| 研究生: |
郭凡煒 Kuo, Fan-Wei |
|---|---|
| 論文名稱: |
地球化學對地層結垢之分析及清水場址之初步應用 Analysis of geochemistry on scaling formation with a preliminary application to Chingshuei site |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 地熱發電 、結垢 、TOUGHREACT 數值軟體 、清水地熱 |
| 外文關鍵詞: | Geothermal energy, scaling, TOUGHREACT, Chingshuei |
| 相關次數: | 點閱:113 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自工業化以來,大量石化燃料的使用造成全球溫度上升。為了避免全球暖化造成的危害,再生能源的發展是可行的。地熱能相對於其他再生能源的優點有穩定不受天氣影響、安全性、低成本及高附加價值。全球超過82個國家使用地熱能發電。地熱發電最常遇見的問題是結垢和腐蝕。清水發電廠是台灣第一座地熱能發電廠,因為結垢問題只營運約12年。本研究使用TOUGHREACT建構數值模型模擬結垢現象並呈現生產井如何被影響。假設案例用於分析地球化學濃度和生產率對模型的敏感度。結果顯示孔隙率阻塞對地球化學濃度比生產率較為敏感。本研究將清水的修井資料應用於現地情況模擬。結果顯示經過12年後,井孔外的儲藏層孔隙率從0.1下降到0.07,生產率從每秒21.3公斤下降到每秒7.65公斤,井的生產能損失約64%。
Global surface temperature is increasing in recent decades because of the large amount of CO2 emissions produced by using fossil fuels. To prevent the serious consequence of global warming, the development of renewable energy generation is practical. The advantages of geothermal energy are better than others renewable energy including stability, safety, low-cost and diversified value-added. The common problems in geothermal utilization are scaling or corrosion. Chingshuei, Taiwan first geothermal power plant, encountered the scaling problem and only operated 12 years. In this study, a numerical model is constructed using TOUGHREACT to study the scaling process and demonstrate how well production is influenced. A hypothetical case is designed to explore the sensitivity of geochemistry and production rate on scaling. Scaling is found to be more sensitive to the geochemistry than to the production rates. In addition, the geochemistry data from the Chingshuei site is used to simulate the field case. For the Cingshuei site modeling, as the porosity decreases from 0.1 to 0.07, the production rate changes from 21.3 kg/s to 7.65 kg/s. The ability of well production losses 64%.
1. Andritsos, N., P. Ungemach, P. Koutsoukos, 2010, Corrosion and Scaling, Book.
2. Atkinson, G., M. Mecik, 1997, The chemistry of scale prediction, Journal of petroleum science and engineering, 17, 113-121.
3. Benderitter, Y., G. Cormy, 1990, Possible approach to geothermal research and relative costs, Small Geothermal Resources: A Guide to Development and Utilization, UNITAR, New York, 59-69.
4. Berkowitz, B., I. Dror, S.K. Hansen, H. Scher, 2016, Measurements and models of reactive transport in geologic media, Reviews of Geophysics, 54(4), 930-986.
5. BinMerdhah, A.B., A.A.M. Yassin, M.A. Muherei, 2010, Laboratory and prediction of barium sulfate scaling at high-barium formation water, Journal of Petroleum Science and Engineering, 70(1), 79-88.
6. Brown, K., Mineral scaling in geothermal power production, United Nations University, 2013.
7. Chen, Liu, 2013, Development of geothermal potential in Taiwan, Journal of Taiwan Energy, 1(1), 85-103.
8. Cherng, F.P, 1979, Geochemistry of the geothermal fields in the slate terrane, Geothermal Resources Council Transactions, 3, 107-111
9. Chiang, S. C., J.J. Lin, C.R. Chang, T.M. Wu, 1979, A preliminary study of the Chingshuei geothermal area, Ilan, Taiwan, In Proceeding of the 5th Geothermal Reservoir Engineering Workshop, Standford University, Standford California, 249-254.
10. Clearwater, E., Jr. Seastres, J.J. Newson, G. Mulusa, 2015, Modeling of Scaling in a Tauhara production well, Proceedings World Geothermal Congress.
11. Dobson, P.F., S. Salah, N. Spycher, E.L. Sonnenthal, 2004, Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT, Geothermics, 33, 493-502.
12. Ellabban, O., H. Abu-Rub, F. Blabjerg, 2014, Renewable energy resources: Current status, future prospects and their enabling technology, Renewable and Sustainable Energy Reviews, 39, 748-764.
13. Gunnlaugsson, E., H. Armannson, S. Thorhallsson, B. Steingrimsson, 2014, Problems in geothermal operation-scaling and corrosion, Geothermal Training Program, United Nations University, 1-18.
14. Huang, S.T, K.C. Chuang, J.W. Yuan, 1986, Research on Hot Water Altered Minerals and Heat Flow System in Qingshui Geothermal Area, Petroleum Engineering, 27, 181-210
15. Karig, D.E., 1971, Origin and development of marginal basins in the western pacific, Journal of geophysical research, 76(11).
16. Kovac, K.M., T. Xu, K. Pruess, M.C. Adams, 2006, Reactive chemical flow modeling applied to the injection in the COSO EGS experiment, Thirty-First Workshop on Geothermal Reservoir Engineering, Standford University, Standford, California.
17. Lee, B.H., L.L. Ling, K. Zhang, Y. Wang, T.R. Guo, C.H. Liu, S. Ouyang, 2013, Study on numerical model for geothermal reservoir and production simulation in Chingshuei, Yilan, Taiwan mining, 65(4), 1-12.
18. Lee, C.R, C.F. Lee, W.T. Cheng, 1980, Application of roving bipole-dipole mapping method to the Chingshuei geothermal area, Taiwan, Geothermal Resources Council Transactions, 4, 73-76.
19. Lund, J.W., T.L. Boyd, 2016, Direct utilization of geothermal energy 2015 worldwide review, Geothermics, 60, 66-93.
20. Merkel, B.J., B. Planer-Friedrich, D.K. Nordstrom, 2005, Groundwater Geochemistry, A practical guide to modeling of natural and contaminated aquatic systems, 2.
21. Mining research institute of industrial technology research institute, Taiwan geothermal resources exploration work report No.5, 47, 1980
22. Montalvo, F., T. Xu, K. Pruess, 2005, TOUGHREACT code applications to problems of reactive chemistry in geothermal production-injection wells. First exploratory model for Ahuachapan and Berlin geothermal fields, Proceedings World Geothermal Congress, Antalya, Turkey.
23. Narasimhan, T.N., P.A. Witherspoon, 1976, An integrated finite difference method for analyzing fluid flow in porous media, Water Resources Research, 12(1), 57-64.
24. Pereira, V.V., 2014, Calcium carbonate scaling control in geothermal well PV8 in SAO Miguel, Azores, combining chemical inhibition and mechanical reaming, Reports 2014, 33.
25. Pruess, K., C.M. Oldenburg, G.J. Moridis, 1999, TOUGH2 user’s guide version 2, Lawrence Berkeley National Lab.
26. Quinao, J.J., E. Buscarlet, F. Siega, 2017, Early identification and management of calcite deposition in the Ngatamariki geothermal field, New Zealand, Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford University, 9.
27. Satman, A., Z. Ugur, M. Onur, 1999, The effect of calcite deposition on geothermal well inflow performance, Geothermics, 28, 425-444.
28. Seol, Y., K.K. Lee, 2007, Application of TOUGHREACT to performance evaluations of geothermal heat pump systems, Geosciences Journal, 11(1), 83-91.
29. Song, S.R., W. Luo, E.Z. Ye, Y.M. Wu, C.G. Liu, Z.S. Chen, B.Y. Zhang, 2011, Yilan Qingshui Geothermal Energy Research: Establishment of Exploration Technology Platform and Deep Geothermal, National Sceience Council.
30. Steefel, C. I., C.A.J. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz, V. Lagneau, P.C. Lichtner, K.U. Mayer, J.C.L. Meeussen, S. Molins, D. Moulton, H. Shao, J. ˇSim°unek, N. Spycher, S.B. Yabusaki, G. T. Yeh, 2015, Reactive transport codes for subsurface environmental simulation, Computational Geoscience, 19(3), 445-478.
31. Steefel, C.I., K.T. MacQuarrie, 1996, Approaches to modeling of reactive transport in porous media, Reviews in Mineralogy and Geochemistry, 34(1), 85-129.
32. Su, F.C. 1978, Resistivity survey in the Chingshuei prospect, I-lan, Taiwan, Petroleum Geology of Taiwan, 15, 255-264.
33. Tseng, C.S, Geology and geothermal occurrence of the Chingshuei and Tuchang districts, Ilan, Petroleum Geology of Taiwan, 15, 11-23.
34. Vetter, O., V. Kandarpa, 1980, Prediction of CaCO3 scale under downhole conditions, SPE Oilfield and Geothermal Chemistry Symposium, Society of Petroleum Engineers.
35. Wang, Y., S. Liu, Q. Bian, B. Yan, X. Liu, J. Liu, H. Wang, X. Bu, 2015, Scaling analysis of geothermal well from Ganzi and countermeasures for anti-scale, Advances in New and Renewable Energy, 3-3, 202-206.
36. Wangen, M., J. Sagen, T. Bjornstad, H. Johansen, A. Souche, 2016, Models for calcium carbonate precipitation in the near-well zone by degassing of CO2, The Open Petroleum Engineering Journal, 9, 178-194.
37. Wolery, T.J., 1992, EQ3/6, a software package for geochemical modeling of aqueous systems: package overview and installation guide (version7.0).
38. Xu, T., E. Sonnenthal and G. Bodvarsson, 2003, A reaction-transport model for calcite precipitation and evaluation of infiltration-percolation fluxes in unsaturated fractured rock, Jounal of contaminant hydrology, 64, 113-127.
39. Xu, T., E. Sonnenthal, N. Spycher, K. Pruess, 2006, TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Computers & geosciences, 32, 2, 145-165.
40. Xu, T., J.A. Apps and K. Pruess, 2003, Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations, Journal of Geophysical Research: Solid Earth, 108 (B2).
41. Yeh, G.T., V.S. Tripathi, 1991, A model for simulating transport of reactive multispecies components: model development and demonstration, Water Resources Research, 27(12), 3075-3094.
42. Zhu, R., 2008, Geothermal power generation, Source magazine, 71, 4-13.