簡易檢索 / 詳目顯示

研究生: 李仲康
Lee, Chung-kang
論文名稱: 可見光光觸媒InVO4之合成與水分解性質研究
Synthesis, characterization, and photocatalytic properties of InVO4 applied under visible light for water splitting
指導教授: 黃啟祥
Hwang, Chii-shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 光觸媒水熱法水分解InVO4可見光
外文關鍵詞: hydrothermal method, visible light, InVO4, water splitting, photocatalyst
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   InVO4光觸媒粉末在可見光激發下能將水分解為氫氣與氧氣。本研究是以不同的製備方法與製程條件合成 InVO4粉末,檢討其表面性狀與晶體結構對於其在可見光下分解水特性之影響。
      本研究之製程方法為固態法及水熱法。水熱法的製程參數包括起始原料中 V5+:In3+之比例、持溫時間以及PVP界面活性劑的添加量。合成的光觸媒粉末結晶相是以 XRD進行分析;表面性狀是以 SEM及 TEM觀察之;光觸媒特性分別是以 BET、UV-Vis吸收光譜及 FT-IR光譜檢測粉末之比表面積、光觸媒能隙及表面性質;水分解產氫反應所生成之氣體是以 GC及 TCD進行分析。
      水熱法若起始原料中 V5+:In3+之比例不當,會導致 InVO4以外之第二相生成,而在起始原料中添加PVP界面活性劑,可改變粉末之粒徑,提升粉末之比表面積。水熱法所合成之 InVO4光觸媒,較固態法所合成者於可見光長波長範圍有更好的吸收效果。在相同測試條件下,以水熱法合成之 InVO4光觸媒其水分解產氫量較以固態法合成之光觸媒多。適當的 NiO共觸媒擔載量及熱處理條件可提升 InVO4粉末之水分解產氫效率。

    InVO4 photocatalyst can split water into oxygen and hydrogen under visible light irradiation. In this study, InVO4 powders were prepared by different methods and process conditions. The influence of morphology and crystal structures of powders upon the efficiency in water splitting reaction was investigated.
    Solid state method and hydrothermal method were used to prepare InVO4 powders. The process conditions were the ratio of V5+ to In3+ in the raw materials of hydrothermal method, the soaking time, and the additive amount of PVP. The phase of synthesized powders was identified by XRD. The morphology of powders was observed by SEM and TEM. The powders were analyzed by BET, UV-Vis spectroscopy and FT-IR spectroscopy to figure out the performances of specific surface area, energy gap, and surface properties. The gas evolved by water splitting reaction was analyzed by GC and TCD.
    The inadequate ratio of V5+ to In3+ in the raw materials of hydrothermal method resulted in the appearance of the second phase. Adding PVP in the raw materials of hydrothermal method can enhance the specific surface area of InVO4 powders. InVO4 powders prepared by hydrothermal method had better performance in absorbance of long wavelength of visible light than those prepared by solid state method. In the same testing environment of water splitting reaction, the amount of hydrogen evolved by InVO4 powders prepared by hydrothermal method was more than those prepared by solid state method. Appropriate amount of NiO co-catalyst coated on InVO4 powders via suitable heat treatment can elevate the efficiency in water splitting reaction.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………..…………II 誌謝………………………………………………………………….………III 目錄………………………………………………………………….…….…V 表目錄……………………………………………………………….……VIII 圖目錄………………………………………………………………..……IX 第一章 緒論……………………………………………………………1 1-1 前言……………………………………………………………………1 1-2 研究目的………………………………………………………………2 第二章 理論基礎與文獻回顧……………………………………………6 2-1 光觸媒………………………………………………………………6 2-2 光觸媒種類…………………………………………………………6 2-2-1 二氧化鈦光觸媒…………………………………………………7 2-2-2 氧化鋅光觸媒……………………………………………………7 2-2-3 硫化鎘光觸媒……………………………………………………8 2-2-4 鈦酸鍶光觸媒……………………………………………………8 2-2-5 InMO4 (M=Ta5+, Nb5+, V5+)光觸媒…….…………..……………8 2-3 光觸媒分解水之反應機制…………….……………………………9 2-4 共觸媒……….………………………………………………………11 2-5 奈米光觸媒…………………………………………………………11 2-6 InVO4 光觸媒製備方法 I:固態法…………….…..………………12 2-7 InVO4 光觸媒製備方法 II:水熱法…….…………………………12 2-7-1高壓反應釜的反應容積與溫度之關係…………………………12 2-7-2水熱法之優點……………………………………………………13 第三章 實驗方法及步驟…………………………………………………21 3-1 實驗用起始原料……………………………………………………21 3-2 InVO4光觸媒粉末之製備………………………………………22 3-2-1 固態法…………………..………………………………………22 3-2-2 水熱法…………………..………………………………………22 3-2-3 PVP界面活性劑……….………………………………………22 3-2-4 NiO共觸媒…………………………….………………………22 3-3 合成InVO4粉末之命名……………………………………………23 3-4 粉末性質檢測及分析方法……………………….…………………23 3-4-1 結晶相分析………………………….…………………………23 3-4-2 粒子型態觀察……………………….…………………………24 3-4-3 比表面積量測(BET)…….……….…………………………24 3-4-4 紫外光∕可見光光譜分析(UV/Vis spectrum)………………25 3-4-5 拉曼光譜分析(Raman spectrum)……………………………25 3-4-6 傅立葉轉換紅外線吸收光譜分析(FT-IR spectrum)…………26 3-4-7 氣相層析儀及熱傳導偵測器(GC and TCD)…………………26 3-5 光觸媒水分解特性測試……………………………………………27 第四章 結果與討論………………………………………………………33 4-1 粉末結晶相分析……………………………………………………33 4-1-1製備方法 I:固態法………………………………………33 4-1-2製備方法 II:固態法………………………………………33 4-1-3 PVP界面活性劑……………………………………………34 4-1-4繞射峰繞射角度之變化……...………………………………34 4-1-5 結晶粒徑(crystallite size)………………………………34 4-2 粒子型態分析………………………………………………………35 4-3 比表面積分析………………………………………………………35 4-4光譜分析……………………………………………………………36 4-4-1 吸收光譜………………………………………………………36 4-4-2 拉曼光譜………………………………………………………36 4-4-3 傅立葉轉換紅外線吸收光譜…………………………………37 4-5 水分解測試…………………………………………………………37 4-5-1固態法 vs 水熱法……………………………………………37 4-5-2 PVP界面活性劑………………………………………………38 4-5-3 NiO共觸媒………...……………………………………………39 第五章 結論………………………………………………………………66 未來工作……………………………………………………………………67 參考文獻……………………………………………………………………68 自述…….……………………………………………………………………72 表目錄 Table 1-1 The comparison of journal papers about nano-scaled InVO4 in recent years.………………..………………………………..…...3 Table 4-1 Crystalline sizes of InVO4 prepared by solid-state method and hydrothermal method.……………………………………...40 Table 4-2 The ratio of I(112) (InVO4) to I(001) (Na2V6O16) of V3-12h, V3-24h, and V3-48h.....………………….……………………..40 Table 4-3 EDS analysis corresponding to Fig. 4-8, Fig.4-9, and Fig 4-10…………...……………………………………….………..41 Table 4-4 Specific surface area and BET particle sizes of Vss, V2-24h, and V2-24h-PVP0.3………………………………….…………41 Table 4-5 Table 4-5 Amount (mole/g‧cat.) of hydrogen evolved by InVO4 powders in each hour……………...……………………42 Table 4-6 Amount (mole/g‧cat.) of hydrogen evolved by V2-24h-NiO4 powders with 150℃ heat-treated in each hour, tested for its maintainability and recyclability…………………43 圖目錄 Fig. 1-1 The solar spectrum…………………………………………...………4 Fig. 1-2 Absorbance spectra of InTaO4, InNbO4, InVO4 and TiO2………...……………………………………………………5 Fig. 2-1 Band gaps of some semiconducting materials…...…………………14 Fig. 2-2 Schematic structure of InVO4………………………………………15 Fig. 2-3 Band structures of InTaO4, InNbO4, InVO4 and TiO2…………...… 16 Fig. 2-4 Types of photocatalytic reactions……...……………………………17 Fig. 2-5 Mechanism of photo-catalysis of semiconduting materials……...…18 Fig. 2-6 Processes in photocatalytic reactions……….………………………19 Fig. 2-7 Pressure as a function of temperature and percentage fill of water in a sealed vessel……………………..……………………20 Fig. 3-1 Flow chart of synthesis of InVO4 photocatalyst by solid state method…...…………………………...…………………28 Fig. 3-2 Flow chart of synthesis of InVO4 photocatalyst by hydrothermal method………………………………………………29 Fig. 3-3 Mechanism of Raman scattering………...…………………………30 Fig. 3-4 Scheme of Raman scattering and Reyleigh scattering………...……30 Fig. 3-5 Equipment of GC, TCD and chromatography system……...………31 Fig. 3-6 Schematic configuration of photocatalytic reaction for water splitting………………………………………………………32 Fig. 4-1 X-ray diffraction pattern of InVO4 powders prepared by solid state method calcined at 800℃ for 12h….……………………44 Fig. 4-2 X-ray diffraction pattern of (a)V1-24h, (b)V2-12h, (c)V2-24h, and (d)V2-48h………………………………………………………45 Fig. 4-3 X-ray diffraction patterns of (a)V3-12h, (b)V3-24h, and (c)V3-48h……………………………………………………………46 Fig. 4-4 X-ray diffraction patterns of V2-24h added with different amount of PVP, (a) 0.1 wt%, (b) 0.3 wt%, and (c) 1.0 wt%..............47 Fig. 4-5 X-ray diffraction patterns of (a)Vss, (b)V1-24h, (c)V2-12h, (d) V2-24h, (e)V2-48h, (f)V3-12h, (g)V3-24h, and (h)V3-48h, scanned at a low scanning rate (0.15˚/min)………..………………48 Fig. 4-6 Typical SEM morphology of Vss in different magnification, (a) 3000x, (b) 10000x, and (c) 30000x……………………………49 Fig. 4-7 Typical SEM morphology of V1-24h in magnification of (a) 50000x and (b) 80000x…………………………………………50 Fig. 4-8 Typical SEM morphology of V2 series, (a) V2-12h (50000x), (b) V2-12h (80000x), (c) V2-24h (50000x), (d) V2-24h (80000x), (e) V2-48h (50000x), and (f) V2-48h (80000x)……………………51 Fig. 4-9 Typical SEM morphology of V3 series, (a) V3-12h (50000x), (b) V3-12h (80000x), (c) V3-24h (50000x), (d) V3-24h (80000x), (e) V3-48h (50000x), and (f) V3-48h (80000x)……………………52 Fig. 4-10 Typical TEM morphology of V2-24h added with different amount of PVP, (a) 0 wt%, (b) 0.1 wt%, (c) 0.3 wt%, and (d) 1.0 wt%........................................................................................53 Fig. 4-11 Absorbance spectrum of TiO2 and InVO4 powders prepared by solid-state method and hydrothermal method…………….……54 Fig. 4-12 Raman spectrum of InVO4 powders, (a) Vss, (b) V1-24h, (c) V2-12h, (d) V2-24h, (e) V2-48h, (f) V3-12h, (g) V3-24h, and (h) V3-48h…………………………………………………….55 Fig. 4-13 FTIR absorption spectrum of InVO4 powders, (a) Vss, (b) V1-24h, (c) V2-12h, (d) V2-24h, (e) V2-48h, (f) V3-12h, (g) V3-24h, and (h) V3-48h……………………………………….56 Fig. 4-14 FTIR absorption spectrum of InVO4 powders, (a) V1-24h, (b) In(OH)3, (c) V2-24h, (d) V2-24h-PVP0.3,(e) PVP……………57 Fig. 4-15 Total amount of hydrogen evolved by InVO4 powders prepared by solid-state method and hydrothermal method, collected under visible light irradiation……………...……………58 Fig. 4-16 Amount of hydrogen evolved by InVO4 powders prepared by solid-state method and hydrothermal method, collected each hour under visible light irradiation………………..…………59 Fig. 4-17 Total amount of hydrogen evolved by V2 series InVO4 powders and V2-48h heat-treated by RTA, collected under visible light irradiation……………………………………..60 Fig. 4-18 Total amount of hydrogen evolved by InVO4 powders prepared by hydrothermal method added PVP, collected under visible light irradiation……………………………………61 Fig. 4-19 Amount of hydrogen evolved by InVO4 powders prepared by hydrothermal method added PVP, collected each hour under visible light irradiation……………………………………...62 Fig. 4-20 Total amount of hydrogen evolved by V2-24h powders coated with NiO co-catalyst heat-treated in different temperature, collected under visible light irradiation……………63 Fig. 4-21 Amount of hydrogen evolved by V2-24h powders coated with NiO co-catalyst heat-treated in different temperature, collected each hour under visible light irradiation………………64 Fig. 4-22 Total amount of hydrogen evolved by V2-24h-NiO4 powders with 150℃ heat-treated, tested for its maintainability and recyclability, collected under visible light irradiation…………………………………………….65

    1. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37-38 (1972)
    2. http://www.uvi.edu/SandM/Physics/SCI100/
    Downloads/SCI100MeteorologyLectures/
    SCI100MeteorContents.html
    3. Z. Zou, J. Ye, H. Arakawa, “Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation”, Materials Research Bulletin, 36, 1185-1193 (2001)
    4. Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst”, Nature, 414, 625-627 (2001)
    5. Z. Zou, H. Arakawa, “Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts”, Journal of Photochemistry and Photobiology A: Chemistry, 158, 145-162 (2003)
    6. J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita, T. Shishido, “Correlation of crystal and electronic structures with photophysicalproperties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+)”, Journal of Photochemistry and Photobiology A: Chemistry, 148, 79-83 (2002)
    7. L. Ge, M. Xu , H. Fang, “Synthesis of novel photocatalytic InVO4–TiO2 thin films with visible light photoactivity”, Materials Letters 61, 63-66 (2007)
    8. L. Ge, M. Xu , “Influences of the Pd doping on the visible light photocatalytic activities of InVO4–TiO2 thin films”, Materials Science and Engineering B, 131, 222-229 (2006)
    9. L. Ge, M. Xu ,H. Fang, “Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4–TiO2 thin films under visible-light irradiation”, Journal of Molecular Catalysis A: Chemical 258, 68-76 (2006)
    10. L. Chen, Y. Liu, Z. Lu, D. Zeng, “Shape-controlled synthesis and characterization of InVO4 particles”, Journal of Colloid and Interface Science, 295, 440-444 (2006)
    11. L. Zhang, H. Fu, C. Zhang, Y. Zhu, “Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles”, Journal of Solid State Chemistry, 179, 804-811 (2006)
    12. S. Zhang, C. Zhang, H. Yang, Y. Zhu, “Formation and performances of porous InVO4 films”, Journal of Solid State Chemistry, 179, 873-882 (2006)
    13. L. Xu, L. Sang, C. Ma, Y. Lu, F. Wang, Q. Li, H. Dai, H. He, J. Sun, “Preparation of mesoporous InVO4 photocatalyst and its photocatalytic performance for water splitting”, Chinese Journal of Catalysis, 27(2), 100-102 (2006)
    14. Andrew Mills , Stephen Le Hunte , “An overview of semiconductor Photocatalysis”, Journal of Photochemistry & Photobiology A: Chemistry, 108, 1-35 (1997)
    15. Michael Grätzel, “Photoelectrochemical cells”, Nature, 414, 338-344 (2001)
    16. 羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”, 成功大學碩士論文 92年畢業
    17. Gouvêa Carlos A. K., Wypych, Fernando, Moraes Sandra G., Durán Nelson, Peralta-Zamora Patricio, “Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO“, Chemosphere, 40(4), 427-432 (2000)
    18. Ashokkumar M., “An overview on semiconductor particulate systems for photoproduction of hydrogen”, International Journal of Hydrogen energy, 23(6), 427-438 (1998)
    19. Liu Bi-Jin, Torimoto Tsukasa, Yoneyama Hiroshi, “Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents”, Journal of Photochemistry and Photobiology A: Chemistry, 113(1), 93-97 (1998)
    20. Tatsuya Ishii, Hideki Kato, Akihiko Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation”, Journal of Photochemistry and Photobiology A: Chemistry, 163, 181-186 (2004)
    21. Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 ( M = Mn, Fe, Co, Ni and Cu ) photocatalysts”, Journal of Photochemistry and Photobiology A: Chemistry, 148, 65-69 (2002)
    22. J. Ye, Z. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, T. Shishido, “A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation”, Chemical Physics Letters, 356, 221-226 (2002)
    23. A. Kudo, H. Kato, I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chemistry Letters, 33(12), 1534-1539 (2004)
    24. 南區奈米科技K-12 教育發展中心,“奈米科技─基礎、應用與實作”,高立圖書有限公司, 2005.
    25. H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catalysis Today, 78, 561-569 (2003)
    26. N. Buhler, K. Meier, J. F. Reber, “Photochemical hydrogen production with cadmium sulfide suspensions”, Journal of physical chemistry, 88, 3261 (1984)
    27. P. Maruthamuthu, M. Ashokkumar, “Doping effects of transition metal ions on the photosensitization of WO3 particles ”, Solar Energy Materials, 17, 433 (1988)
    28. P. Maruthamuthu, M. Ashokkumar, “Hydrogen generation using Cu(II)/WO3 and oxalic acid by visible light”, International Journal of Hydrogen Energy, 13, 677 (1988)
    29. P. Maruthamuthu, M. Ashokkumar, “Hydrogen production with visible light using metal loaded-WO3 and MV2+ in aqueous medium”, International Journal of Hydrogen Energy, 14, 275 (1989)
    30. T. Sakata, K. Hashimoto, T. Kawai, “Catalytic properties of ruthenium oxide on n-type semiconductors under illumination”, Journal of physical chemistry, 88, 5214 (1984)
    31. M. Taquikhan, R. C. Bhardwaj, C. Bhardwaj, “Photodecomposition of H2S by silver doped cadmium sulfide and mixed sulfides with ZnS ”, International Journal of Hydrogen Energy, 13, 7 (1988)
    32. R. I. Walton, “Subcritical Solvothermal Synthesis of Condensed Inorganic Materials”, Chemical Society Reviews, 31, 230-238 (2002)
    33. 陳俊吉, “金屬氧化物半導體在可見光分解水製氫之研究”, 成功大學碩士論文 94年畢業
    34. 汪建民, 材料分析, 民全書局, 2004.
    35. 張歐穰, “應用於可見光下分解水之 In1-xNixMO4 ( M = Nb, Ta ; x = 0, 0.1, 0.3 ) 光觸媒之製備與特性研究”, 成功大學碩士論文 94年畢業
    36. Q. Huang, J. Yu, “Hydrothermal synthesis and structure analysis of indium vanadate (InVO4)”, Chinese Journal of Structural Chemistry, 24 (11), 1242-1248 (2005)
    37. B.D. Cullity, “Elements of X-ray diffraction, second edition”, Addison-Wesley Publ.Co.﹐Massachusetts﹐U.S.A.﹐1978.
    38. J. Yang, C. Lin, Z. Wang, J. Lin, “In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties”, Inoganic Chemistry, 45, 8973-8979 (2006)
    39. R.J. Nemanich, S. A. Solin, R, M. Martin, “Light scattering study of boron nitride microcrystals”, Journal of Physics Review B, 23(12), 6348-6356 (1981)
    40. I. H. Campbell, P. M. Fauchet, “The effects of microcrystals size and shape on the photo Raman spectra of crystalline semiconductors”, Journal of Solid State Communications, 58(10), 739-741 (1986)
    41. J. Gonzalez-Hernanderz, G. Azabayejani, et al., “Raman, transmission electron microscopy, and conductivity measurements in molecular beam deposited microcrystalline Si and Ge: A comparative study”, Journal of Applied Physics Letters, 47, 1350-1352 (1985)
    42. K. K. Tiong, P. M. Amirtharaj, and F. H. Pollak, “Effects of As+ ion implantation on the Raman spectra of GaAs: 〝Spatial correlation'〞 interpretation”, Journal of Applied Physics Letters, 44, 122-124 (1984)
    43. G. Xiao, D. Li, X. Fu, et al. “Synthesis for single dispersing nano-crystalline InVO4 (orthorhombic) at low temperature”, Chinese Journal of Inorganic Chemistry 20(2), 195-198 (2004)
    44. A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen, 31, 197-202 (2006)
    45. 陳悅芳, “半導體光觸媒的製備及其在水分解反應之應用”, 中央大學碩士論文 94年畢業

    下載圖示 校內:2008-08-01公開
    校外:2008-08-01公開
    QR CODE