| 研究生: |
李鼎燊 Li, Ting-Shen |
|---|---|
| 論文名稱: |
從電偶極化及結構變遷觀點來研究水分子對於鋅量子點氧化的影響 Studying the influence of water molecules on oxidation of Zn dots with the viewpoint of electrical dipoles and structural evolution |
| 指導教授: |
羅光耀
Lo, Kuang-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 鋅/氧化鋅奈米顆粒 、退火氧化 、二次諧波產生(SHG) |
| 外文關鍵詞: | Zn/ZnO nanodots, Annealing oxidation, Second harmonic generation (SHG) |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米金屬點有很高的表體比例,很適合來觀察與氣體反應的現象。由於實驗過程皆在具有氣體的環境下進行,因此無法利用電子束當作偵測方式。而螢光光譜或是拉曼光譜則是因為單層或是物理吸附等條件無法提供對應的訊號。而利用反射式二次諧波來分析奈米金屬點與氣體反應時電偶極矩的改變,我們可以解析出細微的動態變化以及觀察金屬點的完整氧化過程。在此研究中,我們會呈現兩種奈米鋅顆粒的氧化過程,其中腔體內氧化會確保在真空下進行,且會經歷化學吸附並詮釋氧化層建立前的過程。而退火通氧氧化因鋅顆粒有接觸大氣,必須考慮環境濕度(水氣)對其的影響,最後觀察完整氧化的行為。這一個工作是建立在本實驗室具有特色的受局限奈米鋅顆粒在 Si(111) 上的樣本製作與量測方式,同時透過反射式二次諧波及光學量測工具分析,在不同的溫度改變下,其氧氣含量改變有助於化學吸附量的改變並影響完整之氧化程度。這一個工作呈現了在不同溫度與氧氣含量下,化學吸附延伸到氧化層建立,最後鋅顆粒完整氧化的變遷過程。
In this work, we first prepare the collective Zn dots which were deposited on Si(111) substrates by magnetron RF sputtering. The fabrication of set up condition was combined with RF power of 100-120W and negative substrate bias of −500 V, and kept the ratio of hydrogen to argon at approximately 18% in the working chamber with the pressure of 1×10−2 torr. H2 reduces ZnO and removes SiO2 in the strategic RF sputtering, which caused enhancement on the diffusion of Zn adatoms. The size distribution of the dots is strongly dependent on the growth conditions and growth time. Furthermore, we present 2 types of oxidation processes on Zn dots, in-situ oxide observation and take out to annealing in oxygen. In-situ find out the immediately dipole change with oxygen fill in the chamber. Afterwards, when talking about the growth Zn dots is taken out from the chamber, we consider how the outward environment humidity will impact on Zn dots. We using second harmonic generation (SHG) to explain the dipole contribution from the Zn dots, additionally, then X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to see the structure evolution and oxide formation. The rest of the setup and operation method of these experiments are described in. Synchrotron XRD and XPS was performed at the 17B1 and 24A1 stations of the National Synchrotron Radiation Research Center in Taiwan.
[1] Zhang, C., Liu, G., Geng, X., Wu, K., & Debliquy, M. (2020). Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review. Sensors and Actuators, A: Physical (Vol. 309).
[2] Degler, D., Weimar, U., & Barsan, N. (2019). Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sensors, 4(9), 2228–2249.
[3] Leonardi, S. G. (2017). Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors (Vol. 5, Issue 2).
[4] Kannan, P. K., Saraswathi, R., & Rayappan, J. B. B. (2010). A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film. Sensors and Actuators, A: Physical, 164(1–2), 8–14.
[5] Zhu, L., & Zeng, W. (2017). Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators, A: Physical (Vol. 267, pp. 242–261). Elsevier B.V.
[6] Galstyan, V., Comini, E., Baratto, C., Faglia, G., & Sberveglieri, G. (2015). Nanostructured ZnO chemical gas sensors. Ceramics International, 41(10PartB), 14239–14244.
[7] Hangarter, C. M., Policastro, S., Martin, F. J., & Keenth .R. Lawless,
The oxidation of metal. Rep, Prog. Phys. 37 231-316 (1974).
[8] Fu, Z., Lin, B., Liao, G., & Wu, Z. (1998). The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates. Journal of Crystal Growth (Vol. 193).
[9] Yuan, L., Wang, C., Cai, R., Wang, Y., & Zhou, G. (2014). Temperature-dependent growth mechanism and microstructure of ZnO nanostructures grown from the thermal oxidation of zinc. Journal of Crystal Growth, 390, 101–108.
[10] Swenson, H., & Stadie, N. P. (2019). Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir.
[11] Tao, J., & Rappe, A. M. (2014). Physical adsorption: Theory of van der Waals interactions between particles and clean surfaces. Physical Review Letters, 112(10).
[12] Fraissard, J. P., & Conner, C. W. (Eds.). (1997). Physical adsorption: experiment, theory, and applications (Vol. 491). Springer Science & Business Media.
[13] Gomri, S., Seguin, J. L., Guerin, J., & Aguir, K. (2006). Adsorption-desorption noise in gas sensors: Modelling using Langmuir and Wolkenstein models for adsorption. Sensors and Actuators, B: Chemical, 114(1), 451–459.
[14] Oxidation-of-Metal-Surfaces. (n.d.).
[15] Turaeva, N., & Krueger, H. (2020). Wolkenstein’s model of size effects in CO oxidation by gold nanoparticles. Catalysts, 10(3).
[16] Rothschild, A., & Komem, Y. (2003). Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors. Sensors and Actuators, B: Chemical, 93(1–3), 362–369.
[17] Yuan, L., Wang, Y., Mema, R., & Zhou, G. (2011). Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Materialia, 59(6), 2491–2500.
[18] Ernst, F. O., Steinfeld, A., & Pratsinis, S. E. (2009). Hydrolysis rate of submicron Zn particles for solar H2 synthesis. International Journal of Hydrogen Energy, 34(3), 1166–1175.
[19] Kumar, R. R., Murugesan, T., Chang, T. W., & Lin, H. N. (2021). Defect controlled adsorption/desorption kinetics of ZnO nanorods for UV-activated NO2 gas sensing at room temperature. Materials Letters, 287.
[20] Chang, F. M., Wu, Z. Z., Huang, J. H., Chen, W. T., Brahma, S., & Lo, K. Y. (2018). Migration energy barriers for the surface and bulk of self-assembly ZnO nanorods. Nanomaterials, 8(10).
[21] Amekura, H., Umeda, N., Sakuma, Y., Plaksin, O. A., Takeda, Y., Kishimoto, N., & Buchal, C. (2006). Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence. Applied Physics Letters, 88(15).
[22] Pardeshi, N. R., Satapara, V., & Patel, H. B. (2021). Zinc Oxide Nanostructures: A Review. International Journal of Research in Engineering and Science (IJRES) ISSN (Vol. 09).
[23] Niskanen, M., Kuisma, M., Cramariuc, O., Golovanov, V., Hukka, T. I., Tkachenko, N., & Rantala, T. T. (2013). Porphyrin adsorbed on the (1010) surface of the wurtzite structure of ZnO-conformation induced effects on the electron transfer characteristics. Physical Chemistry Chemical Physics, 15(40), 17408–17418.
[24] Huang, B. J., Kao, L. C., Brahma, S., Jeng, Y. E., Chiu, S. J., Ku, C. S., & Lo, K. Y. (2017). Epitaxial Zn quantum dots coherently grown on Si(1 1 1): Growth mechanism, nonlinear optical and chemical states analyses. Journal of Physics D: Applied Physics, 50(17).
[25] Chen, G. (2005). Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons.
[26] Herman, W. N., Hayden, L. M., Herman, W. N., & Hayden, L. M. (1995). Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials. In J. Opt. Soc. Am. B (Vol. 12, Issue 3)
[27] Liu, C. C., Huang, J. H., Ku, C. S., Chiu, S. J., Ghatak, J., Brahma, S., Liu, C. W., Liu, C. P., & Lo, K. Y. (2015). Crystal Orientation Dynamics of Collective Zn dots before Preferential Nucleation. Scientific Reports, 5.
[28] Hirayama, H., & Watanabe, K. (1994). Annealing effect on native-oxide/Si(111) interfaces studied by second-harmonic generation. PHYSICAL REVIEW (Vol. 8).
[29] Lebedev, V. (2010). Strain relaxation in highly mismatched hexagonal heterosystems. Journal of Applied Physics, 108(1).
[30] Kao, L. C., Huang, B. J., Zheng, Y. E., Tu, K. T., Chiu, S. J., Ku, C. S., & Lo, K. Y. (2018). Thermal effect of Zn quantum dots grown on Si(111): Competition between relaxation and reconstraint. Nanotechnology, 29(3).
[31] Mahapatra, A. K., Bhatta, U. M., & Som, T. (2012). Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters. Journal of Physics D: Applied Physics, 45(41).
[32] Barsan, N., & Weimar, U. (2001). Conduction Model of Metal Oxide Gas Sensors. Journal of Electroceramics (Vol. 7).
[33] Wang, C. M., Baer, D. R., Thomas, L. E., Amonette, J. E., Antony, J., Qiang, Y., & Duscher, G. (2005). Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 98(9).
[34] Cabrera, N., Mott, N. F., & Wills, H. H. (n.d.). THEORY OF THE OXIDATION OF METALS.
[35] Zhdanov, V. P., & Kasemo, B. (2008). Cabrera-Mott kinetics of oxidation of nm-sized metal particles. Chemical Physics Letters, 452(4–6), 285–288.
[36] Xu, Z., Rosso, K. M., & Bruemmer, S. (2012). Metal oxidation kinetics and the transition from thin to thick films. Physical Chemistry Chemical Physics, 14(42), 14534–14539.
[37] Lin, J. H., Patil, R. A., Devan, R. S., Liu, Z. A., Wang, Y. P., Ho, C. H., Liou, Y., & Ma, Y. R. (2014). Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Scientific Reports, 4.
[38] Chou, H. S., Yang, K. di, Xiao, S. H., Patil, R. A., Lai, C. C., Vincent Yeh, W. C., Ho, C. H., Liou, Y., & Ma, Y. R. (2019). Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures. Nanoscale, 11(28), 13385–13396.
[39] Kumar, S., & Sahare, P. D. (2012). Effects of annealing on the surface defects of zinc oxide nanoparticles. Nano, 7(3).
[40] Moulder, J. F., Stickle, W. F., Sobol, P. E. , Bomben, K. D., & Chastain, J. (1992). Handbook of X-ray Photoelectron Spectroscopy
[41] Sengupta, G., Ahluwalia, H. S., Banerjee, S., & Sen, S. P. (1979). Chemisorption of Water Vapor on Zinc Oxide.
[42] Cai, N., Zhou, G., Müller, K., & Starr, D. E. (2011). Tuning the limiting thickness of a thin oxide layer on Al(111) with oxygen gas pressure. Physical Review Letters, 107(3).
[43] Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., & Mittemeijer, E. J. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics, 92(3), 1649–1656.
[44] Mahapatra, A. K., Bhatta, U. M., & Som, T. (2012). Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters. Journal of Physics D: Applied Physics, 45(41).
[45] Weibel, D., Jovanovic, Z. R., Gálvez, E., & Steinfeld, A. (2014). Mechanism of Zn particle oxidation by H2O and CO2 in the presence of ZnO. Chemistry of Materials, 26(22), 6486–6495.