| 研究生: |
王靖宇 Wang, Ching-Yu |
|---|---|
| 論文名稱: |
CuInSe2蕭特基二極體與β-Ga2O3蕭特基二極體之研究 Fabrication of CuInSe2 Schottky diode and β-Ga2O3 Schottky diode |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 蕭特基二極體 、電鍍 、二硒化銅銦 、液相沉積法 、β型氧化鎵 |
| 外文關鍵詞: | Schottky diode, CuInSe2, Electrodeposition, β-Ga2O3, LPD |
| 相關次數: | 點閱:171 下載:50 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究共分為兩部分,第一部分為CuInSe2蕭特基二極體,第二部分為β-Ga2O3蕭特基二極體。
CuInSe2部分,本論文在鉬玻璃基板上以電鍍方式製備CuInSe2薄膜,透過調變工作電壓、pH值與抑制電壓,成功製備化學劑量比接近1:1:2且形貌平坦的CuInSe2薄膜。後續進行退火改善結晶度並調變退火的升、降溫速率,減少薄膜表面因熱應力產生的裂縫,再以KCN蝕刻消除二次相雜質,改善薄膜品質。在CuInSe2薄膜上方鍍上Al做成蕭特基二極體,透過特意降低工作電壓,提升薄膜銅含量的方式,改善CuInSe2蕭特基二極體的電性,最佳參數為理想因子1.761,蕭特基位障0.699V。
β-Ga2O3部分,以液相沉積法製備氧化鎵的前驅物-GaOOH晶粒,透過調變成長溫度與溶液pH值,改變晶粒形貌與晶粒大小。經過多次清洗過濾後,將含有GaOOH晶粒的沙漿滴在事先鍍上Au/Ti背電極的氧化鋁基板上,透過退火令GaOOH轉變為Ga2O3,調變退火溫度與持溫時間獲得完整轉化β-Ga2O3晶粒。最終鍍上Ni/Au作為蕭特基金屬進行量測,得理想因子為8.657、蕭特基能障為0.93V。
This thesis is divided into two parts. The first part is the fabrication of the CuInSe2 Schottky diode, and the second part is the fabrication of the β-Ga2O3 Schottky diode.
In the CuInSe2 part, electrodeposition was chose to fabricate CuInSe2 thin film. By adjusting working voltage(Von), suppression voltage (Voff) and pH value, the near stoichiometry and flat thin film was successfully fabricated. Next, RTA process was taken to improve the crystallinity. To reduce the crack caused by thermal stress, the heating rate and the cooling rate were adjusted. Next, KCN etching process was introduced to eliminate CuxSe secondary phase. Finally, plate Al contact on CuInSe2 thin film to make Schottky diode. By consciously reduce Von to increase Cu content in the CuInSe2 thin film, the electrical property of CuInSe2 SBD is increased. Best ideal factor and Schottky barrier height is 1.085 and 0.699V, respectively.
In the β-Ga2O3 part, Liquid Phase Deposition(LPD) was introduced to fabricate GaOOH particles, which is the precursor of β-Ga2O3. By adjusting the pH value and the temperature of solution, different morphology and grain size GaOOH were produced. After several washes and filters, clean particles dropped on the sapphire substrate, which has plated Au/Ti as back contact. Next, the annealing process was adopted to transfer GaOOH into β-Ga2O3. By adjusting temperature and annealing time, we can make sure that almost all the GaOOH particles are transferred. Finally, plate Ni/Au contact on the β-Ga2O3 thin film to make Schottky diode. Best ideal factor and Schottky barrier height is 8.657 and 0.93V, respectively.
[1] Pulfrey, David L. "MIS solar cells: A review." IEEE Transactions on Electron Devices 25.11 (1978): 1308-1317.
[2] Yang, Jiancheng, et al. "2300V reverse breakdown voltage Ga2O3 schottky rectifiers." ECS Journal of Solid State Science and Technology 7.5 (2018): Q92.
[3] Jackson, Philip, et al. "New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%." Progress in Photovoltaics: Research and Applications 19.7 (2011): 894-897.
[4] Pearton, S. J., et al. "A review of Ga2O3 materials, processing, and devices." Applied Physics Reviews 5.1 (2018): 011301.
[5] Higashiwaki et al, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal beta-Ga2O3 (010) substrates”. APPLIED PHYSICS LETTERS, (2012), 100(1), 013504.
[6] Hou, Yidong, et al. "Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air." Journal of Catalysis 250.1 (2007): 12-18.
[7] Fleischer, Maximilian, et al. "Evidence for a Phase Transition of β‐Gallium Oxide at Very Low Oxygen Pressures." Journal of the American Ceramic Society 80.8 (1997): 2121-2125.
[8] L. Sivananda Reddy, et al. "Hydrothermal synthesis and photocatalytic property of β-Ga 2 O 3 nanorods." Nanoscale research letters 10.1 (2015): 1-7.
[9] Trinchi, Adrian, et al. "Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC." Sensors and Actuators B: Chemical 100.1-2 (2004): 94-98.
[10] Arnold, S. P., et al. "Design and performance of a simple, room-temperature Ga 2 O 3 nanowire gas sensor." Applied Physics Letters 95.10 (2009): 103102.
[11] Pilliadugula, Rekha, et al. "Effect of pH dependent morphology on room temperature NH3 sensing performances of β-Ga2O3." Materials Science in Semiconductor Processing 112 (2020): 105007.
[12] Wang, Shunli, et al. "β-Ga 2 O 3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection." RSC advances 9.11 (2019): 6064-6069.
[13] Sheng, Tuo, et al. "Photoelectric properties of β-Ga2O3 thin films annealed at different conditions." Rare Metals (2015): 1-5.
[14] Gray, Jeffery L., et al. "NUMERICAL MODELING OF CuInSe2 AN D CdTe SOLAR CELLS." (1994).
[15] Zhang, S. B., et al. "Defect physics of the CuInSe 2 chalcopyrite semiconductor." Physical Review B 57.16 (1998): 9642.
[16] Wei, Su-Huai, et al. "Defect properties of CuInSe2 and CuGaSe2." Journal of Physics and Chemistry of solids 66.11 (2005): 1994-1999.
[17] Yan, Yanfa, et al. "Electrically benign behavior of grain boundaries in polycrystalline CuInSe 2 films." Physical review letters 99.23 (2007): 235504.
[18] Guillén, C.,et al. "Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors." Solar energy materials and solar cells 73.2 (2002): 141-149.
[19] Ihlal, A., et al. "Comparative study of sputtered and electrodeposited CI (S, Se) and CIGSe thin films." Thin Solid Films 515.15 (2007): 5852-5856.
[20] Mandati, Sreekanth, et al. "Pulsed electrochemical deposition of CuInSe2 and Cu (In, Ga) Se2 semiconductor thin films." Semiconductors-Growth and Characterization 6 (2018): 109-132.
[21] Noufi, R., et al. "Electronic properties versus composition of thin films of CuInSe2." Applied Physics Letters 45.6 (1984): 668-670.
[22] B. J. Stanbery, "Copper Indium Selenides and Related Materials for Photovoltaic Devices," Critical Reviews in Solid State and Materials Sciences, vol. 27, no. 2, pp. 73-117, 2010.
[23] Stepanov, S., et al. "Gallium OXIDE: Properties and applica 498 a review." Rev. Adv. Mater. Sci 44 (2016): 63-86.
[24] Ogita, M., et al. "Ga2O3 thin film for oxygen sensor at high temperature." Applied Surface Science 175 (2001): 721-725.
[25] Matsuzaki, Kosuke, et al. "Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor." Thin solid films 496.1 (2006): 37-41.
[26] Battiston, G. A., et al. "Chemical vapour deposition and characterization of gallium oxide thin films." Thin Solid Films 279.1-2 (1996): 115-118.
[27] Oshima, Takayoshi, et al. "Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy." Thin Solid Films 516.17 (2008): 5768-5771.
[28] Qian, Hai-Sheng, et al. "Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3." Crystal Growth and Design 8.4 (2008): 1282-1287.
[29] Li, Liandi, et al. "Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation." Solid state sciences 14.7 (2012): 971-981.
[30] Yu, Rui, et al. "Effect of triethanolamine and sodium dodecyl sulfate on the formation of CuInSe2 thin films by electrodeposition." Thin Solid Films 518.19 (2010): 5515-5519.
[31] Gobeaut, A., et al. "Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films." Thin Solid Films 517.15 (2009): 4436-4442.
[32] Guillen, C., et al. "Effects of thermal and chemical treatments on the composition and structure of electrodeposited CuInSe2 thin films." Journal of the Electrochemical Society 141.1 (1994): 225-230.
[33] Hamrouni, S., et al. "Electrical properties of the Al/CuInSe 2 thin film Schottky junction." Advances in Materials Physics and Chemistry 4.11 (2014): 224.
[34] H. Tecimer, et al. "Schottky diode properties of CuInSe2 films prepared by a two-step growth technique." Sensors and Actuators A: Physical 185 (2012): 73-81.
[35] Rajabi, Z., et al. "Back contact selenization and absorber layer etching for improvement in Schottky diode behavior of [Mo/CIGS/Al] structure." Materials Research Express 6.6 (2019): 065501.
[36] Yang, Jiancheng, et al. "High Breakdown Voltage (− 201) $ eta $-Ga2O3 Schottky Rectifiers." IEEE Electron Device Letters 38.7 (2017): 906-909.
[37] Farzana, Esmat, et al. "Influence of metal choice on (010) β-Ga2O3 Schottky diode properties." Applied Physics Letters 110.20 (2017): 202102.
[38] Hu, Zhuangzhuang, et al. "The Investigation of β-Ga2O3 Schottky Diode with Floating Field Ring Termination and the Interface States." ECS Journal of Solid State Science and Technology 9.2 (2020): 025001.
[39] 郭倩丞2010台北科技大學先進製程實驗室工作坊 電子束蒸鍍的原理https://rndc.ntut.edu.tw/var/file/37/1037/img/558/167590410.pdf
[40] 高君陶.電子顯微鏡的原理與應用http://lib.csghs.tp.edu.tw:8080/%E4%B8%AD%E5%B1%B1%E5%A5%B3%E9%AB%98%E5%AD%B8%E5%A0%B1%E7%AC%AC%E4%BA%8C%E6%9C%9F/04EM%E7%9A%84%E5%8E%9F%E7%90%86%E8%88%87%E6%87%89%E7%94%A8%20(1).pdf
[41] 林麗娟,”X光繞射原理及其應用”,X光材料分析技術與應用專題,1994年
[42] Hu, Shao-Yu, et al. "Pulsed electrodeposition of CuInSe2 thin films onto Mo-glass substrates." Journal of The Electrochemical Society 158.5 (2011): B557-B561.
[43] Chaure, N. B., et al. "Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications." Solar energy materials and solar cells 81.1 (2004): 125-133.
[44] Chandran, et al. "Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications." IOP Conference Series: Materials Science and Engineering. Vol. 338. No. 1. IOP Publishing, 2018.
[45] Qian, Hai-Sheng, et al. "Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3." Crystal Growth and Design 8.4 (2008): 1282-1287.
[46] Bae, Hyun Jeong, et al. "High-Aspect Ratio β-Ga2O3 Nanorods via Hydrothermal Synthesis." Nanomaterials 8.8 (2018): 594.
[47] Kikuchi, Kenji, et al. "Improved Electrical Properties of Ga 2 O 3: Sn/CIGS Hetero-Junction Photoconductor." MRS Online Proceedings Library Archive 1635 (2014): 83-88.
[48] Oh, Sooyeoun,et al. "Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures." ECS Journal of Solid State Science and Technology 6.2 (2016): Q3022.