簡易檢索 / 詳目顯示

研究生: 黃慧玲
Huang, Hui-Ling
論文名稱: 新穎奈米材料半導體元件製造與分析
Fabrication and Analysis of Novel Nano Materials and Devices
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 123
中文關鍵詞: 原子轉移自由基聚合金奈米奈米元件軟微影溶劑反應光柵
外文關鍵詞: Atom transfer radical polymerization, Gold nanoparticles, Nanoscale device, Soft lithography, Solvent-responsive grating
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積體電路製造技術的尺寸縮小化能改善元件的切換速度與消耗功
    率,增加電路之元件積成密度也使得晶片整合功能性更加豐富。然而隨著
    生產技術邁入奈米階段,金氧半電晶體的性能無法光靠尺寸微小化來達
    到,傳統的光學微影也大於關鍵尺寸,若是要繼續微縮,就必須在改善遷
    移率的應力製程技術以及元件結構著手。另一方面如何藉由奈米金以及高
    分子刷的成長技術應用在元件結構,藉以改善傳統的製程的不足。本論文
    主要分為三個部份,其一為利用奈米金的自組裝行為來製造有機場效電晶
    體(OFET)電極,我們發展出藉由在矽晶片上奈米金自組裝金圖案的新穎
    方法。結合了軟微影及自組裝技術製造圖案,不再需要傳統的曝光以及蝕
    刻步驟就可以得到奈米級的奈米金圖案,結果顯示與傳統製程製造出的電
    晶體具備相似的特性,奈米金更有製備軟性電子之潛力。第二部分我們利
    用微影製程與原子轉移自由基聚合反應,得到400 nm 解析度之聚苯乙烯
    二維柱陣列的有機揮發物質感應器,我們測量浸泡過水與甲苯溶劑聚苯乙
    烯二維週期性浮式光柵之AFM 以及水靜態接觸角來證實其表面結構隨著溶
    劑極性指標變化:最後我們使用應變矽鍺與覆蓋氮化矽接觸孔蝕刻停止層
    探討互補式金氧半導體的特性。藉由結合壓縮應力的矽鍺層與具有壓縮、
    伸張應力的氮化矽層,P 型與N 型金屬氧化物半導體皆可以得到改善的電
    流輸出特性。此應力層的使用也改良了臨界電壓下滑的問題與短通道效
    應。對N 型金屬氧化物半導體來說,當使用伸張應力氮化矽層,比起傳統
    的製程方式的界面陷井密度可以改善32%。藉由此研究我們也歸納出從壓
    縮應力氮化矽層出來的氫原子是影響負偏溫度不穩定性與熱載子注入等
    可靠度的關鍵因素。

    The capabilities of device scaling can improve operation performance.
    However device scaling has facing serious problems in tool capability limitation and material innovations. Thus mobility enhancement technologies have been developed for advanced devices. The study also focus on alternative
    patterning approach to fabricate naon-scale features via direct self-assembly of polymers and gold nano particle. In first section, we developed an integrated process involving soft lithography and self-assembly to fabricate patterns of
    sub-micrometer AuNPs without the traditional lithography and etching processes. The five-layer structures that we employed as nanoscale metal electrodes in the fabrication of organic field effect transistors (OFETs), which exhibited output characteristics similar to those of corresponding OFETs prepared using traditional processing. In secondary section we used advanced lithography and oxygen plasma treatment to generate well-defined 400
    nm-resolution hole array of polystyrene (PS) which was successively grafted from the bottom layer of initiator by atom transfer radical polymerization (ATRP). The two-dimensional periodic relief grating (2DPRG) of the tethered
    VPS after immersion in solvents possessing various polarities present solvent-responsive properties in static water contact angles (SWCAs) and effective refractive indices (neff). The neff of the 2DPRG of tethered PS after
    immersion in water and toluene are 1.46 and 1.39 respectively. These reversibly properties created from a reversible conformational change of 2DPRG of tethered PS exhibited switching property in change of solvent
    polarity. In last section, we investigated on a nano-scale complementary metal–oxide–semiconductor field-effect transistor (CMOSFET) fabricated by local strained techniques with epitaxial SiGe and high mechanical stress SiN as contact etch stop layer (CESL). The Ion gain is 71.3% for PMOS with SiGe S/D plus compressive CESL layer and when processing tensile film on NMOS,the drive current can be improved by 42.8%. For short channel effect, strain
    scheme also show beneficial results based on Vt-roll off performance.Furthermore when capping a strained tensile film, the interface trap density for NMOS could lower down 32% comparing to control Si from charge pumping current measurement. The impact of these stressor schemes on device
    reliability have been studied to conclude that the hydrogen from compressive SiN is the key for reliability performance.

    Contents 致謝……………………………………………………………………………. I Abstract (in Chinese)....................................II Abstract (in English)....................................IV Contents……...............................................VI Figure Captions........................................VIII Table Captions..........................................XII Chapter 1 Introduction 1.1 Goldnanoparticles....................................01 1.2 Polymer Brushes......................................03 1.3 CMOSFET..............................................06 Chapter 2 Background theory 2.1 Nanoparticle synthesis and their use as functional thin films....................................................09 2.2 The fabricating strategy of polymer brush............23 2.2.1 Surface grafting...................................24 2.2.2 Self-assembled monolayers (SAMs)...................25 2.2.3 Smart polymer brush surfaces (SPBs)................26 2.2.4 Micro/nanomaterial system fabrication..............31 2.3 Device fabrication...................................42 Chapter 3 Experiments 3.1 Fabrication of patterned gold nanoparticle patterns using soft lithography for bottom-gate field effect transistors..............................................46 3.1.1 Materials..........................................46 3.1.2 Synthesis of AuNPs.................................46 3.1.3 Fabrication strategy...............................48 3.2 Fabrication of two-dimensional periodic relief grating of tethered polystyrene on silicon surface as solvent sensors..................................................50 3.2.1 Materials..........................................50 3.2.2 Fabrication of tethered PS 2DPRG...................51 3.2.3 Characterization of 2DPRG of tethered PS...........53 3.2.4 Two-dimensional periodic relief grating............54 3.3 Nanoscale CMOSFET performance improvement and reliability study for local strain Techniques............57 Chapter 4 Using soft lithography to fabricate gold nanoparticle patterns for bottom-gate field effect transistors 4.1 Characterization of AuNPs ...........................60 4.2 Surface morphology...................................63 4.3 Electric property of OFET............................65 Chapter 5 Fabrication of two-dimensional periodic relief grating of tethered polystyrene on silicon surface as solvent sensors 5.1 Surface Initiated polymerization from the Si–AS–BB functionalized silicon surface via ATRP..................68 5.2 Surface topography...................................70 5.3 Characterization of the 2DPRG of tethered PS after solvent immersions.......................................74 5.4 Solvent-switchable optical properties of 2DPRG of tethered PS..............................................78 Chapter 6 Nanoscale CMOSFET performance improvement and reliability study for local strain techniques 6.1 Characterization of CMOSFET.........................83 6.2 Performance and reliability…........................86 Chapter 7 Conclusion and future works 7.1 Conclusion..........................................95 7.2 Future Works........................................96 Reference...............................................98 Publication List.......................................123

    [1]Z. King, “Plastic electronics: putting the UK at the forefront of a new technological revolution”, Advanced Institute of Management Research”, p.p.40, 2009.
    [2] R. Das and P. Harrop, Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2009-2029, IDTechEx, 2009
    [3] Y. Li and J. Hou, “Major Classes of Conjugated Polymers and Synthetic
    Strategies in Introduction to Organic Electronics and Optoelectronic
    Materials and Devices”, CRC Press, Boca Raton, USA, p.p. 173-209,
    2008
    [4] N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, 1st ed,
    Pergamon Press Plc, Oxford, UK, 1990
    [5] D. R. Gamota et. al., Printed Organic and Molecular Electronics, Kluwer
    Academic Publishers, Massachusetts, USA, 2004
    [6] OE-A Roadmap for Organic and Printed Electronics, 3rd ed., ed. K.
    Hecker et. al., Organic Electronics Association, Frankfurt, Germany,
    2009
    [7] R. Della Torre, US005662573A
    [8] G. Schmidt, “Challenges and perspectives of printed electronics”, Proc.
    SPIE, vol. 6336, p.p.U149-U157, 2006
    [9] A. C. Huebler, et. al., “Ring Oscillator Fabricated Completely by Means
    of Mass-Printing Technologies”, Organic Electronics, Vol. 8, Issue 5,
    pp 480 – 486, 2007.
    [10] K. Allen, Flexible Flat Displays, John Wiley & Sons Ltd., Chichester,
    99
    UK, 2005
    [11] A. Gregg et. al., “Roll-to-Roll Manufacturing of Flexible Displays” in
    Flexible Flat Panel Displays, ed. G. P. Crawford, John Wiley & Sons,
    New York, USA, 2005G. Haacke, Transparent conducting oxides, Ann.
    Rev. Mater. Sci. Vol. 7, p.p. 73–93, 1977.
    [12] D. Huang et. al., “Plastic-Compatible Low Resistance Printable Gold
    Nanoparticle Conductors for Flexible Electronics”, J. Electrochem. Soc.,
    vol. 150, p.p. G412-417, 2003
    [13] S. H. Ko et. al., “Air Stable High Resolution Organic Transistors by
    Selective Laser Sintering of Inkjet Printed Metal Nanoparticle”, Appl.
    Phys. Lett., vol. 90, 141103, 2007
    [14] Z. Radivojevic et. al., Proc. 12th Intl. Workshop on Thermal
    investigations of ICs, Nice, France, 2006
    [15] M. Gupta et. al., Scr. Mater., vol. 52, p.p. 479-483, 2005
    [16] C. Corti and R. Holliday, Gold: Science and Applications, CRC Press,
    USA, 2010
    [17] A.N. Papzian, Gold Bulletin, vol. 15, p.p. 81-89, 1982
    [18] T. Bakhishev and V. Subramanian, J. Electron. Mat., vol. 38, p.p.
    2720-2725, 2009
    [19] M. J. Coutts et. al., J. Phys. Chem. C, 2009, 113, 1325.S. J. Hsieh, C. C.
    Chen and W. C. Say, Process for recovery of indium from ITO scraps
    and metallurgic microstructures, Mater. Sci. Eng. B Vol. 158, p.p. 82–87,
    2009.
    [20] S. T. Milner, ‘‘Polymer Brushes’’, Science, vol. 251, p.p. 905–914, 1991
    [21] A. Halperin, M. Tirrell and T. P. Lodge, ‘‘Tethered chains in polymer
    100
    microstructures’’, Adv. Polym. Sci., vol. 100, p.p. 31–71, 1992.
    [22] B. Zhao and W. J. Brittain, ‘‘Polymer brushes: surface-immobilized
    macromolecules’’, Prog. Polym. Sci., vol. 25, p.p. 677–710, 2000.
    [23] J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I. S. Choi,
    S. Hoffer, G. A. Somorjai and R. Langer, ‘‘A Reversibly Switching
    Surface’’, Science, vol. 299, p.p. 371–373, 2003.
    [24] A. M. Urban and M. W. Urban, Stimuli-Responsive Macromolecules
    and Polymeric Coatings, Oxford University Press and American
    Chemical Society, Washington, DC, 2005.
    [25] M. H. Li and P. Keller, ‘‘Stimuli-responsive polymer vesicles’’, Soft
    Matter, vol. 5, p.p. 927–937, 2009.
    [26] A. Kumar, A. Srivastava, I. Y. Galaev and B. Mattiasson, ‘‘Smart
    polymers: physical forms and bioengineering applications’’, Prog.
    Polym. Sci., vol. 32, p.p. 1205–1237, 2007.
    [27] C. Alexander and K. M. Shakesheff, ‘‘Responsive Polymers at the
    Biology/Materials Science Interface’’, Adv. Mater., vol. 18, p.p.
    3321–3328, 2006.
    [28] I. S. Choi and Y. S. Chi, ‘‘Surface Reactions on Demand:
    Electrochemical Control of SAM-Based Reactions’’, Angew. Chem., Int.
    Ed., vol. 45, p.p. 4894–4897, 2006.
    [29] W. Senaratne, L. Andruzzi and C. K. Ober, ‘‘Self-Assembled
    Monolayers and Polymer Brushes in Biotechnology: Current
    Applications and Future Perspectives’’, Biomacromolecules, vol. 6, p.p.
    2427–2448, 2005.
    [30] B. Bhushan, Springer Handbook of Nanotechnology, Springer-Verlag,
    101
    3rd edn, 2010.
    [31] S. J. Jhaver, M. R. Hynd, N. Dowell-Mesfin, J. N. Turner, W. Shain and
    C. K. Ober, ‘‘Release of nerve growth factor from HEMA
    hydrogel-coated substrates and its effect on the differentiation of neural
    cells’’, Biomacromolecules, vol.10, p.p.174–183, 2009.
    [32] S. L. Gras, T. Mahmud, G. Rosengarten, A. Mitchell and K.
    Kalantar-Zadeh, ‘‘Intelligent Control of Surface Hydrophobicity,’’,
    ChemPhysChem, vol.8, p.p 2036–2050, 2007.
    [33] J. A. Howarter and J. P. Youngblood, ‘‘Self-Cleaning and Anti-Fog
    Surfaces via Stimuli-Responsive Polymer Brushes’’, Adv. Mater., vol.
    19, p.p. 3838–3843, 2007.
    [34] I. Luzinov, S. Minko and V. V. Tsukruk, ‘‘Responsive brush layers:
    from tailored gradients to reversibly assembled nanoparticles’’, Soft
    Matter, vol. 4, p.p. 714–725, 2008.
    [35] P. M. Mendes, ‘‘Stimuli-Responsive Surfaces for Bio-Applications’’,
    Chem. Soc. Rev., vol. 37, p.p. 2512–2529, 2008.
    [36] Z. S. Liu and P. Calvert, ‘‘Multilayer hydrogels as muscle-like
    actuators’’, Adv. Mater., vol. 12, p.p. 288–291, 2000.
    [37] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. van
    Duyn, ‘‘Biosensing with plasmonic nanosensors’’, Nat. Mater., vol. 7,
    p.p. 442–453, 2008.
    [38] I. Tokarev and S. Minko, ‘‘Stimuli-responsive hydrogel thin films’’,
    Soft Matter, vol. 5, p.p. 511–524, 2009.
    [39] S. Lecommandoux, F. Checot, R. Borsali, M. Schappacher and A.
    Deffieux, ‘‘Effect of dense grafting on the backbone conformation of
    102
    bottlebrush polymers: determination of the persistence length in
    solution’’, Macromolecules, vol. 35, p.p. 8878–8881, 2002.
    [40] L. Feuz, F. A. M. Leermakers, M. Textor and O. Borisov, ‘‘Bending
    rigidity and induced persistence length of molecular bottle brushes: a
    self-consistent-field theory’’, Macromolecules, vol. 38, p.p. 8891–8901,
    2005.
    [41] D. Vlassopoulos, G. Fytas, B. Loppinet, F. Isel and P.
    Lutz,‘‘Polymacromonomers: structure and dynamics in non-dilute
    solutions, melts, and mixtures’’, Macromolecules, vol. 33, p.p.
    5960–5969, 2000.
    [42] A. S. Hoffman and P. S. Stayton, ‘‘Conjugates of stimuli-responsive
    polymers and proteins’’, Prog. Polym. Sci., vol. 32, p.p. 922–932, 2007.
    [43] A. Nelson, ‘‘Stimuli-responsive polymers: engineering interactions’’,
    Nat. Mater., vol. 7, p.p. 523–525, 2008.
    [44] Y. Xia, X. Yin, N. A. D. Burke and H. D. H. Stoever, ‘‘Thermal
    response of narrowdisperse poly (N-isopropylacrylamide) prepared by
    atom transfer radical polymerization’’, Macromolecules, vol. 38, p.p.
    5937–5943, 2005.
    [45] A. Bhattacharya and B. N. Misra, ‘‘Grafting: a versatile means to
    modify polymers. Techniques, factors and applications’’, Prog. Polym.
    Sci., vol. 29, p.p. 767–814, 2005.
    [46] H. Lee, K. Matyjaszewski, S. Yu and S. S. Sheiko, ‘‘Molecular brushes
    with spontaneous gradient by atom transfer radical polymerization’’,
    Macromolecules, vol. 38, p.p. 8264–8271, 2005.
    [47] S. J. Lord, S. S. Sheiko, I. LaRue, H.-I. Lee and K. Matyjaszewski,
    103
    ‘‘Tadpole conformation of gradient polymer brushes’’, Macromolecules,
    vol. 37, p.p. 4235–4240, 2004.
    [48] N. Khelfallah, N. Gunari, K. Fischer, G. Gkogkas, N. Hadjichristidis and
    M. Schmidt, ‘‘Micelles formed by cylindrical brush-coil block
    copolymers’’, Macromol. Rapid Commun., vol. 26, p.p. 1693–1697,
    2005.
    [49] M. W. Neiser, S. Muth, U. Kolb, J. R. Harris and J. Okuda, ‘‘Micelle
    formation from amphiphilic ‘cylindrical brush’-coil block copolymers
    prepared by metallocene catalysis’’, Angew. Chem., Int. Ed., vol. 43, p.p.
    3192–3195, 2004.
    [50] M. Zhang, C. Estournes, W. Bietsch and A. H. E. Mueller,
    ‘‘Superparamagnetic hybrid nanocylinders’’, Adv. Funct. Mater., vol. 14,
    p.p. 871–882, 2004.
    [51] A. Zhang, J. Barner, I. Goessl, J. P. Rabe and A. D. Schuleter, ‘‘A
    covalentchemistry approach to giant macromolecules and their wetting
    behavior on solid substrates’’, Angew. Chem., Int. Ed., vol. 43, p.p.
    5185–5188, 2005.
    [52] D. Wu, Y. Yang, X. Cheng, L. Liu, J. Tian and H. Zhao, ‘‘Mixed
    molecular brushes with PLLA and PS side chains prepared by AGET
    ATRP and ring-opening polymerization’’, Macromolecules, vol. 39, p.p.
    7513–7519, 2006.
    [53] K. Ishizu, J. Satoh and A. Sogabe, ‘‘Architecture and solution properties
    of AB-type brush-block-brush amphiphilic copolymers via ATRP
    techniques’’, J. Colloid Interface Sci., vol. 274, p.p. 472–479, 2004.
    [54] J. R. Boyce, D. Shirvanyants, S. S. Sheiko, D. A. Ivano, S. Qin, H.
    104
    Boerner and K. Matyjaszewski, ‘‘Multiarm molecular brushes: effect of
    the number of arms on the molecular weight polydispersity and surface
    ordering’’, Langmuir, vol. 20, p.p. 6005–6011, 2004.
    [55] M. Schappacher and A. Deffieux, ‘‘From combs to
    comb-g-combcentipedes’’, Macromolecules, vol. 38, p.p. 7209–7213,
    2005.
    [56] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and
    M. Bohr,“Scaling challenges and device design requirements for high
    performance sub-50 nm gate length planar CMOS transistors”, VLSI
    Symp. Tech. Dig., p.p. 174-175, 2000.
    [57] W. Zhao, J. He, R. E. Belford, L. E. Wernersson and A.
    Seabaugh“Partially depleted SOI MOSFETs under uniaxial tensile
    strain”, IEEE Trans. Electron Devices, vol. 51, no. 3, p.p. 317-323, 2004
    [58] 3. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T.
    Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A.
    Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K.
    Zawadzki, S. Thompson and M. Bohr,“A 90 nm high volume
    manufacturing logic technology featuring novel 45 nm gate length
    strained silicon CMOS transistors”, IEDM Tech. Dig., p.p. 978-980,
    2003.
    [59] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R.
    Nakamura, K. Kobayashi, K. Kawamura and S. Fukuyama,“A novel
    strain enhanced CMOS architecture using selectively deposited high
    tensile and high compressive silicon nitride films”, IEDM Tech. Dig.,
    p.p. 213-216, 2004.
    105
    [60] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase,
    K. Hashimoto and T. Sugii,“MOSFET current drive optimization using
    silicon nitride capping layer for 65-nm technology node”, VLSI Symp.
    Tech. Dig., p.p. 54-55, 2004.
    [61] Front End Processes, in International Technology Roadmap for
    Semiconductors, p.p. 28-29, 2003.
    [62] N. Yang, W. K. Henson, J. R. Hauser and J. J. Wortman,“Estimation of
    the effects of remote charge scattering on electron mobility of
    n-MOSFETs with ultrathin gate oxides”, IEEE Trans. Electron Devices,
    vol. 47, no. 2, p.p. 440-447, 2000.
    [63] B. Cheng, B. Maiti, S. Samayedam, J. Grant, B. Taylor, P. Tobin and J.
    Mogab,“0.18 mum metal gate fully-depleted SOI MOSFETs for
    advanced CMOS applications”,VLSI Symp. Tech. Dig., p.p. 25-26,
    1999.
    [64] S. Matsuda, H. Yamakawa, A. Azuma and Y. Toyoshima,“Performance
    improvement of metal gate CMOS technologies”,VLSI Symp. Tech.
    Dig., p.p. 63-64, 2001.
    [65] J. H. Sim, H. C. Wen, J. P. Lu and D. L. Kwong,“Dual work function
    metal gates using full nickel silicidation of doped poly-Si”,IEEE
    Electron Device Lett., vol. 24, no. 10, p.p. 631-633, 2003.
    [66] P. Xuan and J. Bokor,“Investigation of NiSi and TiSi as CMOS gate
    materials”, IEEE Electron Device Lett., vol. 24, no. 10, p.p. 634-636,
    2003.
    [67] M. Aslam et. al., ” Novel One-step Synthesis of. Amine-stabilized
    Aqueous Colloidal Gold Nanopar- ticles”, J. Mat. Chem., vol. 14, p.p.
    106
    1795-1797, 2004.
    [68] D. V. Leff et. al., Langmuir, vol. 12, p.p. 4723-4730, 1996.
    [69] Kumar et. al., “Synthesis and characterization of hydrophobic,
    organically-soluble gold nanocrystals functionalized with primary
    amines”, Langmuir, vol. 19, p.p. 6277-6282, 2003.
    [70] P. T. Bishop and V. Buche, WO2006/131766 A2
    [71] M. Brust et. al., “Synthesis of thiol-derivatised gold nanoparticles in a
    two-phase Liquid–Liquid system”, J. Chem. Soc., Chem. Commun., p.p.
    801-802, 1994
    [72] P.T. Bishop, A. Boardman and V. Buche, WO2007/110665 A2
    [73] Y. Wu et. al., “Studies of gold nanoparticles as precursors to printed
    conductive features for thin-film transistors “, Chem. Mater., vol. 18, p.p.
    4627-4632, 2006.
    [74] J.K. Chen, C.H. Chan, F.C. Chang, “Immobilization of layered double
    hydroxides in the fluidic system for nanoextraction of specific DNA
    molecules “, Appl. Phys. Lett. 92, 053108, 2008.
    [75] D. Marie-Christine, D. Astruc, “Gold Nanoparticles: Assembly,
    Supramolecular Chemistry, Quantum-Size-Related Properties, and
    Applications toward Biology, Catalysis, and Nanotechnology”, Chem.
    Rev. vol. 104, p.p. 293-346, 2004.
    [76] S.H. Liu, J.B.H. Tok, Z. Bao, “Fabricating Controllable Electrode Gaps
    Using Au−Ag−Au Nanowires”, Nano Lett. 5 , p.p 1071-1076, 2005.
    [77] Y.L. Wu, Y.N. Li, B.S. Ong, P. Liu, S. Gardner, B. Chiang,
    “High-performance organic thin-film transistors with solution-printed
    gold contacts”, Adv. Mater. Vol. 17, 184-187, 2005.
    107
    [78] D. Suzuki, H. Kawaguchi, “Janus particles with a functional
    gold surface for control of surface plasmon resonance”, Colloid Polym.
    Sci. vol. 284, p.p. 1471-1476, 2006.
    [79] N.E. Cant, K. Critchley, H. Zhang, S.D. Evans, “Surface
    functionalisation for the self-assembly of nanoparticle/polymer
    multilayer films”, Thin Solid Films, vol. 426, p.p. 31-39, 2003.
    [80] C.H. Chan, J.K. Chen, F.C. Chang, “Specific DNA extraction through
    fluid channels with immobilization of layered double hydroxides on
    polycarbonate surface “, Sens. Actuators, B, vol. 133, p.p 327-332,
    2008.
    [81] J.-K. Chen, J.-Y. Li, “Detection of specific DNA using a microfluidic
    device featuring tethered poly(N-isopropylacrylamide) on a silicon
    substrate “, Appl. Phys. Lett. Vol. 97, p.p. 063701, 2010.
    [82] N. Terasaki, N. Yamamoto, T. Hiraga, I. Sato, Y. Inoue, S. Yamada,
    “Fabrication of novel photosystem I–gold nanoparticle hybrids and their
    photocurrent enhancement“, Thin Solid Films, vol. 499, p.p. 153-156,
    2006.
    [83] A.P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum
    Dots “, Science, vol. 271, p.p. 933, 1996.
    [84] B.R. Cuenya, “Synthesis and catalytic properties of metal nanoparticles:
    Size, shape, support, composition, and oxidation state effects “, Thin
    Solid Films, vol. 518, p.p. 3127-3150, 2010.
    [85] T. Cuk, S.M. Troian, C.M. Hong, S. Wagner, “Using Convective Flow
    Splitting for the Direct Printing of Fine Copper Lines”, Appl. Phys. Lett.
    Vol. 77 , p.p. 2063-2065, 2000.
    108
    [86] C.P.R. Dockendorf, T.Y. Choi, D. Poulikakos, A. Stemmer, “Size
    reduction of nanoparticle ink patterns by fluid-assisted dewetting”, Appl.
    Phys. Lett., vol. 88, p.p. 131903, 2006.
    [87] J.K. Chen, A.L. Zhuang, “Patterning nanocluster polystyrene brushes
    grafted from initiator cores on silicon surfaces by lithography
    processing”, Colloid Polym. Sci., vol. 289, p.p. 1283-1294, 2011.
    [88] J.K. Chen, A.L. Zhuang, “Fabrication of a Highly Dense Line Patterned
    Polystyrene Brush on Silicon Surfaces Using Very Large Scale
    Integration Processing”, J. Phys. Chem. C, vol. 114, p.p. 11801-11809,
    2010.
    [89] J.K. Chen, C.Y. Hsieh, C.F. Huang, P.M. Li, S.W. Kuo, F.C. Chang,
    “Using Solvent Immersion to Fabricate Variably Patterned Poly(methyl
    methacrylate) Brushes on Silicon Surfaces”, Macromolecules, vol. 41,
    p.p. 8729-8736, 2008.
    [90] Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; et al., “Patterning
    organic single-crystal transistor arrays”, Nature, vol. 444, p.p. 913–917,
    2006.
    [91] Aizenberg, J.; Black, A. J.; Whitesides, G. M. “Control of Nucleation by
    Patterned Self-Assembled Monolayers”, Nature, vol. 398, p.p. 495–498,
    1999.
    [92] Y. Ishii, H. Sakai, H. Murata, ” Fabrication of a submicron patterned
    electrode using an electrospun single fiber as a shadow-mask”, Thin
    Solid Films, vol. 518, p.p. 647, 2009.
    [93] H. Yoshihiko, U. Toshihiko, K. Tomohiro, M. Takashi, ” Fine gold
    grating fabrication on glass plate by imprint lithography”, Proc. SPIE,
    109
    5220, p.p. 74-81, 2003.
    [94] H.L. Chen, S.Y. Chuang, H.C. Cheng, C.H. Lin, T.C. Chu, ” Directly
    patterning metal films by nanoimprint lithography with low-temperature
    and low-pressure”, Microelectron. Eng., vol. 83, p.p. 893-896, 2006.
    [95] P. T. Bishop, L. J. Ashfield, A. Berzins, A. Boardman, V. Buche, J.
    Cookson,” Printed gold for electronic applications”, Gold Bulletin, vol.
    43 (3), p.p. 181-188, 2010
    [96] M.E.A. Warwick, C.W. Dunnill, J. Goodall, J.A. Darr, R. Binions,
    “Hybrid chemical vapour and nanoceramic aerosol assisted deposition
    for multifunctional nanocomposite thin films”, Thin Solid Films, vol.
    519, p.p. 5942-5948, 2011.
    [97] J.K. Chen, J.Q. Qui, “Nanowires of 3-D cross-linked gold nanoparticle
    assemblies behave as thermosensors on silicon substrates “, Colloid
    Polym. Sci., vol. 289, p.p. 1829-1837, 2011.
    [98] Y. Wu, Y. Li, P. Liu, S. Gardner, B.S. Ong,“Studies of Gold
    Nanoparticles as Precursors to Printed Conductive Features for
    Thin-Film Transistors“, Chem. Mater., vol. 18, p.p. 4627-4632, 2006.
    [99] N. V. Tsarevsky and K. Matyjaszewski, ‘‘Green atom transfer radical
    polymerization: from process design to preparation of welldefined
    environmentally friendly polymeric materials’’, Chem. Rev., vol. 107,
    p.p. 2270–2299, 2007.
    [100] K. Matyjaszewski and N. V. Tsarevsky, ‘‘Nanostructured functional
    materials prepared by atom transfer radical polymerization’’, Nat.
    Chem., vol. 1, p.p. 276–288, 2009.
    [101] C. J. Hawker, A. W. Bosman and E. Harth, ‘‘New polymer synthesis
    110
    by nitroxide mediated living radical polymerizations’’, Chem. Rev., vol.
    101, p.p. 3661–3688, 2001.
    [102] A. B. Lowe and C. L. McCormick, ‘‘Reversible
    addition-fragmentation chain transfer (RAFT) radical polymerization
    and the synthesis of water soluble (co)polymers under homogeneous
    conditions in organic and aqueous media’’, Prog. Polym. Sci., vol. 32,
    p.p. 283–351, 2007.
    [103] M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt and I. Wataoka,
    ‘‘Molecular bottlebrushes’’, Macromolecules, vol. 29, p.p 978–983,
    1996.
    [104] O. Prucker and J. Ru¨ he, ‘‘Polymer Layers through Self-Assembled
    Monolayers of Initiators’’, Langmuir, vol. 14, p.p. 6893–6898, 1998.
    [105] L. Ista, S. Mendez, V. Perez-Luna and G. Lopez, ‘‘Synthesis of
    Poly(N-isopropylacrylamide) on Initiator-Modified Self-Assembled
    Monolayers’’, Langmuir, vol. 17, p.p. 2552–2555, 2001.
    [106] R. Jordan, Surface-Initiated Polymerization I, Springer-Verlag, New
    York, 2006.
    [107] G. Sakellariou, M. Park, R. Advincula, J. W. Mays and N.
    Hadjichristidis, ‘‘Homopolymer and Block Copolymer Brushes on Gold
    by Living Anionic Surface-Initiated Polymerization in a Polar Solvent’’,
    J. Polym. Sci., Part A: Polym. Chem., vol. 44, p.p 769–782, 2006.
    [108] J. T. Koberstein, ‘‘Molecular design of functional polymer surface’’,
    J. Polym. Sci., Part B: Polym. Phys., vol. 42, p.p. 2942–2956, 2004.
    [109] S. Alexander, ‘‘Adsorption of chain molecules with a polar head: a
    scaling prediction’’, J. Phys. (Paris), vol. 38, p.p 983–987, 1997.
    111
    [110] P. Auroy, L. Auvray and L. Leger, ‘‘Characterization of the brush
    regime for grafted polymer layers at the solid-liquid interface’’, Phys.
    Rev. Lett., vol. 66, p.p. 719–722, 1991.
    [111] M. Kaholek, W. K. Lee, S. J. Ahn, H. W. Ma, K. C. Caster, B.
    LaMattina and S. Zauscher, ‘‘Stimulus-responsive
    poly(N-isopropylacrylamide) brushes and nanopatterns prepared by
    surface initiated polymerization’’, Chem. Mater., vol. 16, p.p.
    3688–3696, 2004.
    [112] B. Zhao, R. T. Haasch and S. MacLaren, ‘‘Solvent-induced
    self-assembly of mixed poly(methyl methacrylate)/polystyrene brushes
    on planar silica substrates: molecular weight effect’’, J. Am. Chem. Soc.,
    vol. 126, p.p. 6124–6134, 2004.
    [113] M. Lemieux, D. Usov, S. Minko, M. Stamm, H. Shulha and V. V.
    Tsukruk, ‘‘Reorganization of binary polymer brushes: reversible
    switching of surface microstructures and nanomechanical properties’’,
    Macromolecules, vol. 36, p.p. 7244–7255, 2003.
    [114] J. Draper, I. Luzinov, S. Minko, I. Tokarev and M. Stamm, ‘‘Mixed
    polymerbrushes by sequential polymer addition: Anchoring layer
    effect,’’, Langmuir, vol. 20, p.p. 4064–4075, 2004.
    [115] M. Motornov, S. Minko, K. J. Eichhorn, M. Nitschke, F. Simon and
    M. Stamm, ‘‘Reversible tuning of wetting behaviour of polymersurface
    with responsive polymer brushes’’, Langmuir, vol. 19, p.p. 8077–8085,
    2003.
    [116] M. K. Vyas, K. Schneider, B. Nandan and M. Stamm, ‘‘Switching of
    friction by binary polymer brushes’’ Soft Matter, vol. 4, p.p. 1024–1032,
    112
    2008.
    [117] B. Zhao, R. T. Haasch and S. MacLaren, ‘‘Solvent-induced
    selfassembly of mixed poly(methyl methacrylate)/polystyrene brushes
    on planar silica substrates: molecular weight effect’’, J. Am. Chem. Soc.,
    vol. 126, p.p. 6124–6134, 2004.
    [118] M. O. Gallyamov, B. Tartsch, A. R. Khokhlov, S. S. Sheiko, H. G.
    Boerner, K. Matyjaszewski and M. Mo¨ ller, ‘‘Real-time scanning force
    microscopy of macromolecular conformational transitions’’, Macromol.
    Rapid Commun., vol. 25, p.p. 1703–1707.155, 2004.
    [119] M. O. Gallyamov, B. Tartsch, P. Mela, H. Bo¨ rner, K.
    Matyjaszewski and S. S. Sheiko, ‘‘A scanning force microscopy study
    on the motion of single brush-like macromolecules on a silicon substrate
    induced by coadsorption of small molecules’’, Phys. Chem. Chem. Phys.,
    vol. 9, p.p. 346–352.156, 2007.
    [120] J. E. Comrie and W. T. S. Huck, ‘‘Exploring actuation and
    mechanotransduction properties of polymer brushes’’, Macromol. Rapid
    Commun., vol. 29, p.p. 539–546, 2008.
    [121] S. Tugulu, M. Harms, M. Fricke, D. Volkmer and H. A. Klok,
    ‘‘Polymer brushes as ionotropic matrices for the directed fabrication of
    microstructured calcite thin films’’, Angew. Chem., Int. Ed., vol. 45, p.p.
    7458–6741, 2006.
    [122] C.J. Yu, H. Gao, H.Y. Yu, H.Q. Jiang, G.J. Cheng, “ Laser
    Dynamic Forming of Functional Materials Laminated Composites on
    Patterned Three-Dimensional Surfaces With Applications on Flexible
    113
    Microelectromechanical Systems,”Applied Physics Letters 95 (9),
    091108, 2009.
    [123] J.-K. Chen, J.-Y. Li,“ Detection of specific DNA using a microfluidic
    device featuring tethered poly(N-isopropylacrylamide) on a silicon
    substrate“, Applied Physics Letter 97, 063701, 2010.
    [124] E. Ozbay,“ Plasmonics: Merging Photonics and Electronics at
    Nanoscale Dimensions“, Science 311, p.p. 189–193, 2006.
    [125] Y. Xiao, A. A. Lubin, A. J. Heeger and K. W. Plaxco, ‘‘Label-Free
    Electronic Detection of Thrombin in Blood Serum by Using an
    Aptamer-Based Sensor’’, Angew. Chem., Int. Ed., vol. 44, p.p.
    5456–5459, 2005.
    [126] P. Mesquida, D.L. Ammann, C.E. MacPhee, R.A. McKendry,
    “Microarrays of peptide fibrils created by electrostatically controlled
    deposition”, Advanced Materials 17 (7), p.p. 893–897, 2005.
    [127] J.-K. Chen, J.-H. Wang, S.-K. Fan, J.-Y. Chang, “Reversible
    Hydrophobic/Hydrophilic Adhesive of PS-b-PNIPAAm Copolymer
    Brush Nanopillar Arrays for Mimicking the Climbing Aptitude of
    Geckos “, Journal of Physical Chemistry C 116, p.p. 6980–6992, 2012..
    [128] J.-K. Chen, B.-J. Bai, F.-C. Chang,“ Diagnosis of breast cancer
    recurrence using a microfluidic device featuring tethered cationic
    polymers“, Applied Physics Letter 99, 013701, 2011.
    [129] J.-K. Chen, P.-C. Pai, J.-Y. Chang,“ pH-Responsive
    One-Dimensional Periodic Relief Grating of Polymer Brush-Gold
    Nanoassemblies on Silicon Surface“, ACS Applied Materials &
    Interfaces, vol. 4, p.p. 1935–1947, 2012.
    114
    [130] E. Han, K.O. Stuen, Y.H. La, P.F. Nealey, P. Gopalan,“ Effect of
    composition of substrate-modifying random copolymers on the
    orientation of symmetric and asymmetric diblock copolymer domains“,
    Macromolecules 41 (23), p.p. 9090–9097, 2008.
    [131] E.W. Edwards, M. Muller, M.P. Stoykovich, H.H. Solak, J.J. de
    Pablo, P.F. Nealey,“ Dimensions and shapes of block copolymer
    domains assembled on lithographically defined chemically patterned
    substrates“, Macromolecules, vol. 40, p.p. 90–96, 2007.
    [132] J.Y. Cheng, C.T. Rettner, D.P. Sanders, H.C. Kim, W.D.
    Hinsberg,“Dense Self Assembly
    on Sparse Chemical Patterns:
    Rectifying and Multiplying Lithographic Patterns Using Block
    Copolymers“, Advanced Materials, vol. 20 , p.p. 3155–3158, 2008.
    [133] D. Flanders, “Submicrometer periodicity gratings as artificial
    anisotropic dielectrics”, Applied Physics Letters, vol. 42, p.p. 492, 1983.
    [134] R.C. Enger, S.K. Case, “Optical elements with ultrahigh
    spatial-frequency surface corrugations”, Applied Optics, vol. 22 , p.p.
    3220-3228, 1983.
    [135] Y. Ono, Y. Kimura, Y. Ohta, N. Nishida,“ Antireflection effect in
    ultrahigh spatial-frequency holographic relief gratings“, Applied Optics,
    vol. 26, p.p. 1142-1146, 1987.
    [136] M.P. Stoykovich, M. Müller, S.O. Kim, H.H. Solak, E.W. Edwards,
    J.J. de Pablo, P.F. Nealey,“ Directed assembly of block copolymer
    blends into nonregular device-oriented structures, Science“, Science, vol.
    308, p.p. 1442–1446, 2005.
    115
    [137] J.K. Chen, C.H. Chan, F.C. Chang, “Immobilization of layered
    double hydroxides in the fluidic system for nanoextraction of specific
    DNA molecules “, Applied Physics Letters, vol. 92, 053108, 2008.
    [138] Joonhyung Lee, Kutay Icoz,†,| Ana Roberts, Andrew D. Ellington,
    and Cagri A. Savran, “Diffractometric Detection of Proteins Using
    Microbead-Based Rolling Circle Amplification”, Anal. Chem., vol. 82,
    p.p. 197–202, 2010.
    [139] J.-K. Chen, B.-J. Bai, “Diagnosis of breast cancer recurrence after
    surgery by using poly(2-dimethylaminoethyl methacrylate) brushes as a
    medium on silicon surface “, Sensors and Actuators B, vol. 160, p.p.
    1011–1019, 2011.
    [140] J.K. Chen, B.J. Bai, “pH-Switchable Optical Properties of the
    One-Dimensional Periodic Grating of Tethered
    Poly(2-dimethylaminoethyl methacrylate) Brushes on a Silicon Surface
    “, Journal of Physical Chemistry C, vol. 115, p.p. 21341–21350, 2011.
    [141] G. Acharya, C.L. Chang, D.P. Holland, D.H. Thompson, C.A. Savran,
    Angewandte Chemie International Edition 47 (6), p.p. 1051–1053, 2008.
    [142] R.C. Bailey, J.M. Nam, C.A. Mirkin, J.T. Hupp, “R.C. Bailey, J.M.
    Nam, C.A. Mirkin, J.T. Hupp, Journal of the American Chemical
    Society 125 (44), p.p. 13541–13547, 200”, Journal of the American
    Chemical Society 125 (44), p.p. 13541–13547, 2003.
    [143] G. Ye, X. Wang, “Glucose sensing through diffraction grating of
    hydrogel bearing phenylboronic acid groups”, Biosensors and
    Bioelectronics, vol. 26, p.p. 772–777, 2010.
    [144] N. Zhang, W. Knoll, “Thermally responsive hydrogel films studied
    116
    by surface plasmon diffraction”, Analytical Chemistry, vol. 81, p.p.
    2611–2617, 2009.
    [145] S. Rytov, “Electromagnetic properties of a finely stratified medium”,
    Sov. Phys. JEPT, vol. 2, p.p. 466, 1956.
    [146] A. Yariv and P. Yhe; Optical Waves in Crystals (John Wiley & Sons,
    New York, 1984) Chap. 6.
    [147] H. Kikuta, Y. Ohira, H. Kubo and K. Iwata, “Effective medium
    theory of two-dimensional subwavelength gratings in the
    non-quasi-static limit”, J. Opt. Soc. Am. A, vol. 15, p.p. 1577, 1998.
    [148] P. Lalanne and D. L-Lalanne, “On the effective medium theory of
    subwave- length periodic structures”, J. Mod. Opt., vol. 43, p.p. 2063,
    1996.
    [149] R. Brauer and O. Bryngdahl, “Design of antireflection gratings with
    approximate and rigorous methods”, Appl. Opt., vol. 33, p.p. 7875-7882,
    1994.
    [150] F. T. Chen and H. G. Craighead, “Diffractive phase elements based
    on two-dimensional artificial dielectrics”, Opt. Lett., vol. 20, p.p.
    121-123, 1995.
    [151] C. Haggans, L. Li and R. Kostuk, “Effective-medium theory of
    zeroth-order lamellar gratings in conical mountings”, J. Opt. Soc. Am. A,
    vol. 10, p.p. 2217-2225, 1993.
    [152] H. Kikuta, H. Yoshida and K. Iwata, ” Ability and Limitation of
    Effective Medium Theory for Subwavelength. Gratings”, Opt. Rev.,
    vol.2, p.p. 92-99, 1995.
    [153] J.K. Chen, C.Y. Hsieh, C.F. Huang, P.M. Li, S.W. Kuo, F.C. Chang,
    117
    “Using Solvent Immersion to Fabricate Variably Patterned Poly(methyl
    methacrylate) Brushes on Silicon Surfaces “, Macromolecules, vol.41,
    p.p. 8729–8736, 2008.
    [154] J.K. Chen, A.-L. Zhuang, “Fabrication of a Highly Dense Line
    Patterned Polystyrene Brush on Silicon Surfaces Using Very Large
    Scale Integration Processing “, Journal of Physical Chemistry C, vol.
    114, p.p. 11801–11809, 2010.
    [155] J.-K. Chen, A.L. Zhuang, “Patterning nanocluster polystyrene
    brushes grafted from initiator cores on silicon surfaces by lithography
    processing “, Colloid and Polymer Science, vol. 289, p.p. 1283–1294,
    2011.
    [156] Rim K, Hoyt J, Gibbons J. “Analysis and fabrication deep submicron
    strained Si n-MOSFETs”, IEEE Trans Electron Dev, vol. 47, p.p.
    1406–1415, 2000.
    [157] Kolahdouz M, Hallstedt J, Khatibi A, Ostling M, Wise R, Riley DJ,
    et al. “Comprehensive evaluation and study of pattern dependency
    behavior in selective epitaxial growth of B-doped SiGe layers”, IEEE
    Trans Nanotechnol, vol. 8, p.p. 291–297, 2009.
    [158] Nguyen LP, Beranger CF, Ghibaudo G, Skotnicki T, Cristoloveanu
    S.,” Mobility enhancement by CESL strain in short-channel ultrathin
    SOI MOSFETs”, Solid-State Electron, vol. 54, p.p. 123–130, 2010.
    [159] Pidin S, Mori T, Inoue K, Fukuta S, Itoh N, Mutoh E, et al. “A novel
    strain enhanced CMOS architecture using selectively deposited high
    tensile and high compressive silicon nitride films”,. In: IEDM tech dig,
    p.p . 213–216, 2004.
    118
    [160] Grudowski P, Adams V, Bo X, Loiko K, Filipiak S, Hackenberg J, et
    al. “1-D and 2-D geometry effects in uniaxially-strained dual etch stop
    layer stressor integrations”, VLSI symp tech dig, p.p. 76, 2006.
    [161] Thompson S, Sun G, Choi Y, Nishida T., “Uniaxial process induced
    strained Si:extending the CMOS roadmap”, IEEE Trans Electron Dev ,
    vol. 53, p.p.1010–1020, 2006.
    [162] Lee GW, Lee JH, Lee HW, Park MK, Kang DG. “Trap evaluations
    of metal/oxide/silicon field-effect transistors with high-k gate dielectric
    using charge pumping method”, Appl Phys Lett, vol. 81, p.p. 2050,
    2002.
    [163] Han JP, Vogel EM, Gusev EP, D’Emic C, Richter CA, Heh DW, et
    al., “Asymmetric energy distribution of interface traps in n- and
    p-MOSFETs with HfO2 gate dielectric on ultrathin SiON buffer layer”,
    IEEE Electron Dev Lett, vol. 25(3), p.p.126–128, 2004.
    [164] J.K. Chen, J.Y. Li, “rication of DNA extraction device with tethered
    poly(N-isopropylacrylamide) brushes on silicon surface for a specific
    DNA detection “, Sens. Actuators, B, vol. 150, p.p. 314-320, 2010.
    [165] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R.J. Whyman,
    “Synthesis of thiolderivatizedgold nanoparticlesin a 2-phase
    liquid-liquid system”, J. Chem. Soc. Chem. Commun., p.p. 801, 1994.
    [166] J.K. Chen, Z.Y. Chen, H.C. Lin, P.D. Hong, F.C. Chang, “Patterned
    Poly(2-hydroxyethyl methacrylate) Brushes on Silicon Surfaces Behave
    as "Tentacles" To Capture Ferritin from Aqueous Solution “, ACS Appl.
    Mater. Interfaces 1, p.p. 1525-1532, 2009.
    [167] T.Y. Chen, J.K. Chen, “Characterization of patterned poly(methyl
    119
    methacrylate) brushes under various structures upon solvent immersion
    “, Colloid Polym. Sci., vol. 9289, p.p. 433, 2011.
    [168] J.K. Chen, C.Y. Hsieh, C.F. Huang, P.M. Li,” Characterization of
    patterned poly(methyl methacrylate) brushes under various structures
    upon solvent immersion“, J. Colloid Interface Sci., vol. 338, p.p.
    428-434, 2009.
    [169] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K.
    Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen,
    E.W. Meijer, P. Herwig, D.M. de Leeuw, “Two-dimensional charge
    transport in self-organized, high-mobility conjugated polymers”, Nature,
    vol. 401, p.p. 685-688, 1999.
    [170] J.-K. Chen, J.-Y. Li, “Synthesis of tethered
    poly(N-isopropylacrylamide) for detection of breast cancer recurrence
    DNA “, Journal of Colloid and Interface Science, vol. 358, p.p. 454–461,
    2011.
    [171] E.B. Grann, M.G. Moharam, D.A. Pommet, “Artificial uniaxial and
    biaxial dielectrics with use of two-dimensional subwavelength binary
    gratings”, Journal of the Optical Society of America A Optics and Image
    Science, vol. 11, p.p. 2695-2730, 1994.
    [172] D.H. Raguin, G.M. Morris, “Antireflection structured surfaces for the
    infrared spectral region”, Applied Optics, vol. 32, p.p. 1154-1167, 1993.
    [173] I. Tunc, S. Suzer, M.A. Correa-Duarte, L.M. Liz-Marzán, “XPS
    Characterization of Au(core)@SiO2(shell) Nanoparticles”, J. Phys.
    Chem. B, vol. 109, p.p. 7597, 2005.
    [174] S.H. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, D. Poulikakos,
    120
    “Nanosecond Laser Ablation of Gold Nanoparticle Films”, Appl. Phys.
    Lett. Vol. 89, p.p. 141126-141128, 2006.
    [175] M.C.J.M. Vissenberg,“ Theory of the field-effect mobility in
    amorphous organic transistors“, M. Matters, Phys. Rev. B, vol. 57, p.p.
    12964-12967, 1998.
    [176] B. Park, A. Aiyar, J. Hong, E. Reichmanis, “Electrical Contact
    Properties between the Accumulation layer and Metal Electrodes in
    Ultrathin Poly(3-hexylthiophene)(P3HT) Field Effect Transistors”, ACS
    Appl. Mater. Interfaces, vol. 3, p.p. 1574-1580, 2011.
    [177] T.-Y. Chen, J.-K. Chen, “Ferritin immobilization on patterned
    poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces from
    colloid system “, Colloid and Polymer Science, vol. 289, p.p. 433–445,
    2011.
    [178] J.-K. Chen, C.-Y. Hsieh, C.-F. Huang, P.-M. Li, “Characterization of
    patterned poly(methyl methacrylate) brushes under various structures
    upon solvent immersion “, Journal of Colloid and Interface Science, vol.
    338, p.p. 428–434, 2009.
    [179] B. Zhao, W.J. Brittain, “Polymer brushes: surface-immobilized
    macromolecules”, Progress in Polymer Science, vol. 25, p.p. 677–710,
    2000.
    [180] H. Watanabe, S.M. Kilbey, M. Tirrell, “A Scaling Model for Osmotic
    Energy of Polymer Brushes”, Macromolecules, vol. 33, p.p. 9146–9151,
    2000.
    [181] K.-Y. Yeh, L.-J. Chen, “Contact Angle Hysteresis on Regular
    Pillar-like Hydrophobic Surfaces”, Langmuir, vol. 24, p.p. 245–251,
    121
    2008.
    [182] A. Alteheld, I. Gourevich, L.M. Field, C. Paquet, E. Kumacheva,
    “Multilayer polymer particles with periodic modulation in refractive
    index “, Macromolecules, vol. 38 (8), p.p. 3301–3306, 2005.
    [183] Z. Burton, B. Bhushan, “Hydrophobicity, Adhesion, and Friction
    Properties of Nanopatterned Polymers and Scale Dependence for Microand
    Nanoelectromechanical Systems”, Nano Letters, vol. 5 (8), p.p.
    1607–1613, 2005.
    [184] Ang K-W, Chui K-J, Madan A, Wong L-Y, Tung C-H,
    Balasubramanian N, et al.”Strained thin-body p-MOSFET with
    condensed silicon–germanium source/drain for enhanced drive current
    performance. IEEE Electron Dev Lett, 2vol. 8(6), p.p. 509–512, 2007.
    [185] Hensel JC, Feher G. “Cyclotron resonance experiments in uniaxially
    stressed silicon: valence band inverse mass parameters and deformation
    potentials”, Phys Rev, vol. 129, p.p. 1041–1062, 1963.
    [186] Kang CY, Choi R, Song SC, Choi K, Ju BS, Hussain MM, et al. “A
    novel electrodeinduced strain engineering for high performance SOI
    FinFET utilizing Si (110) channel for both N and PMOSFETs”. In:
    IEDM tech dig;, p.p. 1–4, 2006.
    [187] Troutman RR. “VLSI limitations from drain-induced barrier
    lowering”, IEEE Trans Electron Dev, vol. 26, p.p. 461–469, 1979.
    [188] Lee KT, Kang CY, Park CY. “A Study of strain engineering using
    CESL stressor on reliability comparing effect of intrinsic mechanical
    stress”. IEEE Electron Dev Lett, vol. 30(7), p.p.760–762, 2009.
    [189] Lee KT, Kang CY, Yoo OS, Young CD, Bersuker G, Park HK, et al.
    122
    “A comparative study of reliability and performance of strain
    engineering using CESL stressor and mechanical strain. In: Proc int rel
    phys symp”, p.p. 306–309, 2008.
    [190] Rhee HS, Lee H, Ueno T, Shin DS, Lee SH, Kim Y, et al. “Negative
    bias temperature instability of carrier-transport enhanced pMOSFET
    with performance boosters”. In: IEDM tech dig, p.p. 692–695, 2005.

    無法下載圖示 校內:2023-06-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE