| 研究生: |
林健瑜 Lin, Chien-Yu |
|---|---|
| 論文名稱: |
氧化鋅鈷奈米粒子複合葉綠體之自旋極化光電化學水分解應用 Spin Polarized Photoelectrochemical Water Splitting of ZnCo2O4 Nanoparticles Coated with Chloroplast Composites |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 氧化鋅鈷 、尖晶石過渡金屬氧化物 、水熱法 、葉綠體 、自旋極化注入 、光電化學水分解 |
| 外文關鍵詞: | Zin cobalt oxide, spinel-type transition metal oxide, hydrothermal method, chloroplast, spin polarized injection, photoelectrochemical (PEC) water splitting |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們介紹一種尖晶石結構的氧化鋅鈷在ITO或碳紙基底上,並且複合上葉綠體塗層,作為光電極的的高效光電化學水分解材料。氧化鋅鈷是一種p型過渡金屬氧化物半導體,也是非常熱門的尖晶石超級電容器材料,並由於其高電荷存儲容量和結構穩定性的特性而著稱。我們展示透過水熱合成法,並接著在三個不同溫度(300 °C、400 °C和500 °C)下進行退火處理,製備微孔至中孔結構的氧化鋅鈷,呈現出奈米粒子的形態。此外,我們從小球藻中提取葉綠體,並將其塗覆在氧化鋅鈷電極上,以增強光吸收能力,促進水分解過程中的光合作用反應。在405奈米和808奈米雷射光條件下觀察自旋極化率曲線,與電子自旋向上和自旋向下狀態的電流密度變化相互對應。最後,在模擬太陽光條件下,在光電化學裝置中測量施加偏壓電位時的電流密度並進一步計算偏壓光轉換電流效率(ABPE)。可以觀察到隨著氧化鋅鈷孔隙率的提升,明顯提高光電流密度和ABPE。此外,將葉綠體塗覆在氧化鋅鈷上,進而提升其在可見光照射下的PEC性能。而且由於碳紙的優異導電性,碳紙基板在LSV和ABPE性能上比ITO基板更高。光電化學水分解電池展示卓越的氫氣生成性能的ABPE效率,特別是塗覆葉綠體的500 °C氧化鋅鈷碳紙電極。本研究結果顯示,氧化鋅鈷具有巨大潛力來作為一種高效、地球資源豐富且環境友好的金屬氧化物。
In the research, we introduced a high-efficiency photoelectrochemical water splitting material of spinel-structured ZnCo2O4 on ITO or carbon paper substrate as photoelectrode and also coating them with a chloroplast layer. ZnCo2O4 is p-type transition metal oxide semiconductor and the popular spinel supercapacitor material, known for high charge storage capacity and structural stability. We demonstrated the fabrication of microporous to mesoporous ZnCo2O4 through hydrothermal synthesis followed by annealing at three different temperatures: 300 °C, 400 °C, and 500 °C, also showing nanoparticles in morphologies. Furthermore, we extracted the chloroplasts from chlorella to coat on ZnCo2O4 electrodes to enhance light absorption ability, which could also boost the photosynthesis reaction during the water splitting process. The photoelectrodes were prepared using carbon paper (CP) substrate and compared with indium tin oxide (ITO) substrate for photocatalytic performance. Spin polarization curve under incident 405 nm and 808 nm laser beams corresponded to changes in current density regarding the electron spin-up and spin-down states. Eventually, the photoelectrodes were exposed to simulated sunlight to measure the current density upon applied bias voltage in an electrochemical setup, and we further calculated the applied bias photon-to-current efficiency (ABPE). It was observed that increasing the porosity of ZnCo2O4 significantly improved the photocurrent density and ABPE. Additionally, coating the chloroplast with ZnCo2O4 further improved its PEC performance upon exposure to visible light. Moreover, the CP substrate exhibited higher LSV and ABPE performance than the ITO substrate due to its excellent conductivity. The photoelectrochemical water splitting cell showed a splendid ABPE efficiency of hydrogen production performance, especially the chloroplast-coated 500 °C ZnCo2O4 carbon paper electrode. The results presented in this study reflect the huge potential of ZnCo2O4 as an efficient, earth-abundant, and environmentally friendly metal oxide alternative.
[1] P. Fragkos, “Assessing the Role of Carbon Capture and Storage in Mitigation Pathways of Developing Economies,” Energies, vol. 14, no. 7, Apr, 2021.
[2] F. Nijsse, J. F. Mercure, N. Ameli, F. Larosa, S. Kothari, J. Rickman, P. Vercoulen, and H. Pollitt, “The momentum of the solar energy transition,” Nature Communications, vol. 14, no. 1, Oct, 2023.
[3] X. Li, L. L. Zhao, J. Y. Yu, X. Y. Liu, X. L. Zhang, H. Liu, and W. J. Zhou, “Water Splitting: From Electrode to Green Energy System,” Nano-Micro Letters, vol. 12, no. 1, Jun, 2020.
[4] A. Simanaitiene, I. Barauskiene, S. Varnagiris, M. Urbonavicius, and A. Sulciute, “Mixed zinc-cobalt oxide coatings for photocatalytic applications,” Applied Physics a-Materials Science & Processing, vol. 126, no. 9, Aug, 2020.
[5] W. Wang, L. J. Chen, J. Q. Qi, Y. W. Sui, Y. Z. He, Q. K. Meng, F. X. Wei, and Z. Sun, “All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays,” Journal of Materials Science-Materials in Electronics, vol. 29, no. 3, pp. 2120-2130, Feb, 2018.
[6] L. Huang, G. H. Waller, Y. Ding, D. C. Chen, D. Ding, P. X. Xi, Z. L. Wang, and M. L. Liu, “Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries,” Nano Energy, vol. 11, pp. 64-70, Jan, 2015.
[7] D. B. Xu, T. Xia, H. M. Xu, W. Q. Fan, and W. D. Shi, “Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting,” Chemical Engineering Journal, vol. 392, Jul, 2020.
[8] X. A. López, A. F. Fuentes, M. M. Zaragoza, J. A. D. Guillén, J. S. Gutiérrez, A. L. Ortiz, and V. Collins-Martínez, “Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni, Co, Cu and Mn) tungstates,” International Journal of Hydrogen Energy, vol. 41, no. 48, pp. 23312-23317, Dec, 2016.
[9] A. Ammasi, A. P. Munusamy, M. Shkir, F. Maiz, B. Vellingiri, V. R. M. Reddy, and W. K. Kim, “Synthesis and electrochemical performance of CoWO4 and CoWO4/MWCNT nanocomposites for highly efficient supercapacitor applications,” Diamond and Related Materials, vol. 139, Nov, 2023.
[10] W. H. Zhao, T. T. Liu, N. A. D. Wu, B. Y. Zhou, Y. X. Yan, Y. C. Ye, J. F. Gong, and S. G. Yang, “Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance,” Science China-Materials, vol. 66, no. 2, pp. 577-586, Feb, 2023.
[11] A. J. Jiao, J. F. Gao, Z. H. He, F. F. Li, and L. B. Kong, “Constructing High-Performance Li-ion Capacitors via Cobalt Fluoride with Excellent Cyclic Stability as Anode and Coconut Shell Biomass-Derived Carbon as Cathode Materials,” Chemistryselect, vol. 6, no. 32, pp. 8349-8360, Aug, 2021.
[12] X. C. Huang, J. Y. Zhang, M. Wu, S. Zhang, H. Y. Xiao, W. Q. Han, T. L. Lee, A. Tadich, D. C. Qi, L. Qiao, L. Chen, and K. H. L. Zhang, “Electronic structure and p-type conduction mechanism of spinel cobaltite oxide thin films,” Physical Review B, vol. 100, no. 11, Sep, 2019.
[13] J. X. Flores-Lasluisa, F. Huerta, D. Cazorla-Amoros, and E. Morallon, “Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications,” Environmental Research, vol. 214, Nov, 2022.
[14] W. Luo, X. L. Hu, Y. M. Sun, and Y. H. Huang, “Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries,” Journal of Materials Chemistry, vol. 22, no. 18, pp. 8916-8921, 2012.
[15] M. S. Park, J. Kim, K. J. Kim, J. W. Lee, J. H. Kim, and Y. Yamauchi, “Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems,” Physical Chemistry Chemical Physics, vol. 17, no. 46, pp. 30963-30977, 2015.
[16] B. Liu, B. Y. Liu, Q. F. Wang, X. F. Wang, Q. Y. Xiang, D. Chen, and G. Z. Shen, “New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors,” Acs Applied Materials & Interfaces, vol. 5, no. 20, pp. 10011-10017, Oct, 2013.
[17] D. Y. Zhang, Y. H. Zhang, X. W. Li, Y. S. Luo, H. W. Huang, J. P. Wang, and P. K. Chu, “Self-assembly of mesoporous ZnCo2O4 nanomaterials: density functional theory calculation and flexible all-solid-state energy storage,” Journal of Materials Chemistry A, vol. 4, no. 2, pp. 568-577, 2016.
[18] R. H. Althomali, E. A. M. Saleh, R. S. Bhat, S. Askar, I. B. Sapaev, M. A. A. Najm, B. M. Ridha, A. H. Alsalamy, and R. Riyadh, “Novel ZnCo2O4/WO3 nanocomposite as the counter electrode for dye-sensitized solar cells (DSSCs): study of electrocatalytic activity and charge transfer properties,” Optical Materials, vol. 143, Sep, 2023.
[19] X. Z. Li, M. Y. Zhang, L. L. Wu, Q. S. Fu, and H. Gao, “Annealing temperature dependent ZnCo2O4 nanosheet arrays supported on Ni foam for high-performance asymmetric supercapacitor,” Journal of Alloys and Compounds, vol. 773, pp. 367-375, Jan, 2019.
[20] W. L. Bai, H. Tong, Z. Z. Gao, S. H. Yue, S. C. Xing, S. Y. Dong, L. F. Shen, J. P. He, X. G. Zhang, and Y. Y. Liang, “Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance,” Journal of Materials Chemistry A, vol. 3, no. 43, pp. 21891-21898, 2015.
[21] J. A. Rajesh, and K. S. Ahn, “Facile Hydrothermal Synthesis and Supercapacitor Performance of Mesoporous Necklace-Type ZnCo2O4 Nanowires,” Catalysts, vol. 11, no. 12, Dec, 2021.
[22] M. Carbone, “Zn defective ZnCo2O4 nanorods as high capacity anode for lithium ion batteries,” Journal of Electroanalytical Chemistry, vol. 815, pp. 151-157, Apr, 2018.
[23] M. Priya, V. K. Premkumar, P. Vasantharani, and G. Sivakumar, “Structural and electrochemical properties of ZnCo2O4 nanoparticles synthesized by hydrothermal method,” Vacuum, vol. 167, pp. 307-312, Sep, 2019.
[24] B. Saravanakumar, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, and A. Sakunthala, “Hydrothermal synthesis and electrochemical properties of ZnCo2O4 microspheres,” Ionics, vol. 25, no. 1, pp. 353-360, Jan, 2019.
[25] A. Sulciute, J. Baltrusaitis, and E. Valatka, “Structure, morphology and electrochemical properties of zinc-cobalt oxide films on AISI 304 type steel,” Journal of Applied Electrochemistry, vol. 45, no. 5, pp. 405-417, May, 2015.
[26] H. Y. Chen, and P. C. Chen, “P-type spinel ZnCo2O4 thin films prepared using sol-gel process,” Applied Surface Science, vol. 505, Mar, 2020.
[27] B. R. Jheng, P. T. Chiu, S. H. Yang, and Y. L. Tong, “Using ZnCo2O4 nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells,” Scientific Reports, vol. 12, no. 1, Feb, 2022.
[28] K. B. Gawande, S. B. Gawande, S. R. Thakare, V. R. Mate, S. R. Kadam, B. B. Kale, and M. V. Kulkarni, “Effect of zinc : cobalt composition in ZnCo2O4 spinels for highly selective liquefied petroleum gas sensing at low and high temperatures,” Rsc Advances, vol. 5, no. 50, pp. 40429-40436, 2015.
[29] M. Sharma, and A. Gaur, “Designing of Carbon Nitride Supported Effect of zinc : cobalt composition in ZnCo2O4 spinels Hybrid Electrode for High-Performance Energy Storage Applications,” Scientific Reports, vol. 10, no. 1, Feb, 2020.
[30] Z. Z. Jiang, L. Feng, J. R. Zhu, X. H. Li, S. Khan, and Y. N. Chen, “Enhanced visible-light utilization with ZnCo2O4-BiErWO6 heterojunctions towards photocatalytic degradation of antibiotics,” Journal of Materials Science-Materials in Electronics, vol. 31, no. 20, pp. 18248-18262, Oct, 2020.
[31] C. R. Mariappan, R. Kumar, and G. V. Prakash, “Functional properties of ZnCo2O4 nano-particles obtained by thermal decomposition of a solution of binary metal nitrates,” Rsc Advances, vol. 5, no. 34, pp. 26843-26849, 2015.
[32] J. M. Gonçalves, M. I. da Silva, M. N. T. Silva, P. R. Martins, E. Nossol, H. E. Toma, and L. Angnes, “Recent progress in ZnCo2O4 and its composites for energy storage and conversion: a review,” Energy Advances, vol. 1, no. 11, pp. 793-841, Nov, 2022.
[33] S. G. Jha, A. T. Borowsky, B. J. Cole, N. Fahlgren, A. Farmer, S. S. C. Huang, P. Karia, M. Libault, N. J. Provart, S. L. Rice, M. Saura-Sanchez, P. Agarwal, A. H. Ahkami, C. R. Anderton, S. P. Briggs, J. A. Brophy, P. Denolf, L. F. Di Costanzo, M. Exposito-Alonso, S. Giacomello, F. Gomez-Cano, K. Kaufmann, D. K. Ko, S. Kumar, A. V. Malkovskiy, N. Nakayama, T. Obata, M. S. Otegui, G. Palfalvi, E. H. Quezada-Rodríguez, R. Singh, R. G. Uhrig, J. Waese, K. Van Wijk, R. C. Wright, D. W. Ehrhardt, K. D. Birnbaum, S. Y. Rhee, and C. Plant Cell Atlas, “Science Forum: Vision, challenges and opportunities for a Plant Cell Atlas,” Elife, vol. 10, Sep, 2021.
[34] Y. H. Su, C. Y. Hsu, C. C. Chang, S. L. Tu, and Y. H. Shen, “Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices,” Applied Physics Letters, vol. 103, no. 6, Aug, 2013.
[35] E. Varela-Alvarez, N. Andreakis, A. Lago-Lestón, G. A. Pearson, E. A. Serrao, G. Procaccini, C. M. Duarte, and N. Marbá, “Genomic DNA isolation from green and brown algae (Caulerpales and Fucales) for microsatellite library construction,” Journal of Phycology, vol. 42, no. 3, pp. 741-745, Jun, 2006.
[36] H. Kirst, J. G. Garcia-Cerdan, A. Zurbriggen, T. Ruehle, and A. Melis, “Truncated Photosystem Chlorophyll Antenna Size in the Green Microalga Chlamydomonas reinhardtii upon Deletion of the TLA3-CpSRP43 Gene,” Plant Physiology, vol. 160, no. 4, pp. 2251-2260, Dec, 2012.
[37] W. B. Kong, N. Liu, J. Zhang, Q. Yang, S. F. Hua, H. Song, and C. G. Xia, “Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology,” Journal of Food Science and Technology-Mysore, vol. 51, no. 9, pp. 2006-2013, Sep, 2014.
[38] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch, “Features of promising technologies for pretreatment of lignocellulosic biomass,” Bioresource Technology, vol. 96, no. 6, pp. 673-686, Apr, 2005.
[39] H. G. Gerken, B. Donohoe, and E. P. Knoshaug, “Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production,” Planta, vol. 237, no. 1, pp. 239-253, Jan, 2013.
[40] A. Ramazanov, and Z. Ramazanov, “Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content,” Phycological Research, vol. 54, no. 4, pp. 255-259, Dec, 2006.
[41] H. Chang, M. J. Kao, T. L. Chen, C. H. Chen, K. C. Cho, and X. R. Lai, “Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells,” International Journal of Photoenergy, vol. 2013, 2013.
[42] G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo, and F. Bonaccorso, “Vegetable-based dye-sensitized solar cells,” Chemical Society Reviews, vol. 44, no. 10, pp. 3244-3294, 2015.
[43] X. J. Liu, Y. Wang, Q. Wang, and W. Yang, “Chloroplast inspired Z-scheme photocatalyst for efficient degradation of antibiotics: Synergistic effect of full-visible light response, multi-channel electron transport and enhanced molecular oxygen activation,” Separation and Purification Technology, vol. 315, Jun, 2023.
[44] I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Reviews of Modern Physics, vol. 76, no. 2, pp. 323-410, Apr, 2004.
[45] A. Hirohata, and K. Takanashi, “Future perspectives for spintronic devices,” Journal of Physics D-Applied Physics, vol. 47, no. 19, May, 2014.
[46] S. Franke-Arnold, “Optical angular momentum and atoms,” Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 375, no. 2087, Feb, 2017.
[47] T. W. Cronin, “A different view: sensory drive in the polarized-light realm,” Current Zoology, vol. 64, no. 4, pp. 513-523, Aug, 2018.
[48] P. A. Koyale, and S. D. Delekar, “A review on practical aspects of CeO2 and its composites for photoelectrochemical water splitting,” International Journal of Hydrogen Energy, vol. 51, pp. 515-530, Jan, 2024.
[49] S. Chandrasekaran, J. S. Chung, E. J. Kim, and S. H. Hur, “Advanced Nano-Structured Materials for Photocatalytic Water Splitting,” Journal of Electrochemical Science and Technology, vol. 7, no. 1, pp. 1-12, Mar, 2016.
[50] C. R. Jiang, J. Yang, T. T. Zhao, L. Q. Xiong, Z. X. Guo, Y. J. Ren, H. F. Qi, A. Q. Wang, and J. W. Tang, “Co3+-O-V4+ cluster in CoVOx nanorods for efficient and stable electrochemical oxygen evolution,” Applied Catalysis B-Environmental, vol. 282, Mar, 2021.
[51] X. Li, J. G. Yu, and M. Jaroniec, “Hierarchical photocatalysts,” Chemical Society Reviews, vol. 45, no. 9, pp. 2603-2636, 2016.
[52] B. Rusinque, S. Escobedo, and H. de Lasa, “Photoreduction of a Pd-Doped Mesoporous TiO2 Photocatalyst for Hydrogen Production under Visible Light,” Catalysts, vol. 10, no. 1, Jan, 2020.
[53] D. Chen, Z. F. Liu, M. Zhou, P. D. Wu, and J. D. Wei, “Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate,” Journal of Alloys and Compounds, vol. 742, pp. 918-927, Apr, 2018.
[54] X. T. Chen, C. Zhen, N. Li, N. Jia, X. X. Xu, L. Z. Wang, and G. Liu, “Photochemically Etching BiVO4 to Construct Asymmetric Heterojunction of BiVO4/BiOx Showing Efficient Photoelectrochemical Water Splitting,” Small Methods, vol. 7, no. 3, Mar, 2023.
[55] P. Lianos, “Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen,” Applied Catalysis B-Environmental, vol. 210, pp. 235-254, Aug, 2017.
[56] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, vol. 38, no. 1, pp. 253-278, 2009.
[57] C. R. Jiang, S. J. A. Moniz, A. Q. Wang, T. Zhang, and J. W. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chemical Society Reviews, vol. 46, no. 15, pp. 4645-4660, Aug, 2017.
[58] F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs,” Small Methods, vol. 2, no. 11, Nov, 2018.
[59] S. Rasalingam, C. M. Wu, and R. T. Koodali, “Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B,” Acs Applied Materials & Interfaces, vol. 7, no. 7, pp. 4368-4380, Feb, 2015.
[60] T. Weller, J. Timm, L. Deilmann, T. S. Doerr, C. Greve, A. S. Cherevan, P. A. Beaucage, U. B. Wiesner, E. M. Herzig, D. Eder, and R. Marschall, “Effects of Periodic Pore Ordering on Photocatalytic Hydrogen Generation with Mesoporous Semiconductor Oxides,” Small Structures, vol. 4, no. 6, Jun, 2023.
[61] K. Goswami, R. Ananthakrishnan, and S. Mandal, “Facile synthesis of cation doped ZnO-ZnCo2O4 hetero-nanocomposites for photocatalytic decomposition of aqueous organics under visible light,” Materials Chemistry and Physics, vol. 206, pp. 174-185, Feb, 2018.
[62] L. W. Wang, W. D. Chen, and L. Li, “Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayer structure for transparent conductive electrodes by magnetron sputtering,” Journal of Materials Science-Materials in Electronics, vol. 28, no. 4, pp. 3458-3466, Feb, 2017.
[63] I. Khaled, R. Bagtache, M. Kadri, A. Chergui, and M. Trari, “Physical and photo-electrochemical properties of the hetero-junction ZnCo2O4/ZnO prepared by nitrate route: Application to photodegradation of Indigo Carmine,” Inorganic Chemistry Communications, vol. 159, Jan, 2024.
[64] G. Rekhila, A. Saidani, F. Hocine, S. H. Ben Hariz, and M. Trari, “Characterization of the hetero-system ZnCo2O4/ZnO prepared by sol gel: application to the degradation of Ponceau 4R under solar light,” Applied Physics a-Materials Science & Processing, vol. 126, no. 8, Jul, 2020.
[65] D. V. Ribeiro, and J. C. C. Abrantes, “Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach,” Construction and Building Materials, vol. 111, pp. 98-104, May, 2016.
[66] M. Y. Patel, M. J. Mortelliti, and J. L. Dempsey, “A compendium and meta-analysis of flatband potentials for TiO2, ZnO, and SnO2 semiconductors in aqueous media,” Chemical Physics Reviews, vol. 3, no. 1, Mar, 2022.
[67] H. Naatz, R. Hoffmann, A. Hartwig, F. La Mantia, S. Pokhrel, and L. Mädler, “Determination of the Flat Band Potential of Nanoparticles in Porous Electrodes by Blocking the Substrate-Electrolyte Contact,” Journal of Physical Chemistry C, vol. 122, no. 5, pp. 2796-2805, Feb, 2018.
[68] K. Mielke, R. Wagner, L. S. Mishra, F. Demir, A. Perrar, P. F. Huesgen, and C. Funk, “Abundance of metalloprotease FtsH12 modulates chloroplast development in Arabidopsis thaliana,” Journal of Experimental Botany, vol. 72, no. 9, pp. 3455-3473, Apr, 2021.
[69] I. Rumak, R. Mazur, K. Gieczewska, J. Koziol-Lipinska, B. Kierdaszuk, W. P. Michalski, B. J. Shiell, J. H. Venema, W. J. Vredenberg, A. Mostowska, and M. Garstka, “Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes,” Bmc Plant Biology, vol. 12, May, 2012.
[70] I. Yakavets, I. Yankovsky, L. Bezdetnaya, and V. Zorin, “Soret band shape indicates mTHPC distribution between β-cyclodextrins and serum proteins,” Dyes and Pigments, vol. 137, pp. 299-306, Feb, 2017.
[71] Y. M. Zhou, H. T. Chang, J. P. Zhang, and L. H. Skibsted, “Clove Oil Protects β-Carotene in Oil-in-Water Emulsion against Photodegradation,” Applied Sciences-Basel, vol. 11, no. 6, Mar, 2021.
[72] Y. X. Zhang, G. Gao, Q. R. Qian, and D. X. Cui, “Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor,” Nanoscale Research Letters, vol. 7, Aug, 2012.
[73] S. Kaur, M. Singh, and S. J. S. Flora, “Quenching Action of Monofunctional Sulfur Mustard on Chlorophyll Fluorescence: Towards an Ultrasensitive Biosensor,” Applied Biochemistry and Biotechnology, vol. 171, no. 6, pp. 1405-1415, Nov, 2013.
[74] M. R. Aziza, C. W. Chang, C. C. Kaun, and Y. H. Su, “Hydrogen Evolution Driven by Photoexcited Entangled Skyrmion on Perovskite Ca2Nan-3NbnO3n+1 Nanosheet,” Journal of Physical Chemistry Letters, vol. 12, no. 26, pp. 6244-6251, Jul, 2021.
[75] D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. L. Hu, “Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution,” Chemical Science, vol. 3, no. 8, pp. 2515-2525, 2012.
校內:2029-08-16公開