簡易檢索 / 詳目顯示

研究生: 林正浩
Lin, Chen-Hau
論文名稱: 地下水污染傳輸吸附平衡模式之研究
指導教授: 郭明錦
Kuo, Tom
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 66
中文關鍵詞: 移行擴散穿越曲線臨界流速吸附
相關次數: 點閱:58下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多孔介質中溶質傳輸模擬時,一般常假設其溶質與多孔介質之間吸附、脫附作用瞬間達到平衡,其溶質穿越曲線為單S形狀。但滲流速度不低於某臨界流速時,瞬間平衡吸附假設不正確。在一般管柱實驗中所觀察到的溶質穿越曲線常為非瞬間平衡吸附模式的雙S形狀。滲流速度必需低於某臨界流速時,溶質穿越曲線形狀從雙S形狀變成單S形狀,此時瞬間平衡吸附假設趨於合理。
    本研究在不同吸附速率、脫附速率及分配平衡常數等條件下,建立臨界流速之關係。當滲流速度小於或等於臨界流速時,工程師可以選擇瞬間平衡吸附模式預測溶質之穿越曲線。當滲流速度大於臨界流速時,工程師必需使用非瞬間平衡吸附模式。

    none

    目錄 摘要 I 致謝 II 目錄 III 圖目錄 IV 表目錄 V 第一章 前言 1.1研究動機 1-1 1.2研究目標 1-2 第二章 文獻回顧 2.1 多孔介質溶質傳輸數學模式 2-1 2.2 守恆性溶質移行延散方程式 2-3 2.3 非守恆性溶質移行延散方程式 2-6 2.3.1 線性瞬間平衡吸附假設之溶質傳輸數學模式 2-7 2.3.2 線性非瞬間平衡吸附假設之溶質傳輸數學模式 2-10 第三章 研究方法 3-1 尋找臨界流速之方法 3-1 3-2 吸附反應速率常數、脫附反應速率常數及滲流速度之靈敏度分析 3-4 第四章 結果討論 結果討論 4-1 第五章 結論建議 5.1 結論 5-1 5.2 建議 5-2 參考文獻 附錄

    1. Arya, A., Hewett, T. A. Larson, R. G. and Lake, L. W., “Dispersion and Reservoir Heterogeneity,” SPE Reservoir Engineering, pp.139-148 (1988)
    2. Bear, J., “Some Experiments in Dispersion,” Journal of Geophysical Research, Vol.66, No.8, pp.2455-2467 (1961)
    3. Bear, J., “On The Tensor Form of Dispersion in Porous Media,” Journal of Geophysical Research, pp.1185-1197 (1961)
    4. Brigham, W. E., “Experiments on Mixing During Miscible Displacement in Porous Media,” SPE pp.1-8 (1961)
    5. Brigham, W. E., “Mixing Equations in Short Laboratory Cores,” SPE pp.91-99 (1974)
    6. Brusseau, M. L., Rao, P. S. C., Jessup, R. E., and Davidson, J. M., ”Flow Interruption : A Method for Investigating sorption Non-equilibrium,” Jorunal of contaminant Hydrology, n4, pp.223-240 (1989)
    7. Brusseau, M. L., and Rao, S. C., “Influence of sorbate on Non-equilibrium Sorption of Organic Compounds,” Environ. Sci. Tech., n25, pp.1501-1506 (1991)
    8. Cleary, R. W., and Ungs, M. J., “Groundwater Pollution and Hydrology, Mathematical Models and Computer Program,” Rep.78-WR-15, Water Resource Program, Princeton Univ., N.J., (1978)
    9. Coats, K. H., and Smith, B. D., “Dead-End Pore Volume and Dispersion in Porous Media,” SPE pp.73-84 (1961)
    10. David, S. N. Thompson, G. M., Bentley, H. W., and Stile, “Ground Water Tracers – A Short Review Groundwater”, Vol.18, No.1, pp.14-23 (1982)
    11. Deans, H. A. “A Mathematical Model for Dispersion in the Direction of flow in Porous Media,” Trans., AIME Vol.228, 49. (1963)
    12. Darcy S. N. J., Harold, W. and Timothy, J., “Ground Water tracer, Roberts.” Kerr Enviromental Research Laboratory, U.S. Environmental Protection Agency, ADA, Okalahoma, (1985)
    13. Freeze, R. A., and Cherry, T. A., “Groundwater.” Englewood Cliffs, N. J. (1979)
    14. Joseph T. A., Bursseau, L. M., and Miller, W. L., “Non-equilibrium Sorption and Aerobic Biodegradation of Dissolved Alkylbenzenes during Transport in Aquifer Material: Column Experiments and Evaluation of a Coupled-Process Model.” Environ. SCI. Tech., No.26 pp.1404-1410 (1992)
    15. Levenspiel, O., “Chemical Reaction Engineering,” Second Edition, John Wiely & Sons, Inc., New York (1972)
    16. Levenspiel, O. and Smith, W. K., “Notes on The Diffusion-Type Model for The Longitudinal Mixing of Fluids in Flow,” Chemical Engineering Science Vol.6, pp.227-233 (1957)
    17. Murphy, W. M., and Smith, R. W., “Irreversible Dissolution of Solid Solution: A Kinetic and stoichiometric Model,” Radiochimica Acta, pp.395-401 (1988)
    18. Mansell, R. S., Selim, H. M., Kanchanasut, R., Davidson, J. M., and Fiskell, j. G., “Experimental and Simulated Transport of Phosphorus through Sandy Soil,” Water Resources Research Vol.13 No.1, pp.189-193 (1977)
    19. Perkins, T. K. and Johnson, O. C., “A Review of Diffusion and Dispersion in Porous Media,” SPE, pp.70-84 (1963)
    20. Peter M. K., Brusseau, M. L. Rao, R. S. C., and Hornnsby, A., “Non-equilibrium sorption during Displacement of Hydrophobic Organic Chemicals and 45Ca through Soil Columns with Aqueous and Mixed Solvents,” Environ. Sci. Tech., n23, pp.814-820 (1989)
    21. Priddle, M. W. and Jackson, R. E., “Laboratory Column Measurement of VOC Retardation Factors and Comparison with Field Values,” Ground Water Vol.29, No.2, pp.260-266 (1991)
    22. Pickens, J. K. and Grisak, G. E., “Scale-Dependent Dispersion in a Stratified Granular Aquifer,” Water Resources Research Vol.17 No.4, pp.1191-1211 (1981)
    23. Roberts, P. V., Goltz, M. N., and Mackay, D. M., “A Natural Gradient Experiment on Solute Transport in a Sand Aquifer.-Retardation Estimates and Mass Balances for Organic Solutes,” Water Resources Research, Vol.22, No.13, pp.2047-2058 (1986)
    24. Sauty, J. P. “An Analysis of Hydrodispersive Transfer in Aquifers,” Water Resources Research, Vol.16 No.1, pp.145-158 (1980)
    25. Smart, and Laidlaw, I. M. S., “An Evaluation of Some Fluorescent Dyes for Water Tracing,” Water Resources Research, Vol.13, No.1, pp.15-33 (1977)
    26. Travis, C. C., “Mathematical Description of Adsorption and Transport of Reactive Solutes in Soil,” A Review of Selected Literature, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, (1978)
    27. van Genuchten M. T. and Wagenet, R. J., “Two-side/Two-Region Models for Pesticide Transport and Degradation: Theoretical Development and Analytical Solution,” Soil Science Society of America Journal, Vol.53, No.5, pp.1303-1309 (1989)
    28. Wierenga, P. J. and Van Genuchten, M. Th., “Solute Transport Through Small and Large Unsaturated Soil Columns,” Ground Water, Vol.27, No. 1, pp35-42 (1972)
    29. 廖文彬,”污染物在地下水之傳輸現象,” ,地工技術雜誌民國80年9月,第35期,第28-37頁
    30. 黃文彥,”安山岩含水層中地下水示蹤試驗、延散係數及遲滯係數之研究,” ,國立成功大學礦冶及材料科學研究所碩士論文民國81年5月
    31. 李境和,”放射性核種於裂縫岩層傳輸中非平衡吸附反應影響之研究,” ,國立清華大學核子工程研究所博士論文,民國82年6月
    32. 廖文輝,”多孔隙介質中溶質之吸附及傳送現象-線性非平衡吸附模式之驗證,” ,國立成功大學資源工程研究所碩士論文,民國85年6月
    33. 莊祁龍,”省產黏土礦物對鍶、銫、鈷核種之吸附特性研究,” ,國立清華大學原子科學研究所碩士論文,民國83年6月
    34. 石志彬,” 安山岩含水層溶質輸送現象之研究,”,國立成功大學土木工程研究所,民國86年6月
    35. 許忠義,”含水層溶質吸附率之研究,” ,國立成功大學資源工程研究所碩士論文,民國87年6月

    下載圖示 校內:立即公開
    校外:2002-07-15公開
    QR CODE