簡易檢索 / 詳目顯示

研究生: 鄞于棻
Yin, Yu-Fen
論文名稱: 鈣鈦礦發光二極體金屬電極劣化作用之研究
Study the degradation of metal electrode in perovskite light emitting diode
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 發光二極體鈣鈦礦劣化機制離子移動電極劣化
外文關鍵詞: LED, Perovskite, degradation mechanism, ion migration, electrode degradation
相關次數: 點閱:56下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦是一種極具發展潛能的光電元件材料,不僅擁有可調變發光波長等優異的光電特性、還具有溶液製程易於生產的優勢。但在鈣鈦礦發光二極體元件的研究中,穩定性一直是阻礙鈣鈦礦元件商業化的瓶頸。目前普遍將鈣鈦礦發光二極體元件的衰減歸因於鈣鈦礦內部的離子遷徙與元件運作產生的焦耳熱,其中又認為以離子遷徙造成的元件劣化影響最為嚴重。
    在本實驗室基於ITO/PEDOT:PSS/CH3NH3PbBr3/TPBi/LiF/Al結構的鈣鈦礦元件,即便儲存在氮氣填充、低水氧的手套箱內,數日後依然有明顯劣化表現的產生。在大多數的論文研究中,學者們認為封裝可阻隔並大幅降低外界水氧對元件穩定性的影響。然而經過封裝以及抽真空保存的元件,在數日後依然有元件劣化的表現。本研究的目的是為了探討鈣鈦礦元件的穩定性,試圖找出保存在手套箱內的鈣鈦礦元件快速劣化的原因。藉由元件表現及不同主動層的比較,我們證實了鈣鈦礦元件的不穩定源自於其離子移動的特性,並再次強調了鋁電極對元件快速劣化的重要關聯性。
    最後我們提出理論模型,在未施加偏壓的情況下,鈣鈦礦內的陰陽離子分別會自發性的向兩側移動、擴散至電極,最終與鋁電極發生反應造成發光區域斷路。又因為蒸鍍鋁電極對元件造成的細孔會成為水氧進入元件的通道,使得缺陷處鋁電極發生反應更為劇烈。這篇論文提出了鈣鈦礦發光二極體金屬電極的劣化機制,並強調了電極對鈣鈦礦發光二極體元件穩定性的影響。

    In our recent research, we presented high efficiency halide perovskite light emitting diodes (LEDs) by introducing organic hole transporting layer PVK, with maximum brightness up to 40,000 Cd/m2 at 8 volts, and current efficiency more than 20 Cd/A. Despite the high brightness performance, our devices show a sharply decreasing performance and black spots among device’s working area after days of storing in nitrogen-filled glove box. For these reasons, we want to study the degradation of perovskite light emitting diode, find out where the severe degradation is originated from.
    A series of experiments are used to exclude this degradation phenomenon, and finally propose a degradation model which related to perovskite spontaneous ion migration to cathode electrode. We believe that oxygen or moisture could penetrate perovskite layer through pinholes caused by electrode deposition, then facilitate the degradation of perovskite. Which supporting ions diffusion to electrode and react with aluminum electrode, causing metal electrode degradation and partial open circuit in our perovskite light emitting diodes.
    By verifying this degradation mechanism, we not only provide an alternative way to suppress device degradation but also emphasizes the importance of metal electrode. In addition, we suggest that quai-2D can reduce this degradation due to higher ion migration barrier and organic components in quasi-2D can prevent the penetration of oxygen or moisture from environment.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 有機發光二極體元件發展 2 1.3 鈣鈦礦光電元件發展 5 1.4 研究動機與大綱 6 1.4.1 研究動機 6 1.4.2 論文大綱 7 第二章 鈣鈦礦發光二極體發展 8 2.1 前言 8 2.2 元件結構與操作原理 10 2.3 文獻回顧 13 2.4 鈣鈦礦劣化對元件穩定性影響 15 2.5 章節總結 18 第三章 實驗流程與量測分析方法 19 3.1 前言 19 3.2 鈣鈦礦發光二極體之元件製程 20 3.2.1 ITO導電陽極圖案化 20 3.2.2 基板清潔與表面處理 22 3.2.3 電洞傳輸層製備 22 3.2.4 主動層製備 24 3.2.5 電子傳輸層製備 24 3.2.6 金屬陰極製備 25 3.3 元件之電性表現與光學特性量測 26 3.3.1 電流-亮度-電壓特性曲線 26 3.3.2 電致發光光譜(Electroluminescence spectrum) 26 3.3.3 光致發光螢光光譜儀(Photoluminescence spectrum) 26 3.3.4 紫外光可見光近紅外光分光光譜儀(UV-Vis-NIR spectrophotometer) 27 3.3.5 掃描式電子顯微鏡(Scanning Electron Microscope) 28 3.3.6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy) 28 3.3.7 X光繞射儀(X-ray diffractometer) 29 3.3.8 章節總結 29 第四章 鈣鈦礦發光元件劣化機制之研究 30 4.1 前言 30 4.2 環境對鈣鈦礦元件劣化影響 32 4.2.1 元件之電激發光圖像量測 32 4.2.2 本節結論 34 4.3 離子遷徙效應對鈣鈦礦元件劣化影響 35 4.3.1 元件之特性量測 36 4.3.2 薄膜形貌分析 39 4.3.3 電極元素分析 41 4.3.4 薄膜X光繞射分析 43 4.4 章節總結 46 第五章 結論與未來工作 48 5.1 結論 48 5.2 未來工作 49 參考文獻 51

    [1] A. Jain, P. Kumar, S. C. Jain, V. Kumar, R. Kaur and R. M. Mehra, “Trap filled limit voltage and law in space charge limited currents”, J. Appl. Phys. 102, 094505 (2007).
    [2] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, 6050 (2009).
    [3] A. Mathur and V. Maheshwari, “Carbon monoxide induced self-doping in methylammonium lead iodide films and associated long-term degradation effects”, J. Mater. Chem. C 10, 7485 (2022).
    [4] Best research-cell efficiency chart, National Renewable Energy Laboratory, https://www.nrel.gov/pv/interactive-cell-efficiency.html, accessed 31 May 2023.
    [5] C. Hsieh, G. Tan, Y. Chuang, H. Lin, P. Lai, P. Jan, B. Chen, C. Lu, S. Yang, K. Hsiao, M. Lu, L. Chen and H. Lin, “Vacuum‐deposited inorganic perovskite light‐emitting diodes with external quantum efficiency exceeding 10% via composition and crystallinity manipulation of emission layer under high vacuum”, Adv. Sci 10, 2206076 (2023).
    [6] C. Lin, L. Hu, X. Guan, J. Kim, C. Huang, J. Huang, S. Singh and T. Wu, “Electrode engineering in halide perovskite electronics: plenty of room at the interfaces”, Adv. Mater. 34, 210861 (2022).
    [7] C. Otero-Martínez, N. Fiuza-Maneiro and L. Polavarapu, “Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics”, ACS Appl. Mater. Interfaces 14, 34291 (2022).
    [8] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51, 913 (1987).
    [9] C. Zou, Y. Liu, D. S. Ginger and L. Y. Lin, “Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes”, ACS Nano 14, 6076 (2020).
    [10] D. A. Jacobs, C. M. Wolff, X.-Y. Chin, K. Artuk, C. Ballif and Q. Jeangros, “Lateral ion migration accelerates degradation in halide perovskite devices”, Energy Environ. Sci. 15, 5324 (2022).
    [11] D. G. Zheng and D. H. Kim, “Degradation mechanisms of perovskite light-emitting diodes under electrical bias”, Nanophotonics 12, 451 (2023).
    [12] F. Cao, M. You, L. Kong, Y. Dou, Q. Wu, L. Wang, B. Wei, X. Zhang, W.-Y. Wong, and X. Yang, “Mixed-dimensional MXene-based composite electrodes enable mechanically stable and efficient flexible perovskite light-emitting diodes”, Nano Lett. 22, 4246 (2022).
    [13] H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao and Y. Bai, “Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes”, J. Mater. Chem. C 10, 13590 (2022).
    [14] H. Cho, S. H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. S. Myoung, S. Yoo, S. H. Im, R. H. Friend and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
    [15] H. Jia, Z. Wang, T. Yuan, F. Yuan, X. Li, Y. Li, Z. Tan, L. Fan and S. Yang, “Electroluminescent warm white light‐emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots”, Adv. Sci. 6, 1900397 (2019).
    [16] H. Kim, L. Zhao, J. S. Price, A. J. Grede, K. Roh, A. N. Brigeman, M. Lopez, B. P. Rand and N. C. Giebink, “Hybrid perovskite light emitting diodes under intense electrical excitation”, Nat. Commun. 9, 4893 (2018).
    [17] H. Shankar, S. Ghosh and P. Kar, “Boosting the stability of lead halide perovskite nanocrystals by metal-organic frameworks and their applications”, J. Mater. Chem. C 10, 11532 (2022).
    [18] H. Wang, S. Hu, H. Li, Y. Guo, G. Zhao, P. Liu, J. Gao, Z. Cheng, Y. Tong, H. Qi, Y. Zhang and H. Wang, “Alkali cations modified poly(styrene sulfonate) enabling interfacial band structure regulation for efficient true-blue perovskite light-emitting diodes”, Org. Electron. 114, 106746 (2013).
    [19] H. Zhang, T. Yu, C. Wang, R. Jia, A. A. A. Pirzado, D. Wu, X. Zhang, X. Zhang and J. Jie, “High-luminance microsized CH3NH3PbBr3 single-crystal-based light-emitting diodes via a facile liquid-insulator bridging route”, ACS Nano 16, 6394 (2022).
    [20] J. Chen, X. Huang, Z. Xu and Y. Chi, “Alcohol-stable perovskite nanocrystals and their in situ capsulation with polystyrene”, ACS Appl. Mater. Interfaces 14, 33703 (2022).
    [21] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
    [22] J.-S. Kim, P. K. H. Ho, C. E. Murphy, N. Baynes and R. H. Friend, “Nature of non‐emissive black spots in polymer light‐emitting diodes by in‐situ micro‐raman spectroscopy”, Adv. Mater 14, 206 (2002).
    [23] K. Chondroudis and D. B. Mitzi, “Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chem. Mater. 11, 3028 (1999).
    [24] K. L. Kumawat, K. K. Nanda and P. Rajamalli, “Intrinsic stability of perovskite materials and their operational stability in light-emitting diodes”, J. Mater. Chem. C 11, 7159 (2023).
    [25] K. Lin, J. Xing, L. N. Quan, F. P. G. De Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent”, Nature 562, 245 (2018).
    [26] K. Nakada, Y. Matsumoto, Y. Shimoi, K. Yamada and Y. Furukawa, “Temperature-dependent evolution of raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X= I, Br)”, Molecules 24, 626 (2019).
    [27] L. Kong, C. Sun, M. You, Y. Jiang, G. Wang, L. Wang, C. Zhang, S. Chen, S. Wang, S. A. Yang, S. Wang, Y. Yang, X. Zhang, M. Yuan and X. Yang, “Universal molecular control strategy for scalable fabrication of perovskite light-emitting diodes”, Nano Lett. 23, 985 (2023).
    [28] L. Fan, Z. Pei, P. Wang and Z. Zheng, “Research progress on the stability of organic-inorganic halide perovskite photodetectors in a humid environment through the modification of perovskite layers”, J. Electron. Mater. 51, 2801 (2022).
    [29] L. Kong, X. Zhang, C. Zhang, L. Wang, S. Wang, F. Cao, D. Zhao, A. L. Rogach and X. Yang, “Stability of perovskite light‐emitting diodes: existing issues and mitigation strategies related to both material and device aspects”, Adv. Mater. 34, 2205217 (2022).
    [30] L. Zhang, K. Yang, R. Chen, Y. Zhou, S. Chen, Y. Zheng, M. Li, C. Xu, X. Tang, Z. Zang and K. Sun, “The role of mineral acid doping of PEDOT:PSS and its application in organic photovoltaics”, Adv. Electron. Mater. 6, 1900648 (2020).
    [31] L. Zhao, K. M. Lee, K. Roh, S. U. Z. Khan and B. P. Rand, “Improved outcoupling efficiency and stability of perovskite light‐emitting diodes using thin emitting layers”, Adv. Mater. 31, 1805836 (2019).
    [32] L. Zhao, R. A. Kerner, Z. Xiao, Y. L. Lin, K. M. Lee, J. Schwartz and B. P. Rand, “Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices”, ACS Energy Lett. 1, 595 (2016).
    [33] L.-Q. Xie, T.-Y. Zhang, L. Chen, N. Guo, Y. Wang, G.-K. Liu, J.-R. Wang, J.-Z. Zhou, J.-W. Yan, Y.-X. Zhao, B.-W. Mao and Z.-Q. Tian, “Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy”, Phys. Chem. Chem. Phys. 18, 18112 (2016).
    [34] M. Era, S. Morimoto, T. Tsutsui and S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3) 2PbI4”, Appl. Phys. Lett. 65, 676 (1994).
    [35] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
    [36] M. Stavytska-Barba and A. M. Kelley, “Surface-enhanced raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles”, J. Phys. Chem. C 114, 6822 (2010).
    [37] M. Xie and J. Tian, “Operational stability issues and challenges in metal halide perovskite light-emitting diodes”, J. Phys. Chem. Lett. 13, 1962 (2022).
    [38] M. Yang, Q. Zhang, W. Zhang, Z. Hao, Y. Qin, X. Hai, F. Li, D. Zhou and Y. Zhang, “Enhanced hole transport by doping of a lewis acid to poly(9-vinylcarbazole) for high efficient quantum dot light-emitting diodes”, Org. Electron. 85, 105875 (2020).
    [39] N. Li, Y. Jia, Y. Guo and N. Zhao, “Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering”, Adv. Mater. 34, 2108102 (2022).
    [40] N. Zhang, K. Xia, Q. He and J. Pan, “Recent progress in the stability of red-emissive perovskite nanocrystals for light emitting diodes”, ACS Materials Lett. 4, 1233 (2022).
    [41] Q. Dong, L. Lei, J. Mendes and F. So, “Operational stability of perovskite light emitting diodes”, J. Phys.: Mater. 3, 012002 (2020).
    [42] Q. Wang, S. Ding, S. He, T. Zhang, L. Qian, P. Xiao, T. Chen and C. Xiang, “Improving the operational stability of near-infrared quasi-2D perovskite light-emitting diodes by cation engineering”, Adv. Optical Mater. 11, 220177 (2023).
    [43] R. Gonzalez-Rodriguez, E. Hathaway, Y. Lin, J. L. Coffer and J. Cui, “Encapsulated MAPbBr3 in nickel oxide nanotubes and their electroluminescence”, Nanoscale 14, 6417 (2022).
    [44] S. H. Chang, C.-H. Chiang, F.-S. Kao, C.-L. Tien and C.-G. Wu, “Unraveling the enhanced electrical conductivity of PEDOT:PSS thin films for ITO-free organic photovoltaics”, IEEE Photonics J. 6, 1 (2014).
    [45] S. Luo and W. A. Daoud, “Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design”, J. Mater. Chem. A 3, 899 (2015).
    [46] S.-J. Woo, J. S. Kim and T.-W. Lee, “Characterization of stability and challenges to improve lifetime in perovskite LEDs”, Nat. Photon. 15, 630 (2021).
    [47] S.-Q. Sun, C. Liu, M. Zhu, Y.-L. Xu, W. He, D.-D. Feng, C.-C. Huang, Q. Sun, Y.-M. Xie, Y.-Y. Li and M.-K. Fung, “Electric field induced degradation in sky-blue perovskite light-emitting diodes”, Mater. Today Energy 29, 101139 (2022).
    [48] V. H. López-Lugo, M. García-Hipólito, A. Rodríguez-Gómez and J. C. Alonso-Huitrón, “Fabrication of Li-doped NiO thin films by ultrasonic spray pyrolysis and its application in light-emitting diodes”, Nanostruct. Mater. 13, 197 (2023).
    [49] X. Zhang, L. Kong, L. Wang, T. Chen, X. Yang and J. Dai, “A mixed organic-inorganic interlayer with tunable electrical properties enabling stable and efficient perovskite light-emitting diodes”, IEEE Electron Device Lett. 44, 456 (2023).
    [50] Y. Dong, D. Yan, S. Yang, N. Wei, Y. Zou and H. Zeng, “Ion migration in metal halide perovskite QLEDs and its inhibition”, Chin. Phys. B 32, 018507 (2023).
    [51] Y. Jia, H. Yu, Y. Zhou, N. Li, Y. Guo, F. Xie, Z. Qin, X. Lu and N. Zhao, “Excess ion-induced efficiency roll-off in high-efficiency perovskite light emitting diodes”, ACS Appl. Mater. Interfaces 13, 28546 (2021).
    [52] Y. Shen, J. Zhou, Y. Li and J.-X. Tang, “Strategies to improve the stability of perovskite light-emitting diodes: progress and perspective”, J. Phys. Chem. Lett. 13, 6806 (2022).
    [53] Y.-F. Liew, H. Aziz, N.-X. Hu, H. S.-O. Chan, G. Xu and Z. Popovic, “Investigation of the sites of dark spots in organic light-emitting devices”, Appl. Phys. Lett. 77, 2650 (2000).
    [54] Y.-H. Kim, H. Cho and T.-W. Lee, “Metal halide perovskite light emitters”, Proc. Natl. Acad. Sci. U.S.A. 113, 11694 (2016).
    [55] Y.-K. Jung, M. Abdulla, R. H. Friend, S. D. Stranks and A. Walsh, “Pressure-induced non-radiative losses in halide perovskite light-emitting diodes”, J. Mater. Chem. C 10, 12560 (2022).
    [56] Z. Gan, Z. Yu, M. Meng, W. Xia and X. Zhang, “Hydration of mixed halide perovskites investigated by fourier transform infrared spectroscopy”, APL Mater. 7, 031107 (2019).
    [57] Z. Wen, F. Xie and W. C. H. Choy, “Stability of electroluminescent perovskite quantum dots light-emitting diode”, Nano Select 3, 505 (2022).
    [58] Z. Zhu, Y. Li, Z. Guan, Y. Wu, Z. Zeng, S.-W. Tsang, S. Liu, X. Huang and C.-S. Lee, “Spatial control of the hole accumulation zone for hole-dominated perovskite light-emitting diodes by inserting a CsAc layer”, ACS Appl. Mater. Interfaces 15, 7044 (2023).
    [59] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol. 9, 687 (2014).
    [60] I. Enomoto, Y. Iso and T. Isobe, “Implications of gas-barrier properties in realizing the self-recovery of photodegraded CsPbBr3 perovskite nanocrystals”, J. Mater. Chem. C 10, 102 (2022).
    [61] J. Chastain and R. C. K. Jr, “Handbook of X-ray photoelectron spectroscopy”, Perkin-Elmer Corporation 40, 221 (1992).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE