| 研究生: |
羅聰賢 Luo, Tsung-Hsien |
|---|---|
| 論文名稱: |
非線性Klein-Gordon方程在能量空間中的散射理論 Scattering Theory in the Energy space for the Nonlinear Klein-Gordon Equation |
| 指導教授: |
方永富
Fang, Yung-fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | Morawetz 估計 、散射理論 、非線性Klein-Gordon方程 、Strichartz 估計 |
| 外文關鍵詞: | Morawetz estimate, Scattering theory, Nonlinear Klein-Gordon equation, Strichartz estimate |
| 相關次數: | 點閱:209 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們補述 Kenji Nakanishi 在[18]中所探討的相關細節。這份論文的主要論述是透過Bourgain在[3]的方法來避免在於一維和二維的空間下所遭遇到的時間遞減為t_{-n/2}階的非收歛性。首先,利用在特定挑選的時空區域下所作的近似能量估計的結果,並且藉由乘上挑選過的權重函數的調整,我們可獲得在整個時空下的Morawetz估計。
接著,我們將解釋Bourgain可在一個相當長的時間區間上控制局部性能量,而讓我們可以透過一個線性的解來分離局部的能量的想法。由於在這些的時空測度下的波產生衰變,讓我們可以去估計剩下的部份。因此,藉由歸納法的證明,我們可以獲得對於證明非線性解的漸進完備性所需要的全域估計。
In this thesis, we endeavor to replenish some details for the result established on [18] by Kenji Nakanishi. The main purpose of this paper is inspired by Bourgain’s
idea [3], which can avoid the unboundedness decay order t−n/2 of the free equations. First, applying some variants of the energy estimate in each chosen cones and multiplied with a special weight function, we obtain the Morawetz-type estimates.Then, there exists a very long subinterval with the mean density is very low.
Next, we explain the idea which can control some localized energy conservation on some long interval. For the long interval with small space-time norm, we can separate the wave component corresponding to the localized energy by a free solution. Since the separated wave component has decayed in the space-time norms, we can estimate the remaining component. Therefore, by induction on the energy size, we obtain the global estimate for the nonlinear solutions in the proof of asymptotic completeness.
[1] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a
ground state, Arch. Ration. Mech. Anal.82, 1983, 313-345.
[2] J. Bergh and J. Lofstrom, Interpolation Spaces, Springer, 1976.
[3] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrodinger equation
in the radial case, J. Amer. Math. Soc. 12, No.1 1999, 145-171.
[4] P. Brenner, On space-time means and everywhere defined scattering operators for
nonlinear Klein-Gordon equations, Math. Z. 186 (1984), 383-391.
[5] Thierry Cazenave, Semilinear Schrodinger equations, American Mathematical Society,
2003.
[6] Lawrence C. Evans, Partial differential equations,, American Mathematical Society,
1998.
[7] J. Ginibre, A. Soffer, and G. Velo, The global Cauchy problem for the critical nonlinear
wave equation, J. Funct. Anal. 110, 1992, 96-130.
[8] J. Ginibre and G. Velo, The global Cauchy problem for nonlinear Klein-Gordon equation,
Math. Z. 189, 1985, 487-505.
[9] J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-
Gordon and Schrodinger equations, Ann, Inst. H. Poincar`e Phys. Th`eor. 43, 1985,
399-442.
[10] M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical
nonlinearity, Annals of Math. 132, 1990, 485-509.
[11] M. Grillakis, Regularity for the wave equation with a critical nonlinearity, Comm.
Pure Appl. Math. 46, 1992, 749-774.
[12] G. Lebeau, Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Li`ege
70, 2001, No. 4-6, 267-306.
[13] G. Lebeau, Perte de r´egularut´e pour l’´equation des ondes surcritique, Bull. Soc. Math.
France 133, 2005, 145-157.
[14] B. Marshall, W. Strauss, and S. Wainger, Lp − Lq Estimates for the Klein-Gordon
equations, J. Math. 59 (1980), 417-440.
[15] S. Machihara, K. Nakanishi, and T. Ozawa, Small global solutions and the nonrelativistic
limit for the nonlinear Dirac equation, Mat. Iberoamericana 19 (2003), 179-
194.
[16] K. Nakanishi, Unique global existence and asymptotic behaviour of solutions for wave
equations with non-coercive critical nonlinearity, Comm. Partial Differential Equations
24 (1999), 185-221.
[17] K. Nakanishi, F.B. Weissler, Scattering theory for nonlinear Klein-Gordon equation
with Sobolev critical power, Internat. Math. Res. Notices 1999, No. 1, 31-60.
[18] K. Nakanishi, Energy Scattering for Nonlinear Klein-Gordon and Schrodinger equations
in Spatial Dimensions 1 and 2, J. Funct. Anal. 169 (1999), 201-225.
[19] K. Nakanishi, Remarks on the energy scattering for nonlinear Klein-Gordon and
Schrodinger equations, Math. J. 53 (2001), 285-303.
[20] K. Nakanishi, Energy scattering for 2D critical wave equation, preprint.
[21] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equations,
Math. Z. 185 (1984), 261-270.
[22] D. Sogge, Fourier integrals in classical analysis,, Cambridge, 1993.
[23] Jalal Shatah, Michael Struwe, Geometric wave equations,, New York : Courant Institute
of Mathematical Sciences, 1998.
[24] J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave
equation with critical growth, IMRN, 7 (1994), 303-309.
[25] W. A. Strauss, On weak solutions of semi-linear hyperbolic equations, An. Acad.
Brasil. Ci. 42 (1970), 645-651.
[26] M. Struwe, Semilinear wave equations, Bull. Amer. Math. Soc., N.S, no (1992), 53-85.