; Vol.15(12):
    1415-1419, 2006
    104
    [17]. George Cotsarelis, Tung-Tien Sun, Robert M. Lavker Label-retaining
    cells reside in the bulge area of pilosebaceous unit: Implications for
    follicular stem cells, hair cycle, and skin carcinogenesis Cell; Vol. 61(7):
    1329-1337, 1990
    [18]. Mark P. Solomon Hair removal using the long-pulsed ruby laser Annals
    and Plastic Surgery; Vol.41(1) ,1998
    [19]. Melanie C. Grossman, Christine Dierickx, William Farinelli, Thomas
    Flotte, R.Rox Anderson Damage to hair follicles by normal-mode ruby
    laser pulses Journal of the American Academy of Dermatology; Vol.35(6):
    889-894, 1996
    [20]. Christine C. Dierickx, Melanie C. Grossman, William A. Farinelli, R. Rox
    Anderson Permanent Hair Removal by Normal-Mode Ruby Laser ARCH
    DERMATOL; Vol. 134: 837-842, 1998
    [21]. K. P. Allison, M. N. Kiernan, R. A. Waters, R. M. Clement Evaluation of
    the ruby 694 Chromos for hair removal in various skin sites Lasers in
    Medical Science; Vol. 18:165–170, 2003
    [22]. Christopher A. Nanni, Tina S. Alster Long-Pulsed Alexandrite
    Laser-Assisted Hair Removal at 5, 10, and 20 Millisecond Pulse
    Durations‘ Lasers in Surgery and Medicine; Vol. 24:332–337, 1999
    [23]. Soner Tatlidede, Onur Egemen, Aysegul Saltat, Gursel Turgut, Aysin
    Karasoy, Ismail Kuran Hair Removal With The Long-Pulse Alexandrite
    Laser AESTHETIC SURGERY JOURNAL; Vol. 25:138-143, 2005
    [24]. C Handrick, TS Alster Comparison of long-pulsed diode and
    long-pulsed alexandrite lasers for hair removal: a long-term clinical and
    histologic study Dermatologic Surgery; Vol. 27:622-626, 2001
    [25]. Eli Janne Fiskerstrand, Lars O. Svaasand, J. Stuart Nelson Hair Removal
    With Long Pulsed Diode Lasers: A Comparison Between Two Systems
    With Different Pulse Structures Lasers in Surgery and Medicine
    Vol.32:399–404, 2003
    [26]. Valeria B. Campos, Christine C. Dierickx, William A. Farinelli, Tai-Yuan
    D. Lin, Woraphong Manuskiatti, R. Rox Anderson Hair removal with an
    105
    800-nm pulsed diode laser Journal of the American Academy of
    Dermatology; Vol. 43:442-447, 2000
    [27]. Wendy W. Lou, Adelle T. Quintana, Roy G. Geronemus, Melanie C.
    Grossman Prospective Study of Hair Reduction by Diode Laser (800 nm)
    with Long-Term Follow-Up Dermatologic Surgery; Vol. 26:428–432, 2000
    [28]. R Rox Anderson, Randall J Margolis, Shinichi Watenabe, Thomas Flotte,
    George J Hruza and Jeffrey S Dover Selective photothermolysis of
    cutaneous pigmentation by Qswitched Nd YAG laser pulses at 1064 532
    and 355 nm Journal of Investigative Dermatology Vol. 93:28–32, 1989
    [29]. Tai-Yuan David Lin, Woraphong Manuskiatti, Christine C Dierickx,
    William A Farinelli, Marnie E Fisher, Thomas Flotte, Howard P Baden and
    R Rox Anderson Hair growth cycle affects hair follicle destruction by
    ruby laser pulses. Journal of Investigative Dermatology Vol.111: 107–113,
    1998
    [30]. Rogachefsky AS, Silapunt S, Goldberg DJ. Evaluation of a new
    super-long-pulsed 810 nm diode laser for the removal of unwanted hair:
    the concept of thermal damage time Dermatol Surg. Vol.28(5): 410-413.
    May, 2002
    [31]. B. C. Wilson, G. Adam A Monte Carlo model for the absorption and flux
    distributions of light in tissue Medical Physics; Vol.10(6):824-830, 1983
    [32]. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch A Monte Carlo Model
    of Light Propagation in Tissue Dosimetry of Laser Radiation in Medicine
    and Biology; SPIE Institute Series Vol. 5:102-111, 1989
    [33]. KURT G. KLAVUHN, PHD Illumination Geometry: The Importance of
    Laser Beam Spatial Characteristics Research Scientist, Lumenis Inc.,
    Pleasanton, California
    [34]. 曾士育探討雷射光斑的大小對穿透皮膚組織後能量衰減之影響國立
    成功大學醫學工程研究所 ,2010
    [35]. Karl Pope, Candela Corporation Comparative Monte Carlo Examination
    of Energy Penetration for Different Hair Removal Lasers Clinical pdate
    January, 2000
    106
    [36]. Lihong Wang, Steven L. Jacques, Liqiong Zheng Monte Carlo
    Modeling of Light Transport in Multi-layered Tissues in Standard C
    Computer Methods and Programs in Biomedicine Volume 47(2), Pages
    131-146 , July 1995
    [37]. Michael H. Gold Lasers and light sources for the removal of unwanted
    hair Clinics in Dermatology; Vol.25:443–453, 2007
    [38]. TORY P. SULLIVAN, MD; WILLIAM H. EAGLSTEIN, MD;
    STEPHEN C. DAVIS, BS; PATRICIA MERTZ, BA The pig as a model
    for human wound healing Wound Repair and Regeneration Vol. 9(2),
    pages 66–76, March-April, 2001
    [39]. N. J. VARDAXIS1, T. A. BRANS2, M. E. BOON3, R.W. KREIS1 AND
    L.M. MARRES3 Confocal laser scanning microscopy of porcine
    skin:Implications for human wound healing studies J. Anat. Vol.190,
    p.601-611,1997
    [40]. M. Mowafy and R. G. Cassens Microscopic structure of pig skin J
    ANIM SCI November vol. 41(5) 1281-1290 ,1975
    [41]. S. A. J. WATSON AND G. P. M. MOORE Postnatal development of
    the hair cycle in the domestic pig J. Anat. Vol.170, p. 1-9,1990
    [42]. 曾東,余文林,畢媛,楊傳紅,賴晃文,胡志奇,激光脫毛動物模型的建立南
    方醫科大學 Vol.29(4): p. 697-700 , 2009
    [43].Tina S. Alster, MD; Holly Bryan, BS; Carmen M. Williams, MD
    Long-Pulsed Nd:YAG Laser-Assisted Hair Removal in Pigmented Skin A
    Clinical and Histological Evaluation Arch Dermatol. Vol.137: 885-889.,
    2001;
    [44]. Campos VB, Dierickx C.C., Farinelli WA, Lin TY, Manuskiatti W,
    Anderson RR. Hair removal with an 800-nm pulsed diode laser. J Am
    Acad Dermatol.; Volume 43(3):442-447. Sep. ,2000.
    [45]. Rogachefsky AS , Silapunt S , Goldberg DJ. Evaluation of a new
    super-long-pulsed 810 nm diode laser for the removal of unwanted hair:
    the concept of thermal damage time. Dermatol Surg.; Volume 28(5):
    410-414. May , 2002

    下載圖示 校內:2016-08-23公開
    校外:立即公開
    QR CODE