簡易檢索 / 詳目顯示

研究生: 張啟釗
Chang, Qi-Zhao
論文名稱: 摻雜銀、鎢元素之氮化鈦陶瓷薄膜磨潤性能研究
Tribological properties of TiN ceramic films with silver and tungsten dopants.
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 88
中文關鍵詞: 濺鍍機氮化鈦奈米複合材料
外文關鍵詞: sputtering machine, TiN, nanocomposite materials
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗乃利用(i)中頻雙極式磁控與非平衡磁控濺鍍混合系統及(ii) 封閉式非平衡磁控濺射系統;分別濺鍍固體鈦靶、銀靶及鎢靶,以個別被覆含銀、鎢之TiN系列陶瓷薄膜。實驗目的主要研究Ti-Ag-N與Ti-W-N鍍膜其磨潤性質與被覆車刀之乾車削性能。
    實驗中鍍膜被覆共分為兩個部分;PartⅠ& PartⅡ。以PartⅠ;Ti-Ag-N鍍層而言;分為兩階段,第一階段為找出TiN最佳之氮氣流量值,並添加銀元素於TiN鍍層中,分別探討氮氣流量與添加銀元素後之鍍膜在鍍膜磨潤性質上的影響。第二階段則改變基材偏壓,進行實地乾車削試驗,以了解鍍膜被覆車刀之乾車削性。PartⅡ,就Ti-W-N鍍層來說,直接添加鎢元素於TiN鍍層中,找出Ti-W-N鍍層中最佳摻雜鎢元素之範圍,且進行乾車削試驗,得到最佳被覆車刀之鍍層。
    由PartⅠ第一階段鍍膜實驗結果,得到氮氣流量20sccm時有最佳的TiN鍍膜,鍍膜硬度會隨氮氣流量上升而增大。且添加銀元素後,經SRV與Pin-on-disk磨耗試驗證實,當銀含量為0.17at%時,由於細晶強化的作用,有最高的硬度值,抗磨耗性最好。另外,在第二階段鍍膜車削性能上,以銀含量14.57at%時的刀具磨耗量最小,其刀具壽命為未被覆鍍層刀具的三倍。
    在PartⅡTi-W-N鍍膜方面,由TF-XRD分析,隨鎢含量的增加,δ-WN相的繞射峰波愈強,硬度值也愈高,當鎢含量為37.9at%時,硬度值約為TiN鍍膜的2.5倍。經SRV與Pin-on-disk磨耗試驗結果,以鎢含量13.72at%時抗磨耗性最好,而在鎢含量6.45at%時摩擦係數最低。於鍍膜被覆車刀乾車削試驗上,以鎢含量13.72at%時刀具磨耗量最小,其刀具壽命為未被覆鍍層及TiN刀具的三倍。

    The main purpose of this study is to receive TiN ceramic films with silver and tungsten dopants and research the tribological properties and turning performance of Ti-Ag-N and Ti-W-N coatings by sputtering titanium, silver and tungsten targets separately with (i) a medium frequency Twin magnetron sputtering and unbalanced magnetron sputtering hybrid system and (ii) closed unbalanced magnetron sputtering system.
    It contains two parts of research in this study:PartⅠ& PartⅡ.About PartⅠ,Ti-Ag-N coatings ,it has two stages. Find out the best nitrogen flow and add silver dopant of TiN in first stage. Confer to the effects of nitrogen flow and silver dopant of films on tribological properties. Changing the bias of substrate in second stage. Finally, a dry turning of coated inserts will be undergone to understand the turning performance of coatings. At PartⅡ,Ti-W-N coatings, add tungsten dopant in TiN film directly. To discover the perfect range of tungsten content in films and carry out a dry turning, too. Then we can obtain the best tool of coated inserts.
    Via PartⅠexperiment results in first stage, we acknowledge that the coating prepared under the 20 sccm of nitrogen flow has optimum TiN film. The hardness of coatings will be raised with the nitrogen flow increase. In Ti-Ag-N films, after SRV and Pin-on-disk tribological test, when the silver content is 0.17at%, due to the influence of Fine-grained Strengthening, we get the maximum hardness and the best wear resistance. Besides the turning performance of coatings in the second stage, it will have the minimum flank wear and the three times tool life more than uncoated one under the 14.57at% of silver content of coated inserts.
    On the other hand ,PartⅡTi-W-N coatings, by way of TF-XRD analysis, we acquire that the intensity of δ-WN phase and hardness of coatings will be step up with the tungsten content increase. The hardness will 2.5 times more than TiN film under 37.9 at% of tungsten content. After SRV and Pin-on-disk tribological test, when the tungsten content in 13.72at% we get the best wear resistance, and in 6.45 at% one the wear coefficient is minimum. To mention the turning performance of coatings, it will have the minimum flank wear and the three times tool life more than uncoated and TiN ones under the 13.72at% of tungsten content of coated inserts.

    授權書..................................................I 考試合格證明書..........................................II 中文摘要................................................Ⅲ Abstract................................................Ⅳ 誌謝....................................................Ⅴ 總目錄..................................................Ⅵ 表目錄..................................................Ⅸ 圖目錄..................................................Ⅹ 第一章 緒論..........................................1 第二章 理論基礎與文獻回顧............................2 2 - 1奈米科技發展近況................................2 2-1-1 奈米材料....................................2 2-1-2 奈米複合薄膜................................2 2-1-3 奈米複合薄膜強化機構........................3 2 - 2 TiN鍍膜之結構..................................4 2 - 3鍍膜表面及截面型態結構..........................4 2 - 4 非平衡磁控濺鍍.................................5 2 - 5 基板偏壓的效應.................................6 2 - 6 影響鍍層的因素.................................7 第三章 實驗方法與步驟................................8 3 - 1 實驗目的.......................................8 3 - 2 實驗流程.......................................8 3 - 3 濺鍍設備與靶材配置.............................8 3-3-1 (i)第一種濺鍍設備...........................8 3-3-2 (ii)第二種濺鍍設備..........................9 3 - 4 實驗規劃及鍍層參數.............................9 3-4-1 (i)第一部份.................................9 3-4-2 (ii)第二部份................................10 3-4-3 鍍膜安排....................................10 3 - 5 實驗內容.......................................10 3-5-1 鍍膜結構與成份分析..........................10 3-5-2 微硬度試驗..................................10 3-5-3 附著性測試..................................11 3-5-4 耐氧化性試驗................................11 3-5-5 磨耗試驗....................................11 3-5-6 乾車削試驗..................................12 3-5-7 PCB鑽削實驗.................................12 3 - 6 實驗設備.......................................13 第四章 Ti-Ag-N鍍層實驗結果與討論.........................15 4 - 1 第一階段鍍膜基本性質...........................15 4 - 2 第一階段Ti-Ag-N鍍膜SRV往復式磨耗試驗...........19 4 - 3 第一階段Ti-Ag-N鍍膜Pin-on-disk迴轉式磨耗試驗...19 4 - 4 第二階段鍍膜基本性質...........................19 4 - 5 耐氧化性實驗...................................20 4 - 6 第二階段Ti-Ag-N鍍膜SRV往復式磨耗試驗...........21 4 - 7 第二階段Ti-Ag-N鍍膜Pin-on-disk迴轉式磨耗試驗...21 4 - 8 第二階段Ti-Ag-N鍍膜車削性能試驗................21 4 - 9 第二階段Ti-Ag-N鍍膜PCB鑽削性能試驗.............22 第五章 Ti-W-N鍍層實驗結果與討論..........................24 5 - 1 鍍膜基本性質...................................24 5 - 2 耐氧化性實驗...................................26 5 - 3 鍍膜SRV往復式磨耗試驗..........................26 5 - 4 鍍膜Pin-on-disk迴轉式磨耗試驗..................27 5 - 5 鍍膜車削性能試驗...............................27 5 - 6 鍍膜PCB鑽削性能試驗............................28 第六章 結論.............................................30 6 - 1 PartⅠ.........................................30 6 - 2 PartⅡ.........................................30 第七章 參考文獻.........................................32 自述.....................................................88 表3-1第一階段(一) TiN鍍層濺鍍參數........................35 表3-2第一階段(二) Ti-Ag-N鍍層濺鍍參數....................35 表3-3第一階段(三) Ti-Ag-N鍍層濺鍍參數....................35 表3-4第二階段 TiN &Ti-Ag-N鍍層濺鍍參數...................36 表3-5 Ti-W-N鍍層濺鍍參數.................................36 表3-6乾車削試驗條件表....................................36 表3-7鑽削試驗參數表......................................37 表4-1第一階段TiN鍍層不同氮氣流量與硬度之關係.............37 表4-2 TiN and Ti-Ag-N鍍膜第一階段SRV磨耗試驗參數.........37 表4-3第一階段TiN鍍層不同氮氣流量壓痕試驗結果.............37 表4-4第一階段Ti-Ag-N鍍層不同銀含量壓痕試驗結果...........37 表4-5第一階段TiN鍍層不同氮氣流量刮痕試驗結果.............38 表4-6第一階段Ti-Ag-N鍍層不同銀含量刮痕試驗結果...........38 表4-7 Ti-Ag-N and Ti-W-N鍍膜Pin-on-disk磨耗試驗參數......38 表4-8 TiN and Ti-Ag-N鍍膜第二階段SRV磨耗試驗參數.........38 表4-9第二階段Ti-Ag-N鍍膜被覆刀具乾車削VB)MAX.磨耗量結果..39 表5-1 Ti-W-N鍍層不同鎢含量壓痕試驗結果...................39 表5-2 Ti-W-N鍍層不同鎢含量刮痕試驗結果...................39 表5-3 Ti-W-N鍍膜SRV磨耗試驗參數..........................39 表5-4 Ti-W-N鍍膜被覆刀具乾車削VB)MAX.磨耗量結果..........40 圖2-1 理想狀態下之奈米複合薄膜結構......................41 圖2-2 TiN晶體結構與MC-carbide晶體結構...................41 圖2-3 Thornton之 SZM模型................................42 圖2-4(a) Henderson之硬球模型.............................42 圖2-4(b) Dirks之硬球模型.................................43 圖2-5 Messier對SZM之修正模型............................43 圖2-6 圓形的磁控濺射靶..................................44 圖2-7 非平衡磁控濺鍍法的磁力線範圍......................44 圖2-8 傳統磁控濺鍍法與非平衡磁控濺鍍法的磁力線比較......45 圖2-9 帶有能量之離子轟擊對基材表面及鍍膜成長的影響......45 圖3-1 中頻雙極式磁控與非平衡磁控濺鍍混合系統............46 圖3-2 封閉式非平衡磁控濺射系統..........................46 圖3-3 Part Ⅰ流程圖.....................................47 圖3-4 Part Ⅱ流程圖.....................................48 圖3-5 鍍膜安排方式......................................49 圖3-6 壓痕等級示意圖....................................49 圖3-7 刮痕試驗機........................................50 圖3-8 SRV往覆式磨耗試驗機配置簡圖.......................50 圖3-9 Pin-on-disk磨耗試驗機示意圖.......................51 圖3-10 車刀刀腹磨耗量量測示意圖..........................52 圖3-11 鑽針磨耗量量測圖..................................52 圖4-1 第一階段TiN鍍層不同氮氣流量與膜厚之關係............53 圖4-2 第一階段TiN鍍層不同氮氣流量與硬度之關係............53 圖4-3 第一階段TiN鍍層不同氮氣流量SRV點乾磨(90sec)磨耗情形.........................................................54 圖4-4 第一階段TiN鍍層不同氮氣流量SRV點乾磨(3min)磨耗情形.........................................................54 圖4-5 第一階段TiN鍍層不同氮氣流量SRV點乾磨(6min)磨耗情形.........................................................55 圖4-6 第一階段Ti-Ag-N鍍層相同銀把電流(0.2Amp.)不同氮氣流量S RV點乾磨(90sec)磨耗情形..................................55 圖4-7 第一階段Ti-Ag-N鍍層相同銀把電流(0.2Amp.)不同氮氣流量S RV點乾磨(3min)磨耗情形...................................56 圖4-8 第一階段Ti-Ag-N鍍層相同銀把電流(0.2Amp.)不同氮氣流量S RV點乾磨(6min)磨耗情形...................................56 圖4-9 第一階段Ti-Ag-N鍍層膜厚與EDS分析各鍍膜銀含量之關係.........................................................57 圖4-10第一階段Ti-Ag-N鍍層X-ray分析結果...................58 圖4-11第一階段Ti-Ag-N鍍層不同銀含量與硬度之關係..........59 圖4-12 FE-SEM拍攝出Ag00-2拋光前表面形貌結果;放大倍率50000X...................................................59 圖4-13 FE-SEM拍攝出Ag01拋光前表面形貌結果;放大倍率50000X...................................................60 圖4-14 FE-SEM使用BSE拍攝出Ag01拋光後表面形貌結果;放大倍率40000X...................................................60 圖4-15 FE-SEM拍攝出Ag04表面形貌結果;放大倍率15000X......61 圖4-16 FE-SEM拍攝出Ag04表面形貌結果;放大倍率40000X......61 圖4-17 第一階段Ti-Ag-N鍍層不同銀含量SRV點乾磨(90sec)磨耗情 形.......................................................62 圖4-18 第一階段Ti-Ag-N鍍層不同銀含量SRV點乾磨(3min)磨耗情形.........................................................62 圖4-19 第一階段Ti-Ag-N鍍層不同銀含量SRV點乾磨(6min)磨耗情形.........................................................63 圖4-20 第一階段Ti-Ag-N鍍層不同銀含量Pin-on-disk磨耗情形.........................................................63 圖4-21 第二階段Ti-Ag-N鍍層不同銀含量與膜厚之關係.........64 圖4-22 第二階段Ti-Ag-N鍍層不同銀含量與硬度之關係.........64 圖4-23第二階段Ti-Ag-N鍍層X-ray分析結果...................65 圖4-24 第二階段Ti-Ag-N鍍層經熱處理前、後微硬度的變化情形.65 圖4-25 第二階段02鍍膜經熱處理前GDS分析結果...............66 圖4-26 第二階段02鍍膜經400℃熱處理後GDS分析結果..........66 圖4-27 第二階段05鍍膜經熱處理前GDS分析結果...............67 圖4-28 第二階段05鍍膜經400℃熱處理後GDS分析結果..........67 圖4-29 第二階段Ti-Ag-N鍍層經熱處理後氧化層厚度變化情形...68 圖4-30 第二階段Ti-Ag-N鍍層不同銀含量SRV點乾磨(90sec )磨耗情 形.......................................................68 圖4-31 第二階段Ti-Ag-N鍍層不同銀含量Pin-on-disk磨耗情形..69 圖4-32 第二階段Ti-Ag-N鍍層刀具車削後平均刀腹(VB)磨耗情形.69 圖4-33 第二階段Ti-Ag-N鍍層刀具第三道次車削後刀腹(VB)SEM圖(1 )02-100X (2)05-100X (3)05-200X...........................70 圖4-34 第二階段Ti-Ag-N鍍層刀具第三道次車削後刀頂面SEM圖(1)0 2-100X (2)05-100X (3)05-200X.............................70 圖4-35 雙層印刷電路板微孔鑽削試驗刀角磨耗比較圖..........71 圖4-36 雙層印刷電路板微孔鑽削試驗平均刀腹磨耗比較圖......71 圖4-37 雙層印刷電路板微孔鑽削試驗微鑽針刀腹磨耗SEM圖(1)原材 (2) 01...................................................72 圖5-1 Ti-W-N鍍層不同鎢含量與膜厚之關係...................73 圖5-2 Ti-W-N鍍層不同鎢含量與硬度之關係..................73 圖5-3 Ti-W-N鍍層X-ray分析結果...........................74 圖5-4 Ti-W-N鍍層經熱處理前、後微硬度的變化情形..........74 圖5-5 W10鍍膜經熱處理前GDS分析結果......................75 圖5-6 W10鍍膜經500℃熱處理後GDS分析結果.................75 圖5-7 TiN鍍膜經熱處理前GDS分析結果......................76 圖5-8 TiN鍍膜經500℃熱處理後GDS分析結果.................76 圖5-9 Ti-W-N鍍層經熱處理後氧化層厚度變化情形............77 圖5-10 Ti-W-N鍍層不同鎢含量SRV磨耗試驗點乾磨(90sec)磨耗情 形.......................................................77 圖5-11 Ti-W-N鍍層不同鎢含量SRV磨耗試驗點乾磨(3min)磨耗情形.........................................................78 圖5-12 Ti-W-N鍍層不同鎢含量SRV磨耗試驗點乾磨(6min)磨耗情形.........................................................78 圖5-13 Ti-W-N鍍層SRV試驗vs鉻鋼球10N點乾磨(3min)鍍膜磨痕SEM 圖(1)W10-100X (2)W30-100X................................79 圖5-14 Ti-W-N鍍層不同鎢含量SRV磨耗試驗線乾磨(90sec)磨耗情 形.......................................................79 圖5-15 Ti-W-N鍍層不同鎢含量SRV磨耗試驗線乾磨(3min)磨耗情形.........................................................80 圖5-16 Ti-W-N鍍層不同鎢含量SRV磨耗試驗線乾磨(6min)磨耗情形.........................................................80 圖5-17 Ti-W-N鍍層SRV試驗vs S45C 10N線乾磨(6min)鍍膜磨痕SEM 圖(1)W10-100X (2)W10-300X (3)W30-100X....................81 圖5-18 W10 SRV磨耗試驗線乾磨(6min)上試件SEM磨痕圖(1)150X(2 ) 400X...................................................81 圖5-19 W10 SRV磨耗試驗線乾磨(6min)上試件Mapping結果(1)Mappi ng Ti元素(2) Mapping N元素(3) Mapping W元素 (4) Mapping O元 素 (5) Mapping Fe元素....................................82 圖5-20 TiN SRV磨耗試驗線乾磨(6min)上試件SEM磨痕圖(1)150X(2 ) 400X.................................................. 83 圖5-21 TiN SRV磨耗試驗線乾磨(6min)上試件Mapping結果(1)150X (2)Mapping Ti元素........................................83 圖5-22 Ti-W-N鍍層不同鎢含量Pin-on-disk磨耗情形..........84 圖5-23 Ti-W-N鍍層刀具車削後平均刀腹(VB)磨耗情形.........84 圖5-24 Ti-W-N鍍層刀具第三道次車削後刀腹(VB)SEM圖(1)W10-100X (2)TiN-100X (3)TiN-400X..................................85 圖5-25 TiN鍍層刀具第三道次車削後刀頂面SEM圖(1)TiN-100X (2) TiN-200X (3) TiN-1600X..................................85 圖5-26 雙層印刷電路板微孔鑽削試驗刀角磨耗比較圖..........86 圖5-27 雙層印刷電路板微孔鑽削試驗平均刀腹磨耗比較圖......86 圖5-28 雙層印刷電路板微孔鑽削試驗微鑽針刀腹磨耗SEM圖(1)原材 (2) W10..................................................87

    1. D. J. Cheng, W. P. Sun and M. H. Hon, Thin Solid Films , 146(1)(1987)45
    2. B. E. Jacobson ,C. V. Deshandey ,H. J. Doerr, A. A. Karim and R. F. Bun
    shah, Thin Solid Films , 118(3)(1984)285
    3. V. Murama, Heat Treament of Metals. , 12(2)(1985)49
    4. S. Ramalingam, Wear, 118(1984)335
    5. H. Gleiter, “On the structure of grain boundaries in metals”,Mater. S
    ci. Eng.52, 91(1982)
    6. J. Musil, “Hard and superhard nanocomposite coatings ”, Surface & Coa
    tings Technology 125(2000)322-330
    7. M. A. Baker, S. Klose, C. Rebholz, A. Leyland, A. Matthews, “Evaluatin
    g the microstructure and performance of nanocomposite PVD TiAlBN coatings
    ”, Surface & Coatings Technology 151-152(2002)338-343
    8. S. Veprek and S. Reiprich, Thin Solid Films 268, 64(1996)
    9. J. Musil, P. Zeman, H. Hruby, P. H. Mayrhofer, “ZrN/Cu nanocomposite f
    ilm a novel superhard material”,Surface&CoatingsTechnology,120-121(1999
    )179-183
    10. F. Vaz, L. Rebouta, Ph. Goudeau, T. Girardeau, J. Pacaud, J.P. Riviere
    , A. Traverse, ”Srtuctiral transitions in hard Si-based TiN coatings:t
    heeffectofbiasvoltageandtemperature”,Surface&CoatingsTechnology,146-147(
    2001)274-279
    11. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere,A.Ca
    valeiro, E. Alves, ”Chsrscterisation of Ti1-xSixNy nanocomposite films”
    ,Surface & Coatings Technology,133-134(2000)307-313
    12. J. Musil, J. Vlček, “Magnetron sputtering of hard nanocomposite coati
    ngs and their properties ” , Surface & Coatings Technology 142-144(2001)
    557-566
    13. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbi
    chler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlček, “Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatin
    gs”, Surface & Coatings Technology 120-121(1999)405-411
    14. J. Musil, F. Regent , “Formation of nanocrystalline NiCr-N films by r
    eactive dc magnetron sputtering”, J. Vac. Sci. Technol. A 16(6)
    15. M. Ohring, The materials science of thin films,(Academic Press,SanDieg
    o,1992), P409
    16. R. W. Siegel and G. E. Fougere, ”Mechanical properties of nanophase m
    etals” ,Nanostructured Mater. 6, 205(1995)
    17. T. G. Nieh, J. Wadsworth, “Hall-Petch relation in nanocrystalline sol
    ids ” ,Script Metall. Mater. 25, 955(1991)
    18. H. Gleiter, “On the structure of grain boundaries in metals”,Mater.
    Sci. Eng.52, 91(1982)
    19. L.Huetman,et al, ”Initial growth of TiN on different phases of high s
    peed steel”, Thin solid films vol. 124,Iss2,1985,163-170
    20. P.Hedenqvist,M.Olsson,et al, ”Characterisation of Ti(C,N) and TiN coa
    tings on powder metallurgy high speed steels “,Surface Engineeringvol8,No
    .1,1992
    21. J.A. Thornton, ”Influence of Apparatus Geometry and Deposition Condit
    ion on the Structure and Topography of Thick Sputtering Coating”,J. Vac.
    Sci. Technol. ,Vol.11,No.4, PP666-672,(1974)
    22. D.Henderson ,M.H. Brodsky and P. Chaudhari Appl. Phys.Lett., vol25,P64
    1(1974)
    23. A.G. Dirks and H.J. Leamy, Thin Solid Films, vol. 47, P219(1977)
    24. R. Messier, A.P. Giri and R.A. Roy, J. Vac. Sci. Technol.,A2(2),P500(1
    984)
    25. B. Window and N. Savvides, J. Vac. Sci. Technol., A4(2)(1986)196.
    26. 陳瑜堯、吳政道,金屬熱處理,44(1995)41-47.
    27. T. Hurkmans, F. Hauzer, B. Buil, K. Engel and R. Tietema, Surface andC
    oatings Technology,92(1997), PP62-68
    28. Rointan F. Bunshah et al. ,”Deposition Technologies for Films andCoat
    ings”, Noyes Publications, Park Ridge, New Jersey, U.S.A. ,1982
    29. P. S. Steinmann,Y. Tardy andH.E.Hintermann,ThinSolidFilms,154(1987),PP
    333-349
    30. E.DamondandP.Jacquotr,J.Pagny,MaterialsScienceandEngineering,A140(1991
    ),PP838-841
    31. 李晴,劉君華,竇菊英..等,西安交通大學學報,第36卷, No.10, OCT.2002
    32. Y.R. Liu., J.J. Liu, Z. Du, ”The cutting performance and wear mechani
    sm of cermic cutting tools with Mos2 cutting deposited by magnetron sptter
    ing”, Wear,vol. 231,PP285-292, 1999
    33. P. J. Burnett,D. S. Rickerby,”The relationship between hardness and scratch adhesion”,Thin Solid Films,154(1987)412
    34. 羅錦興, ”田口品質工程指引”, 中國生產力中心出版,1999第一~十一章
    35. J. Musil, J. Vlček, “Magnetron sputtering of hard nanocomposite coati
    ngs and their properties ” , Surface & Coatings Technology 142-144(2001)5
    57-566
    36. J. Pelleg, L.Z. Zevin, and S. Lungo, “Reactive-sputter-deposited TiN
    films on glass substrates”, Thin Solid Films 197,117(1991)
    37. U.C. Oh and J. H.Jc, ”Effects of strain energy on the preferred orie
    ntation of TiN thin films”, J. Appl. Phys. 74,1692(1993)
    38. P. Karvánková, H.-D. MäNNLING, C. Eggs, S. Veprek,” Thermal stability
    of ZrN-Ni and CrN-Ni superhard nanocomposite”, Surface & Coatings Technol
    ogy 146-147(2001)280-285
    39. T. de los Arcos, P. Oelhafen, U. Aebi, A. Hefti, M. Düggelin, D. Mathy
    s, R. Guggenheim, “Preparation and characterization of TiN-Ag nanocomposi
    te films ” , Vacuum 67(2002)463-470
    40. Nieman GW, Weerlman J R,Siegel R W , Scripta Metall. et Mater. ,34,145
    (1990).
    41. Lu K, Wei WD,Wang J T , Scripta Metall. et Mater. ,24,2319(1990).
    42. Palumbo G, Thorpe S J, Aust K T, Scripta Metall. et Mater. ,24,1347(19
    90).

    下載圖示 校內:2004-07-04公開
    校外:2004-07-04公開
    QR CODE