| 研究生: |
陳雨瑄 Chen, Yu-Hsuan |
|---|---|
| 論文名稱: |
核黃素促進牙本質黏著之最佳處理程序 Optimizing riboflavin treatment to improve dentin bonding |
| 指導教授: |
莊淑芬
Chuang, Shu-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 牙本質黏著 、核黃素 、膠原蛋白交聯 、氧抑制 、聚合程度 |
| 外文關鍵詞: | dentin bonding, riboflavin, collagen crosslinking, oxygen inhibition, degree of conversion |
| 相關次數: | 點閱:179 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由牙本質膠原蛋白和樹脂形成的混合層(hybrid layer)是牙本質黏著的關鍵。核黃素是一種光反應的膠原蛋白交聯劑,藉由光照產生活性氧物種 (reactive oxygen species),進而促進膠原蛋白交聯,已被證實可以強化牙本質膠原蛋白並可增加牙本質黏著的耐久性。然而其最合適的處理濃度和時機尚未明瞭。此外,樹脂與氧氣接觸其聚合程度會被抑制,而形成氧化抑制層,於混合層中則可能降低樹脂的機械性質進而影響鍵結,故核黃素產生的活性氧物種被視為一項隱憂。本研究目標為,找出核黃素對牙本質黏著的最佳處理條件(光照時間/濃度/處理時機),以及驗證光反應產生的氧氣是否會影響黏著層的聚合程度。
本實驗第一部份擬找出核黃素的最適合濃度和光照時間,利用市售小牛膠原蛋白,以不同濃度核黃素(0.05%, 0.1%, 0.5%, 1%)和光照時間(30s、60s)處理,透過膠體電泳檢測和傅立葉轉換紅外線光譜儀檢測。再以此條件處理人類牙本質表面,利用拉曼光譜儀分析其交聯效果。第二部分先利用SOSG試劑檢測不同條件處理的核黃素所釋放的單態氧量。再使用拉曼光譜儀和奈米壓痕觀察經核黃素處理的牙本質黏著劑的聚合程度與奈米硬度。最後利用微張力試驗測試不同處理時間點組別對牙本質黏著強度短期和長期(六個月)的影響,並以掃描式電子顯微鏡觀察黏著層。
於第一部分實驗,膠體電泳檢測和拉曼光譜儀試驗中,0.05%核黃素可有效增加膠原蛋白交聯;在傅立葉轉換紅外線光譜儀實驗中,所有實驗組二級胺比例皆上升,以1%核黃素上升比例最高,但核黃素與二級胺吸收光譜類似,可能造成誤差。於第二部分實驗,核黃素處理不影響黏著劑的聚合程度,而0.05%與0.1%核黃素相比有較高的微硬度。第三部分中,0.05%核黃素組之微張力黏著強度高於0.1%核黃素,而處理次序上是酸蝕前處理有較好表現。掃描式電子顯微鏡觀測0.05%和0.1%核黃素在酸蝕前處理能降低維滲透發生。由目前實驗可知,在酸蝕前處理0.05%核黃素不會影響黏著劑聚合,且能有效促進膠原蛋白交聯,提升牙本質黏著強度,並減少微滲透的產生。
Dentin bonding is based on the hybrid layer which is made from dentin collagen and infiltrated resin. Riboflavin (RF) as a photoreactive collagen crosslinker generates reactive oxygen species after light irradiation, and which had been proven in increasing dentin-resin bonding. However, the specific concentration and the treatment protocol have not been discussed. Besides, oxygen inhibits free radical polymerization and yields uncured resin has been defined as “oxygen inhibition”. RF-generated singlet oxygen in resin polymerization was a concern and not surveyed yet. Therefore, the objects of this study were to investigate the optimal protocol of RF in dentin bonding treatment, and to examine the effect of RF-generated singlet oxygen on the polymerization of the adhesive layer.
In the first part, the crosslinking capability of different RF treating protocols was analyzed by SDS-PAGE, FTIR-ATR and Raman spectroscopy. In the second part, the appropriate protocols were then examined to determine their effects on resin polymerization by amounts of singlet oxygen, degree of conversion (DC) and nanohardness. Additionally, the microtensile bond strength (µTBS) and nanoleakage at the bond interfaces were investigated both immediately and after 6-month storage.
In SDS-PAGE and Raman spectroscopic analysis, 0.05% RF promoted collagen crosslinking, while a reverse result was found in FTIR-ATR which showed a higher amide II/I conversion in 1% RF. In the second part, no significant difference in DC was found, while 0.05% RF showed higher nanohardness than that of 1%. RF treatment before or immediately after acid-etching showed higher µTBS both immediately after bonding and after water storage, and no significant µTBS decrease after storage. SEM finding also showed a decrease in nanoleakage in these two groups.
With these results, RF concentration at 0.05% had better performance than 0.1% did overall. This study revealed that 0.05% RF treated before etching has higher collagen crosslinking, µTBS (immediately/ after storage) and less nanoleakage without jeopardizing resin polymerization.
References
1. Nakabayashi N, Nakamura M, Yasuda N. Hybrid Layer as a Dentin‐Bonding Mechanism. Journal of Esthetic and Restorative Dentistry 1991; 3: 133-138.
2. Linde A. Dentin matrix proteins : composition and possible functions in calcification. The Anatomical Record 1989; 224: 154-166.
3. Tao L, Pashley DH. Dentin perfusion effects on the shear bond strengths of bonding agents to dentin. Dental Materials 1989; 5: 181-184.
4. Pashley DH, Tao L, Boyd L, King G, Horner J. Scanning electron microscopy of the substructure of smear layers in human dentine. Archives of Oral Biology 1988; 33: 265-270.
5. Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? Journal of the Canadian Dental Association 2003; 69: 726-732.
6. Suzuki K, Takahashi M, Nakai H. Treatment of dentin by aqueous solution of amino acid derivatives: HEMA. Adhesive Dent 1990; 8: 43-51.
7. Nakabayashi N, Takarada K. Effect of HEMA on bonding to dentin. Dental Materials 1992; 8: 125-130.
8. Frassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR, Pashley DH, Cadenaro M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability--A literature review. Dent Mater 2016; 32: e41-53.
9. Hanks C, Wataha JC, Parsell R, Strawn S, Fat J. Permeability of biological and synthetic molecules through dentine. Journal of oral rehabilitation 1994; 21: 475-487.
10. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J Endod 1996; 22: 244-8.
11. Toledano M, Osorio R, Moreira M, Cabrerizo-Vilchez MA, Gea P, Tay FR, Pashley DH. Effect of the hydration status of the smear layer on the wettability and bond strength of a self-etching primer to dentin. American journal of dentistry 2004; 17: 310-314.
12. Rosales J, Marshall G, Marshall S, Watanabe L, Toledano M, Cabrerizo M, Osorio R. Acid-etching and hydration influence on dentin roughness and wettability. Journal of dental research 1999; 78: 1554-1559.
13. Van Landuyt K, Snauwaert J, Peumans M, De Munck J, Lambrechts P, Van Meerbeek B. The role of HEMA in one-step self-etch adhesives. Dental Materials 2008; 24: 1412-1419.
14. Turkistani A, Nakashima S, Shimada Y, Tagami J, Sadr A. Microgaps and Demineralization Progress around Composite Restorations. J Dent Res 2015; 94: 1070-7.
15. Hass V, Luque-Martinez IV, Gutierrez MF, Moreira CG, Gotti VB, Feitosa VP, Koller G, Otuki MF, Loguercio AD, Reis A. Collagen cross-linkers on dentin bonding: Stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition. Dent Mater 2016; 32: 732-41.
16. Sano H, Takatsu T, Ciucchi B, Horner J, Matthews W, Pashley DH. Nanoleakage: Leakage within the hybrid layer. Operative Dentistry 1994; 20: 18-25.
17. Gwinnett AJ. Chemically conditioned dentin: a comparison of conventional and environmental scanning electron microscopy findings. Dental Materials 1994; 10: 149-155.
18. Ferrari M, Mason P, Goracci C, Pashley DH, Tay F. Collagen degradation in endodontically treated teeth after clinical function. Journal of dental research 2004; 83: 414-419.
19. Kishen A, Shrestha S, Shrestha A, Cheng C, Goh C. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dent Mater 2016; 32: 968-77.
20. Braden M, Clarke RL. Water absorption characteristics of dental microfine composite filling materials. I. Proprietary materials. Biomaterials 1984; 5: 369-72.
21. Van Meerbeek B, Van Landuyt K, De Munck J, Hashimoto M, Peumans M, Lambrechts P, Yoshida Y, Inoue S, Suzuki K. Technique-sensitivity of contemporary adhesives. Dental materials journal 2005; 24: 1-13.
22. Pearson G, Longman C. Water sorption and solubility of resin‐based materials following inadequate polymerization by a visible‐light curing system. Journal of Oral Rehabilitation 1989; 16: 57-61.
23. Carrilho MR, Geraldeli S, Tay F, de Goes MF, Carvalho RM, Tjaderhane L, Reis AF, Hebling J, Mazzoni A, Breschi L, Pashley D. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res 2007; 86: 529-33.
24. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani Y, Yoshiyama M, Tay FR, Pashley DH. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005; 26: 6449-59.
25. Yoshida E, Uno S, Nodasaka Y, Kaga M, Hirano S. Relationship between water status in dentin and interfacial morphology in all-in-one adhesives. dental materials 2007; 23: 556-560.
26. Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A. State of the art etch-and-rinse adhesives. Dent Mater 2011; 27: 1-16.
27. Zhang SC, Kern M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int J Oral Sci 2009; 1: 163-76.
28. Maynes R, Structure and function of collagen types. 2012: Elsevier.
29. Knott L, Bailey AJ. Collagen Cross-Links in Mineralizing Tissues: A Review of Their Chemistry, Function, and Clinical Relevance. Bone 1998; 22: 181-187.
30. Ashwin PT, McDonnell PJ. Collagen cross-linkage: a comprehensive review and directions for future research. British journal of ophthalmology 2010; 94: 965-970.
31. Foote CS. Mechanisms of photosensitized oxidation. Science 1968; 162: 963-970.
32. Bedran-Russo AKB, Castellan CS, Shinohara MS, Hassan L, Antunes A. Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta biomaterialia 2011; 7: 1735-1741.
33. Nimni ME. The cross-linking and structure modification of the collagen matrix in the design of cardiovascular prosthesis. J Card Surg 1988; 3: 523-33.
34. Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release 2000; 64: 103-14.
35. Liu CZ, Xia ZD, Han ZW, Hulley PA, Triffitt JT, Czernuszka JT. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J Biomed Mater Res B Appl Biomater 2008; 85: 519-28.
36. Ritter AV, Swift EJ, Jr., Yamauchi M. Effects of phosphoric acid and glutaraldehyde-HEMA on dentin collagen. Eur J Oral Sci 2001; 109: 348-53.
37. Cilli R, Prakki A, de Araujo PA, Pereira JC. Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. J Dent 2009; 37: 212-8.
38. Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin : a natural crosslinking reagent for stabilizing collagen matrices. Journal of Biomedical Materials Research Part A 2003; 65: 118-124.
39. Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater 2008; 86: 330-4.
40. Bedran-Russo AK, Pereira PN, Duarte WR, Drummond JL, Yamauchi M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J Biomed Mater Res B Appl Biomater 2007; 80: 268-72.
41. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus. American Journal of Ophthalmology 2003; 135: 620-627.
42. Cova A, Breschi L, Nato F, Ruggeri A, Carrilho M, Tjäderhane L, Prati C, Di Lenarda R, Tay F, Pashley D. Effect of UVA-activated riboflavin on dentin bonding. Journal of Dental Research 2011; 90: 1439-1445.
43. Fawzy A, Nitisusanta L, Iqbal K, Daood U, Beng LT, Neo J. Characterization of riboflavin-modified dentin collagen matrix. J Dent Res 2012; 91: 1049-54.
44. Chiang YS, Chen YL, Chuang SF, Wu CM, Wei PJ, Han CF, Lin JC, Chang HT. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding. Dent Mater 2013; 29: 682-92.
45. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin–ultraviolet-A treatment in the rabbit. Journal of Cataract & Refractive Surgery 2003; 29: 1786-1790.
46. Wataha J. Biological effects of blue light from dental curing units. Dental Materials 2004; 20: 150-157.
47. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Neo J. Riboflavin as a dentin crosslinking agent: ultraviolet A versus blue light. Dent Mater 2012; 28: 1284-91.
48. Ping-Ju Chen S-FC. The use of photoreactive riboflavin and blue light irradiation in improving dentin bonding. Thesis 2014.
49. Brennan-Pierce EP, MacAskill I, Price RB, Lee JM. Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light. Biomed Mater Eng 2014; 24: 1659-71.
50. Daood U, Heng CS, LIan JNC, Fawzy AS. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. Int J Oral Sci 2015; 7: 110-24.
51. HUANG R, CHOE E, MIN DB. Kineticsforsingletoxygenformationby riboflavin photosensitization and the reaction between riboflavin and singlet oxygen. JOURNAL OF FOOD SCIENCE 2004; 69.
52. de La Rochette A, Birlouez-Aragon I, Silva E, Morlière P. Advanced glycation endproducts as UVA photosensitizers of tryptophan and ascorbic acid: consequences for the lens. Biochimica et Biophysica Acta (BBA) - General Subjects 2003; 1621: 235-241.
53. Au V, Madison SA. Effects of singlet oxygen on the extracellular matrix protein collagen: oxidation of the collagen crosslink histidinohydroxylysinonorleucine and histidine. Arch Biochem Biophys 2000; 384: 133-42.
54. Slifkin M. Interaction of amino-acids with riboflavin. Nature 1963; 197: 275-276.
55. McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE, Dedeic Z, Dionne MJ, Clement EM, Conrad GW. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci 2010; 51: 129-38.
56. Fraser R, MacRae T, Suzuki E. Chain conformation in the collagen molecule. Journal of molecular biology 1979; 129: 463-481.
57. McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE, Dedeic Z, Dionne MJ, Clement EM, Conrad GW. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Investigative ophthalmology & visual science 2010; 51: 129-138.
58. Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. Journal of Biological Chemistry 2011; 286: 13011-13022.
59. Snibson GR. Collagen cross‐linking: a new treatment paradigm in corneal disease–a review. Clinical & experimental ophthalmology 2010; 38: 141-153.
60. Finger W. Polymerizationsinhibition durch Sauerstoff bei Komposit fullings materialien and Schmelzversieglern. Schweiz Monatsschrift fur Zahnheilkunde 1976; 86: 812-824.
61. Zachrisson BU, Heimgård E, Ruyter IE, Mjör IA. Problems with sealants for bracket bonding. American journal of orthodontics 1979; 75: 641-649.
62. Oyama K, Tsujimoto A, Otsuka E, Shimizu Y, Shiratsuchi K, Tsubota K, Takamizawa T, Miyazaki M. Influence of oxygen inhibition on the surface free energy and enamel bond strength of self-etch adhesives. Dent Mater J 2012; 31: 26-31.
63. Ruyter IE. Unpolymerized surface layers on sealants. Dent Mater 1981; 39: 27-32.
64. Finger WJ, Lee K-S, Podszun W. Monomers with low oxygen inhibition as enamel/dentin adhesives. Dental Materials 1996; 12: 256-261.
65. Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M. Influence of the Oxygen-inhibited Layer on Bonding Performance of Dental Adhesive Systems: Surface Free Energy Perspectives. J Adhes Dent 2016; 18: 51-8.
66. Gauthier MA, Stangel I, Ellis TH, Zhu XX. Oxygen Inhibition in Dental Resins. J Dent Res 2005; 84: 725-729.
67. Shawkat ES, Shortall AC, Addison O, Palin WM. Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater 2009; 25: 1338-46.
68. Bijelic-Donova J, Garoushi S, Lassila LV, Vallittu PK. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength. Eur J Oral Sci 2015; 123: 53-60.
69. Tay F, Pashley DH, Yoshiyama M. Two modes of nanoleakage expression in single-step adhesives. Journal of Dental Research 2002; 81: 472-476.
70. Cova A, Breschi L, Nato F, Ruggeri A, Jr., Carrilho M, Tjaderhane L, Prati C, Di Lenarda R, Tay FR, Pashley DH, Mazzoni A. Effect of UVA-activated riboflavin on dentin bonding. J Dent Res 2011; 90: 1439-45.
71. Seseogullari-Dirihan R, Tjaderhane L, Pashley DH, Tezvergil-Mutluay A. Effect of ultraviolet A-induced crosslinking on dentin collagen matrix. Dent Mater 2015; 31: 1225-31.
72. Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chemical Society Reviews 2010; 39: 3181-3209.
73. Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chemical reviews 2003; 103: 1685-1758.
74. Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, Daasbjerg K, Glasius M, Ogilby PR. Singlet Oxygen Sensor Green(R): photochemical behavior in solution and in a mammalian cell. Photochem Photobiol 2011; 87: 671-9.
75. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007; 28: 3757-3785.
76. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. Journal ofBiomedical Materials Research 1986; 20: 121-131.
77. Cadenaro M, Antoniolli F, Sauro S, Tay FR, Di Lenarda R, Prati C, Biasotto M, Contardo L, Breschi L. Degree of conversion and permeability of dental adhesives. European journal of oral sciences 2005; 113: 525-530.
78. Hashimoto M, Ohno H, Sano H, Tay FR, Kaga M, Kudou Y, Oguchi H, Araki Y, Kubota M. Micromorphological changes in resin‐dentin bonds after 1 year of water storage. Journal of Biomedical Materials Research 2002; 63: 306-311.
79. Hass V, Luque-Martinez I, Sabino NB, Loguercio AD, Reis A. Prolonged exposure times of one-step self-etch adhesives on adhesive properties and durability of dentine bonds. Journal of dentistry 2012; 40: 1090-1102.
80. Ziskind D, Hasday M, Cohen SR, Wagner HD. Young's modulus of peritubular and intertubular human dentin by nano-indentation tests. J Struct Biol 2011; 174: 23-30.
81. Spoerl E, Seiler T. Safety of UVA–riboflavin cross-linking of the cornea. Cornea 2007; 26: 285-289.
82. Liu X, Zhou J, Chen L, Yang Y, Tan J. UVA-activated riboflavin improves the strength of human dentin. J Oral Sci 2015; 57: 229-34.
83. Fusayama T, Nakamura M, Kurosaki N, Iwaku M. Non-pressure adhesion of a new adhesive restorative resin. Journal of dental research 1979; 58: 1364-1370.
84. Jacobsen T, Söderholm K-J. Some effects of water on dentin bonding. Dental Materials 1995; 11: 132-136.
85. Breschi L, Martin P, Mazzoni A, Nato F, Carrilho M, Tjäderhane L, Visintini E, Cadenaro M, Tay FR, Dorigo EDS. Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dental Materials 2010; 26: 571-578.
86. Hebling J, Pashley DH, Tjäderhane L, Tay F. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. Journal of Dental Research 2005; 84: 741-746.
87. Carrilho M, Geraldeli S, Tay F, De Goes M, Carvalho R, Tjäderhane L, Reis A, Hebling J, Mazzoni A, Breschi L. In vivo preservation of the hybrid layer by chlorhexidine. Journal of Dental Research 2007; 86: 529-533.
校內:2023-09-01公開