| 研究生: |
黃慧玲 Huang, Hui-Ling |
|---|---|
| 論文名稱: |
新穎奈米材料半導體元件製造與分析 Fabrication and Analysis of Novel Nano Materials and Devices |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 原子轉移自由基聚合 、金奈米 、奈米元件 、軟微影 、溶劑反應光柵 |
| 外文關鍵詞: | Atom transfer radical polymerization, Gold nanoparticles, Nanoscale device, Soft lithography, Solvent-responsive grating |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積體電路製造技術的尺寸縮小化能改善元件的切換速度與消耗功
率,增加電路之元件積成密度也使得晶片整合功能性更加豐富。然而隨著
生產技術邁入奈米階段,金氧半電晶體的性能無法光靠尺寸微小化來達
到,傳統的光學微影也大於關鍵尺寸,若是要繼續微縮,就必須在改善遷
移率的應力製程技術以及元件結構著手。另一方面如何藉由奈米金以及高
分子刷的成長技術應用在元件結構,藉以改善傳統的製程的不足。本論文
主要分為三個部份,其一為利用奈米金的自組裝行為來製造有機場效電晶
體(OFET)電極,我們發展出藉由在矽晶片上奈米金自組裝金圖案的新穎
方法。結合了軟微影及自組裝技術製造圖案,不再需要傳統的曝光以及蝕
刻步驟就可以得到奈米級的奈米金圖案,結果顯示與傳統製程製造出的電
晶體具備相似的特性,奈米金更有製備軟性電子之潛力。第二部分我們利
用微影製程與原子轉移自由基聚合反應,得到400 nm 解析度之聚苯乙烯
二維柱陣列的有機揮發物質感應器,我們測量浸泡過水與甲苯溶劑聚苯乙
烯二維週期性浮式光柵之AFM 以及水靜態接觸角來證實其表面結構隨著溶
劑極性指標變化:最後我們使用應變矽鍺與覆蓋氮化矽接觸孔蝕刻停止層
探討互補式金氧半導體的特性。藉由結合壓縮應力的矽鍺層與具有壓縮、
伸張應力的氮化矽層,P 型與N 型金屬氧化物半導體皆可以得到改善的電
流輸出特性。此應力層的使用也改良了臨界電壓下滑的問題與短通道效
應。對N 型金屬氧化物半導體來說,當使用伸張應力氮化矽層,比起傳統
的製程方式的界面陷井密度可以改善32%。藉由此研究我們也歸納出從壓
縮應力氮化矽層出來的氫原子是影響負偏溫度不穩定性與熱載子注入等
可靠度的關鍵因素。
The capabilities of device scaling can improve operation performance.
However device scaling has facing serious problems in tool capability limitation and material innovations. Thus mobility enhancement technologies have been developed for advanced devices. The study also focus on alternative
patterning approach to fabricate naon-scale features via direct self-assembly of polymers and gold nano particle. In first section, we developed an integrated process involving soft lithography and self-assembly to fabricate patterns of
sub-micrometer AuNPs without the traditional lithography and etching processes. The five-layer structures that we employed as nanoscale metal electrodes in the fabrication of organic field effect transistors (OFETs), which exhibited output characteristics similar to those of corresponding OFETs prepared using traditional processing. In secondary section we used advanced lithography and oxygen plasma treatment to generate well-defined 400
nm-resolution hole array of polystyrene (PS) which was successively grafted from the bottom layer of initiator by atom transfer radical polymerization (ATRP). The two-dimensional periodic relief grating (2DPRG) of the tethered
VPS after immersion in solvents possessing various polarities present solvent-responsive properties in static water contact angles (SWCAs) and effective refractive indices (neff). The neff of the 2DPRG of tethered PS after
immersion in water and toluene are 1.46 and 1.39 respectively. These reversibly properties created from a reversible conformational change of 2DPRG of tethered PS exhibited switching property in change of solvent
polarity. In last section, we investigated on a nano-scale complementary metal–oxide–semiconductor field-effect transistor (CMOSFET) fabricated by local strained techniques with epitaxial SiGe and high mechanical stress SiN as contact etch stop layer (CESL). The Ion gain is 71.3% for PMOS with SiGe S/D plus compressive CESL layer and when processing tensile film on NMOS,the drive current can be improved by 42.8%. For short channel effect, strain
scheme also show beneficial results based on Vt-roll off performance.Furthermore when capping a strained tensile film, the interface trap density for NMOS could lower down 32% comparing to control Si from charge pumping current measurement. The impact of these stressor schemes on device
reliability have been studied to conclude that the hydrogen from compressive SiN is the key for reliability performance.
[1]Z. King, “Plastic electronics: putting the UK at the forefront of a new technological revolution”, Advanced Institute of Management Research”, p.p.40, 2009.
[2] R. Das and P. Harrop, Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2009-2029, IDTechEx, 2009
[3] Y. Li and J. Hou, “Major Classes of Conjugated Polymers and Synthetic
Strategies in Introduction to Organic Electronics and Optoelectronic
Materials and Devices”, CRC Press, Boca Raton, USA, p.p. 173-209,
2008
[4] N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, 1st ed,
Pergamon Press Plc, Oxford, UK, 1990
[5] D. R. Gamota et. al., Printed Organic and Molecular Electronics, Kluwer
Academic Publishers, Massachusetts, USA, 2004
[6] OE-A Roadmap for Organic and Printed Electronics, 3rd ed., ed. K.
Hecker et. al., Organic Electronics Association, Frankfurt, Germany,
2009
[7] R. Della Torre, US005662573A
[8] G. Schmidt, “Challenges and perspectives of printed electronics”, Proc.
SPIE, vol. 6336, p.p.U149-U157, 2006
[9] A. C. Huebler, et. al., “Ring Oscillator Fabricated Completely by Means
of Mass-Printing Technologies”, Organic Electronics, Vol. 8, Issue 5,
pp 480 – 486, 2007.
[10] K. Allen, Flexible Flat Displays, John Wiley & Sons Ltd., Chichester,
99
UK, 2005
[11] A. Gregg et. al., “Roll-to-Roll Manufacturing of Flexible Displays” in
Flexible Flat Panel Displays, ed. G. P. Crawford, John Wiley & Sons,
New York, USA, 2005G. Haacke, Transparent conducting oxides, Ann.
Rev. Mater. Sci. Vol. 7, p.p. 73–93, 1977.
[12] D. Huang et. al., “Plastic-Compatible Low Resistance Printable Gold
Nanoparticle Conductors for Flexible Electronics”, J. Electrochem. Soc.,
vol. 150, p.p. G412-417, 2003
[13] S. H. Ko et. al., “Air Stable High Resolution Organic Transistors by
Selective Laser Sintering of Inkjet Printed Metal Nanoparticle”, Appl.
Phys. Lett., vol. 90, 141103, 2007
[14] Z. Radivojevic et. al., Proc. 12th Intl. Workshop on Thermal
investigations of ICs, Nice, France, 2006
[15] M. Gupta et. al., Scr. Mater., vol. 52, p.p. 479-483, 2005
[16] C. Corti and R. Holliday, Gold: Science and Applications, CRC Press,
USA, 2010
[17] A.N. Papzian, Gold Bulletin, vol. 15, p.p. 81-89, 1982
[18] T. Bakhishev and V. Subramanian, J. Electron. Mat., vol. 38, p.p.
2720-2725, 2009
[19] M. J. Coutts et. al., J. Phys. Chem. C, 2009, 113, 1325.S. J. Hsieh, C. C.
Chen and W. C. Say, Process for recovery of indium from ITO scraps
and metallurgic microstructures, Mater. Sci. Eng. B Vol. 158, p.p. 82–87,
2009.
[20] S. T. Milner, ‘‘Polymer Brushes’’, Science, vol. 251, p.p. 905–914, 1991
[21] A. Halperin, M. Tirrell and T. P. Lodge, ‘‘Tethered chains in polymer
100
microstructures’’, Adv. Polym. Sci., vol. 100, p.p. 31–71, 1992.
[22] B. Zhao and W. J. Brittain, ‘‘Polymer brushes: surface-immobilized
macromolecules’’, Prog. Polym. Sci., vol. 25, p.p. 677–710, 2000.
[23] J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I. S. Choi,
S. Hoffer, G. A. Somorjai and R. Langer, ‘‘A Reversibly Switching
Surface’’, Science, vol. 299, p.p. 371–373, 2003.
[24] A. M. Urban and M. W. Urban, Stimuli-Responsive Macromolecules
and Polymeric Coatings, Oxford University Press and American
Chemical Society, Washington, DC, 2005.
[25] M. H. Li and P. Keller, ‘‘Stimuli-responsive polymer vesicles’’, Soft
Matter, vol. 5, p.p. 927–937, 2009.
[26] A. Kumar, A. Srivastava, I. Y. Galaev and B. Mattiasson, ‘‘Smart
polymers: physical forms and bioengineering applications’’, Prog.
Polym. Sci., vol. 32, p.p. 1205–1237, 2007.
[27] C. Alexander and K. M. Shakesheff, ‘‘Responsive Polymers at the
Biology/Materials Science Interface’’, Adv. Mater., vol. 18, p.p.
3321–3328, 2006.
[28] I. S. Choi and Y. S. Chi, ‘‘Surface Reactions on Demand:
Electrochemical Control of SAM-Based Reactions’’, Angew. Chem., Int.
Ed., vol. 45, p.p. 4894–4897, 2006.
[29] W. Senaratne, L. Andruzzi and C. K. Ober, ‘‘Self-Assembled
Monolayers and Polymer Brushes in Biotechnology: Current
Applications and Future Perspectives’’, Biomacromolecules, vol. 6, p.p.
2427–2448, 2005.
[30] B. Bhushan, Springer Handbook of Nanotechnology, Springer-Verlag,
101
3rd edn, 2010.
[31] S. J. Jhaver, M. R. Hynd, N. Dowell-Mesfin, J. N. Turner, W. Shain and
C. K. Ober, ‘‘Release of nerve growth factor from HEMA
hydrogel-coated substrates and its effect on the differentiation of neural
cells’’, Biomacromolecules, vol.10, p.p.174–183, 2009.
[32] S. L. Gras, T. Mahmud, G. Rosengarten, A. Mitchell and K.
Kalantar-Zadeh, ‘‘Intelligent Control of Surface Hydrophobicity,’’,
ChemPhysChem, vol.8, p.p 2036–2050, 2007.
[33] J. A. Howarter and J. P. Youngblood, ‘‘Self-Cleaning and Anti-Fog
Surfaces via Stimuli-Responsive Polymer Brushes’’, Adv. Mater., vol.
19, p.p. 3838–3843, 2007.
[34] I. Luzinov, S. Minko and V. V. Tsukruk, ‘‘Responsive brush layers:
from tailored gradients to reversibly assembled nanoparticles’’, Soft
Matter, vol. 4, p.p. 714–725, 2008.
[35] P. M. Mendes, ‘‘Stimuli-Responsive Surfaces for Bio-Applications’’,
Chem. Soc. Rev., vol. 37, p.p. 2512–2529, 2008.
[36] Z. S. Liu and P. Calvert, ‘‘Multilayer hydrogels as muscle-like
actuators’’, Adv. Mater., vol. 12, p.p. 288–291, 2000.
[37] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. van
Duyn, ‘‘Biosensing with plasmonic nanosensors’’, Nat. Mater., vol. 7,
p.p. 442–453, 2008.
[38] I. Tokarev and S. Minko, ‘‘Stimuli-responsive hydrogel thin films’’,
Soft Matter, vol. 5, p.p. 511–524, 2009.
[39] S. Lecommandoux, F. Checot, R. Borsali, M. Schappacher and A.
Deffieux, ‘‘Effect of dense grafting on the backbone conformation of
102
bottlebrush polymers: determination of the persistence length in
solution’’, Macromolecules, vol. 35, p.p. 8878–8881, 2002.
[40] L. Feuz, F. A. M. Leermakers, M. Textor and O. Borisov, ‘‘Bending
rigidity and induced persistence length of molecular bottle brushes: a
self-consistent-field theory’’, Macromolecules, vol. 38, p.p. 8891–8901,
2005.
[41] D. Vlassopoulos, G. Fytas, B. Loppinet, F. Isel and P.
Lutz,‘‘Polymacromonomers: structure and dynamics in non-dilute
solutions, melts, and mixtures’’, Macromolecules, vol. 33, p.p.
5960–5969, 2000.
[42] A. S. Hoffman and P. S. Stayton, ‘‘Conjugates of stimuli-responsive
polymers and proteins’’, Prog. Polym. Sci., vol. 32, p.p. 922–932, 2007.
[43] A. Nelson, ‘‘Stimuli-responsive polymers: engineering interactions’’,
Nat. Mater., vol. 7, p.p. 523–525, 2008.
[44] Y. Xia, X. Yin, N. A. D. Burke and H. D. H. Stoever, ‘‘Thermal
response of narrowdisperse poly (N-isopropylacrylamide) prepared by
atom transfer radical polymerization’’, Macromolecules, vol. 38, p.p.
5937–5943, 2005.
[45] A. Bhattacharya and B. N. Misra, ‘‘Grafting: a versatile means to
modify polymers. Techniques, factors and applications’’, Prog. Polym.
Sci., vol. 29, p.p. 767–814, 2005.
[46] H. Lee, K. Matyjaszewski, S. Yu and S. S. Sheiko, ‘‘Molecular brushes
with spontaneous gradient by atom transfer radical polymerization’’,
Macromolecules, vol. 38, p.p. 8264–8271, 2005.
[47] S. J. Lord, S. S. Sheiko, I. LaRue, H.-I. Lee and K. Matyjaszewski,
103
‘‘Tadpole conformation of gradient polymer brushes’’, Macromolecules,
vol. 37, p.p. 4235–4240, 2004.
[48] N. Khelfallah, N. Gunari, K. Fischer, G. Gkogkas, N. Hadjichristidis and
M. Schmidt, ‘‘Micelles formed by cylindrical brush-coil block
copolymers’’, Macromol. Rapid Commun., vol. 26, p.p. 1693–1697,
2005.
[49] M. W. Neiser, S. Muth, U. Kolb, J. R. Harris and J. Okuda, ‘‘Micelle
formation from amphiphilic ‘cylindrical brush’-coil block copolymers
prepared by metallocene catalysis’’, Angew. Chem., Int. Ed., vol. 43, p.p.
3192–3195, 2004.
[50] M. Zhang, C. Estournes, W. Bietsch and A. H. E. Mueller,
‘‘Superparamagnetic hybrid nanocylinders’’, Adv. Funct. Mater., vol. 14,
p.p. 871–882, 2004.
[51] A. Zhang, J. Barner, I. Goessl, J. P. Rabe and A. D. Schuleter, ‘‘A
covalentchemistry approach to giant macromolecules and their wetting
behavior on solid substrates’’, Angew. Chem., Int. Ed., vol. 43, p.p.
5185–5188, 2005.
[52] D. Wu, Y. Yang, X. Cheng, L. Liu, J. Tian and H. Zhao, ‘‘Mixed
molecular brushes with PLLA and PS side chains prepared by AGET
ATRP and ring-opening polymerization’’, Macromolecules, vol. 39, p.p.
7513–7519, 2006.
[53] K. Ishizu, J. Satoh and A. Sogabe, ‘‘Architecture and solution properties
of AB-type brush-block-brush amphiphilic copolymers via ATRP
techniques’’, J. Colloid Interface Sci., vol. 274, p.p. 472–479, 2004.
[54] J. R. Boyce, D. Shirvanyants, S. S. Sheiko, D. A. Ivano, S. Qin, H.
104
Boerner and K. Matyjaszewski, ‘‘Multiarm molecular brushes: effect of
the number of arms on the molecular weight polydispersity and surface
ordering’’, Langmuir, vol. 20, p.p. 6005–6011, 2004.
[55] M. Schappacher and A. Deffieux, ‘‘From combs to
comb-g-combcentipedes’’, Macromolecules, vol. 38, p.p. 7209–7213,
2005.
[56] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and
M. Bohr,“Scaling challenges and device design requirements for high
performance sub-50 nm gate length planar CMOS transistors”, VLSI
Symp. Tech. Dig., p.p. 174-175, 2000.
[57] W. Zhao, J. He, R. E. Belford, L. E. Wernersson and A.
Seabaugh“Partially depleted SOI MOSFETs under uniaxial tensile
strain”, IEEE Trans. Electron Devices, vol. 51, no. 3, p.p. 317-323, 2004
[58] 3. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T.
Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A.
Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K.
Zawadzki, S. Thompson and M. Bohr,“A 90 nm high volume
manufacturing logic technology featuring novel 45 nm gate length
strained silicon CMOS transistors”, IEDM Tech. Dig., p.p. 978-980,
2003.
[59] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R.
Nakamura, K. Kobayashi, K. Kawamura and S. Fukuyama,“A novel
strain enhanced CMOS architecture using selectively deposited high
tensile and high compressive silicon nitride films”, IEDM Tech. Dig.,
p.p. 213-216, 2004.
105
[60] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase,
K. Hashimoto and T. Sugii,“MOSFET current drive optimization using
silicon nitride capping layer for 65-nm technology node”, VLSI Symp.
Tech. Dig., p.p. 54-55, 2004.
[61] Front End Processes, in International Technology Roadmap for
Semiconductors, p.p. 28-29, 2003.
[62] N. Yang, W. K. Henson, J. R. Hauser and J. J. Wortman,“Estimation of
the effects of remote charge scattering on electron mobility of
n-MOSFETs with ultrathin gate oxides”, IEEE Trans. Electron Devices,
vol. 47, no. 2, p.p. 440-447, 2000.
[63] B. Cheng, B. Maiti, S. Samayedam, J. Grant, B. Taylor, P. Tobin and J.
Mogab,“0.18 mum metal gate fully-depleted SOI MOSFETs for
advanced CMOS applications”,VLSI Symp. Tech. Dig., p.p. 25-26,
1999.
[64] S. Matsuda, H. Yamakawa, A. Azuma and Y. Toyoshima,“Performance
improvement of metal gate CMOS technologies”,VLSI Symp. Tech.
Dig., p.p. 63-64, 2001.
[65] J. H. Sim, H. C. Wen, J. P. Lu and D. L. Kwong,“Dual work function
metal gates using full nickel silicidation of doped poly-Si”,IEEE
Electron Device Lett., vol. 24, no. 10, p.p. 631-633, 2003.
[66] P. Xuan and J. Bokor,“Investigation of NiSi and TiSi as CMOS gate
materials”, IEEE Electron Device Lett., vol. 24, no. 10, p.p. 634-636,
2003.
[67] M. Aslam et. al., ” Novel One-step Synthesis of. Amine-stabilized
Aqueous Colloidal Gold Nanopar- ticles”, J. Mat. Chem., vol. 14, p.p.
106
1795-1797, 2004.
[68] D. V. Leff et. al., Langmuir, vol. 12, p.p. 4723-4730, 1996.
[69] Kumar et. al., “Synthesis and characterization of hydrophobic,
organically-soluble gold nanocrystals functionalized with primary
amines”, Langmuir, vol. 19, p.p. 6277-6282, 2003.
[70] P. T. Bishop and V. Buche, WO2006/131766 A2
[71] M. Brust et. al., “Synthesis of thiol-derivatised gold nanoparticles in a
two-phase Liquid–Liquid system”, J. Chem. Soc., Chem. Commun., p.p.
801-802, 1994
[72] P.T. Bishop, A. Boardman and V. Buche, WO2007/110665 A2
[73] Y. Wu et. al., “Studies of gold nanoparticles as precursors to printed
conductive features for thin-film transistors “, Chem. Mater., vol. 18, p.p.
4627-4632, 2006.
[74] J.K. Chen, C.H. Chan, F.C. Chang, “Immobilization of layered double
hydroxides in the fluidic system for nanoextraction of specific DNA
molecules “, Appl. Phys. Lett. 92, 053108, 2008.
[75] D. Marie-Christine, D. Astruc, “Gold Nanoparticles: Assembly,
Supramolecular Chemistry, Quantum-Size-Related Properties, and
Applications toward Biology, Catalysis, and Nanotechnology”, Chem.
Rev. vol. 104, p.p. 293-346, 2004.
[76] S.H. Liu, J.B.H. Tok, Z. Bao, “Fabricating Controllable Electrode Gaps
Using Au−Ag−Au Nanowires”, Nano Lett. 5 , p.p 1071-1076, 2005.
[77] Y.L. Wu, Y.N. Li, B.S. Ong, P. Liu, S. Gardner, B. Chiang,
“High-performance organic thin-film transistors with solution-printed
gold contacts”, Adv. Mater. Vol. 17, 184-187, 2005.
107
[78] D. Suzuki, H. Kawaguchi, “Janus particles with a functional
gold surface for control of surface plasmon resonance”, Colloid Polym.
Sci. vol. 284, p.p. 1471-1476, 2006.
[79] N.E. Cant, K. Critchley, H. Zhang, S.D. Evans, “Surface
functionalisation for the self-assembly of nanoparticle/polymer
multilayer films”, Thin Solid Films, vol. 426, p.p. 31-39, 2003.
[80] C.H. Chan, J.K. Chen, F.C. Chang, “Specific DNA extraction through
fluid channels with immobilization of layered double hydroxides on
polycarbonate surface “, Sens. Actuators, B, vol. 133, p.p 327-332,
2008.
[81] J.-K. Chen, J.-Y. Li, “Detection of specific DNA using a microfluidic
device featuring tethered poly(N-isopropylacrylamide) on a silicon
substrate “, Appl. Phys. Lett. Vol. 97, p.p. 063701, 2010.
[82] N. Terasaki, N. Yamamoto, T. Hiraga, I. Sato, Y. Inoue, S. Yamada,
“Fabrication of novel photosystem I–gold nanoparticle hybrids and their
photocurrent enhancement“, Thin Solid Films, vol. 499, p.p. 153-156,
2006.
[83] A.P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum
Dots “, Science, vol. 271, p.p. 933, 1996.
[84] B.R. Cuenya, “Synthesis and catalytic properties of metal nanoparticles:
Size, shape, support, composition, and oxidation state effects “, Thin
Solid Films, vol. 518, p.p. 3127-3150, 2010.
[85] T. Cuk, S.M. Troian, C.M. Hong, S. Wagner, “Using Convective Flow
Splitting for the Direct Printing of Fine Copper Lines”, Appl. Phys. Lett.
Vol. 77 , p.p. 2063-2065, 2000.
108
[86] C.P.R. Dockendorf, T.Y. Choi, D. Poulikakos, A. Stemmer, “Size
reduction of nanoparticle ink patterns by fluid-assisted dewetting”, Appl.
Phys. Lett., vol. 88, p.p. 131903, 2006.
[87] J.K. Chen, A.L. Zhuang, “Patterning nanocluster polystyrene brushes
grafted from initiator cores on silicon surfaces by lithography
processing”, Colloid Polym. Sci., vol. 289, p.p. 1283-1294, 2011.
[88] J.K. Chen, A.L. Zhuang, “Fabrication of a Highly Dense Line Patterned
Polystyrene Brush on Silicon Surfaces Using Very Large Scale
Integration Processing”, J. Phys. Chem. C, vol. 114, p.p. 11801-11809,
2010.
[89] J.K. Chen, C.Y. Hsieh, C.F. Huang, P.M. Li, S.W. Kuo, F.C. Chang,
“Using Solvent Immersion to Fabricate Variably Patterned Poly(methyl
methacrylate) Brushes on Silicon Surfaces”, Macromolecules, vol. 41,
p.p. 8729-8736, 2008.
[90] Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; et al., “Patterning
organic single-crystal transistor arrays”, Nature, vol. 444, p.p. 913–917,
2006.
[91] Aizenberg, J.; Black, A. J.; Whitesides, G. M. “Control of Nucleation by
Patterned Self-Assembled Monolayers”, Nature, vol. 398, p.p. 495–498,
1999.
[92] Y. Ishii, H. Sakai, H. Murata, ” Fabrication of a submicron patterned
electrode using an electrospun single fiber as a shadow-mask”, Thin
Solid Films, vol. 518, p.p. 647, 2009.
[93] H. Yoshihiko, U. Toshihiko, K. Tomohiro, M. Takashi, ” Fine gold
grating fabrication on glass plate by imprint lithography”, Proc. SPIE,
109
5220, p.p. 74-81, 2003.
[94] H.L. Chen, S.Y. Chuang, H.C. Cheng, C.H. Lin, T.C. Chu, ” Directly
patterning metal films by nanoimprint lithography with low-temperature
and low-pressure”, Microelectron. Eng., vol. 83, p.p. 893-896, 2006.
[95] P. T. Bishop, L. J. Ashfield, A. Berzins, A. Boardman, V. Buche, J.
Cookson,” Printed gold for electronic applications”, Gold Bulletin, vol.
43 (3), p.p. 181-188, 2010
[96] M.E.A. Warwick, C.W. Dunnill, J. Goodall, J.A. Darr, R. Binions,
“Hybrid chemical vapour and nanoceramic aerosol assisted deposition
for multifunctional nanocomposite thin films”, Thin Solid Films, vol.
519, p.p. 5942-5948, 2011.
[97] J.K. Chen, J.Q. Qui, “Nanowires of 3-D cross-linked gold nanoparticle
assemblies behave as thermosensors on silicon substrates “, Colloid
Polym. Sci., vol. 289, p.p. 1829-1837, 2011.
[98] Y. Wu, Y. Li, P. Liu, S. Gardner, B.S. Ong,“Studies of Gold
Nanoparticles as Precursors to Printed Conductive Features for
Thin-Film Transistors“, Chem. Mater., vol. 18, p.p. 4627-4632, 2006.
[99] N. V. Tsarevsky and K. Matyjaszewski, ‘‘Green atom transfer radical
polymerization: from process design to preparation of welldefined
environmentally friendly polymeric materials’’, Chem. Rev., vol. 107,
p.p. 2270–2299, 2007.
[100] K. Matyjaszewski and N. V. Tsarevsky, ‘‘Nanostructured functional
materials prepared by atom transfer radical polymerization’’, Nat.
Chem., vol. 1, p.p. 276–288, 2009.
[101] C. J. Hawker, A. W. Bosman and E. Harth, ‘‘New polymer synthesis
110
by nitroxide mediated living radical polymerizations’’, Chem. Rev., vol.
101, p.p. 3661–3688, 2001.
[102] A. B. Lowe and C. L. McCormick, ‘‘Reversible
addition-fragmentation chain transfer (RAFT) radical polymerization
and the synthesis of water soluble (co)polymers under homogeneous
conditions in organic and aqueous media’’, Prog. Polym. Sci., vol. 32,
p.p. 283–351, 2007.
[103] M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt and I. Wataoka,
‘‘Molecular bottlebrushes’’, Macromolecules, vol. 29, p.p 978–983,
1996.
[104] O. Prucker and J. Ru¨ he, ‘‘Polymer Layers through Self-Assembled
Monolayers of Initiators’’, Langmuir, vol. 14, p.p. 6893–6898, 1998.
[105] L. Ista, S. Mendez, V. Perez-Luna and G. Lopez, ‘‘Synthesis of
Poly(N-isopropylacrylamide) on Initiator-Modified Self-Assembled
Monolayers’’, Langmuir, vol. 17, p.p. 2552–2555, 2001.
[106] R. Jordan, Surface-Initiated Polymerization I, Springer-Verlag, New
York, 2006.
[107] G. Sakellariou, M. Park, R. Advincula, J. W. Mays and N.
Hadjichristidis, ‘‘Homopolymer and Block Copolymer Brushes on Gold
by Living Anionic Surface-Initiated Polymerization in a Polar Solvent’’,
J. Polym. Sci., Part A: Polym. Chem., vol. 44, p.p 769–782, 2006.
[108] J. T. Koberstein, ‘‘Molecular design of functional polymer surface’’,
J. Polym. Sci., Part B: Polym. Phys., vol. 42, p.p. 2942–2956, 2004.
[109] S. Alexander, ‘‘Adsorption of chain molecules with a polar head: a
scaling prediction’’, J. Phys. (Paris), vol. 38, p.p 983–987, 1997.
111
[110] P. Auroy, L. Auvray and L. Leger, ‘‘Characterization of the brush
regime for grafted polymer layers at the solid-liquid interface’’, Phys.
Rev. Lett., vol. 66, p.p. 719–722, 1991.
[111] M. Kaholek, W. K. Lee, S. J. Ahn, H. W. Ma, K. C. Caster, B.
LaMattina and S. Zauscher, ‘‘Stimulus-responsive
poly(N-isopropylacrylamide) brushes and nanopatterns prepared by
surface initiated polymerization’’, Chem. Mater., vol. 16, p.p.
3688–3696, 2004.
[112] B. Zhao, R. T. Haasch and S. MacLaren, ‘‘Solvent-induced
self-assembly of mixed poly(methyl methacrylate)/polystyrene brushes
on planar silica substrates: molecular weight effect’’, J. Am. Chem. Soc.,
vol. 126, p.p. 6124–6134, 2004.
[113] M. Lemieux, D. Usov, S. Minko, M. Stamm, H. Shulha and V. V.
Tsukruk, ‘‘Reorganization of binary polymer brushes: reversible
switching of surface microstructures and nanomechanical properties’’,
Macromolecules, vol. 36, p.p. 7244–7255, 2003.
[114] J. Draper, I. Luzinov, S. Minko, I. Tokarev and M. Stamm, ‘‘Mixed
polymerbrushes by sequential polymer addition: Anchoring layer
effect,’’, Langmuir, vol. 20, p.p. 4064–4075, 2004.
[115] M. Motornov, S. Minko, K. J. Eichhorn, M. Nitschke, F. Simon and
M. Stamm, ‘‘Reversible tuning of wetting behaviour of polymersurface
with responsive polymer brushes’’, Langmuir, vol. 19, p.p. 8077–8085,
2003.
[116] M. K. Vyas, K. Schneider, B. Nandan and M. Stamm, ‘‘Switching of
friction by binary polymer brushes’’ Soft Matter, vol. 4, p.p. 1024–1032,
112
2008.
[117] B. Zhao, R. T. Haasch and S. MacLaren, ‘‘Solvent-induced
selfassembly of mixed poly(methyl methacrylate)/polystyrene brushes
on planar silica substrates: molecular weight effect’’, J. Am. Chem. Soc.,
vol. 126, p.p. 6124–6134, 2004.
[118] M. O. Gallyamov, B. Tartsch, A. R. Khokhlov, S. S. Sheiko, H. G.
Boerner, K. Matyjaszewski and M. Mo¨ ller, ‘‘Real-time scanning force
microscopy of macromolecular conformational transitions’’, Macromol.
Rapid Commun., vol. 25, p.p. 1703–1707.155, 2004.
[119] M. O. Gallyamov, B. Tartsch, P. Mela, H. Bo¨ rner, K.
Matyjaszewski and S. S. Sheiko, ‘‘A scanning force microscopy study
on the motion of single brush-like macromolecules on a silicon substrate
induced by coadsorption of small molecules’’, Phys. Chem. Chem. Phys.,
vol. 9, p.p. 346–352.156, 2007.
[120] J. E. Comrie and W. T. S. Huck, ‘‘Exploring actuation and
mechanotransduction properties of polymer brushes’’, Macromol. Rapid
Commun., vol. 29, p.p. 539–546, 2008.
[121] S. Tugulu, M. Harms, M. Fricke, D. Volkmer and H. A. Klok,
‘‘Polymer brushes as ionotropic matrices for the directed fabrication of
microstructured calcite thin films’’, Angew. Chem., Int. Ed., vol. 45, p.p.
7458–6741, 2006.
[122] C.J. Yu, H. Gao, H.Y. Yu, H.Q. Jiang, G.J. Cheng, “ Laser
Dynamic Forming of Functional Materials Laminated Composites on
Patterned Three-Dimensional Surfaces With Applications on Flexible
113
Microelectromechanical Systems,”Applied Physics Letters 95 (9),
091108, 2009.
[123] J.-K. Chen, J.-Y. Li,“ Detection of specific DNA using a microfluidic
device featuring tethered poly(N-isopropylacrylamide) on a silicon
substrate“, Applied Physics Letter 97, 063701, 2010.
[124] E. Ozbay,“ Plasmonics: Merging Photonics and Electronics at
Nanoscale Dimensions“, Science 311, p.p. 189–193, 2006.
[125] Y. Xiao, A. A. Lubin, A. J. Heeger and K. W. Plaxco, ‘‘Label-Free
Electronic Detection of Thrombin in Blood Serum by Using an
Aptamer-Based Sensor’’, Angew. Chem., Int. Ed., vol. 44, p.p.
5456–5459, 2005.
[126] P. Mesquida, D.L. Ammann, C.E. MacPhee, R.A. McKendry,
“Microarrays of peptide fibrils created by electrostatically controlled
deposition”, Advanced Materials 17 (7), p.p. 893–897, 2005.
[127] J.-K. Chen, J.-H. Wang, S.-K. Fan, J.-Y. Chang, “Reversible
Hydrophobic/Hydrophilic Adhesive of PS-b-PNIPAAm Copolymer
Brush Nanopillar Arrays for Mimicking the Climbing Aptitude of
Geckos “, Journal of Physical Chemistry C 116, p.p. 6980–6992, 2012..
[128] J.-K. Chen, B.-J. Bai, F.-C. Chang,“ Diagnosis of breast cancer
recurrence using a microfluidic device featuring tethered cationic
polymers“, Applied Physics Letter 99, 013701, 2011.
[129] J.-K. Chen, P.-C. Pai, J.-Y. Chang,“ pH-Responsive
One-Dimensional Periodic Relief Grating of Polymer Brush-Gold
Nanoassemblies on Silicon Surface“, ACS Applied Materials &
Interfaces, vol. 4, p.p. 1935–1947, 2012.
114
[130] E. Han, K.O. Stuen, Y.H. La, P.F. Nealey, P. Gopalan,“ Effect of
composition of substrate-modifying random copolymers on the
orientation of symmetric and asymmetric diblock copolymer domains“,
Macromolecules 41 (23), p.p. 9090–9097, 2008.
[131] E.W. Edwards, M. Muller, M.P. Stoykovich, H.H. Solak, J.J. de
Pablo, P.F. Nealey,“ Dimensions and shapes of block copolymer
domains assembled on lithographically defined chemically patterned
substrates“, Macromolecules, vol. 40, p.p. 90–96, 2007.
[132] J.Y. Cheng, C.T. Rettner, D.P. Sanders, H.C. Kim, W.D.
Hinsberg,“Dense Self Assembly
on Sparse Chemical Patterns:
Rectifying and Multiplying Lithographic Patterns Using Block
Copolymers“, Advanced Materials, vol. 20 , p.p. 3155–3158, 2008.
[133] D. Flanders, “Submicrometer periodicity gratings as artificial
anisotropic dielectrics”, Applied Physics Letters, vol. 42, p.p. 492, 1983.
[134] R.C. Enger, S.K. Case, “Optical elements with ultrahigh
spatial-frequency surface corrugations”, Applied Optics, vol. 22 , p.p.
3220-3228, 1983.
[135] Y. Ono, Y. Kimura, Y. Ohta, N. Nishida,“ Antireflection effect in
ultrahigh spatial-frequency holographic relief gratings“, Applied Optics,
vol. 26, p.p. 1142-1146, 1987.
[136] M.P. Stoykovich, M. Müller, S.O. Kim, H.H. Solak, E.W. Edwards,
J.J. de Pablo, P.F. Nealey,“ Directed assembly of block copolymer
blends into nonregular device-oriented structures, Science“, Science, vol.
308, p.p. 1442–1446, 2005.
115
[137] J.K. Chen, C.H. Chan, F.C. Chang, “Immobilization of layered
double hydroxides in the fluidic system for nanoextraction of specific
DNA molecules “, Applied Physics Letters, vol. 92, 053108, 2008.
[138] Joonhyung Lee, Kutay Icoz,†,| Ana Roberts, Andrew D. Ellington,
and Cagri A. Savran, “Diffractometric Detection of Proteins Using
Microbead-Based Rolling Circle Amplification”, Anal. Chem., vol. 82,
p.p. 197–202, 2010.
[139] J.-K. Chen, B.-J. Bai, “Diagnosis of breast cancer recurrence after
surgery by using poly(2-dimethylaminoethyl methacrylate) brushes as a
medium on silicon surface “, Sensors and Actuators B, vol. 160, p.p.
1011–1019, 2011.
[140] J.K. Chen, B.J. Bai, “pH-Switchable Optical Properties of the
One-Dimensional Periodic Grating of Tethered
Poly(2-dimethylaminoethyl methacrylate) Brushes on a Silicon Surface
“, Journal of Physical Chemistry C, vol. 115, p.p. 21341–21350, 2011.
[141] G. Acharya, C.L. Chang, D.P. Holland, D.H. Thompson, C.A. Savran,
Angewandte Chemie International Edition 47 (6), p.p. 1051–1053, 2008.
[142] R.C. Bailey, J.M. Nam, C.A. Mirkin, J.T. Hupp, “R.C. Bailey, J.M.
Nam, C.A. Mirkin, J.T. Hupp, Journal of the American Chemical
Society 125 (44), p.p. 13541–13547, 200”, Journal of the American
Chemical Society 125 (44), p.p. 13541–13547, 2003.
[143] G. Ye, X. Wang, “Glucose sensing through diffraction grating of
hydrogel bearing phenylboronic acid groups”, Biosensors and
Bioelectronics, vol. 26, p.p. 772–777, 2010.
[144] N. Zhang, W. Knoll, “Thermally responsive hydrogel films studied
116
by surface plasmon diffraction”, Analytical Chemistry, vol. 81, p.p.
2611–2617, 2009.
[145] S. Rytov, “Electromagnetic properties of a finely stratified medium”,
Sov. Phys. JEPT, vol. 2, p.p. 466, 1956.
[146] A. Yariv and P. Yhe; Optical Waves in Crystals (John Wiley & Sons,
New York, 1984) Chap. 6.
[147] H. Kikuta, Y. Ohira, H. Kubo and K. Iwata, “Effective medium
theory of two-dimensional subwavelength gratings in the
non-quasi-static limit”, J. Opt. Soc. Am. A, vol. 15, p.p. 1577, 1998.
[148] P. Lalanne and D. L-Lalanne, “On the effective medium theory of
subwave- length periodic structures”, J. Mod. Opt., vol. 43, p.p. 2063,
1996.
[149] R. Brauer and O. Bryngdahl, “Design of antireflection gratings with
approximate and rigorous methods”, Appl. Opt., vol. 33, p.p. 7875-7882,
1994.
[150] F. T. Chen and H. G. Craighead, “Diffractive phase elements based
on two-dimensional artificial dielectrics”, Opt. Lett., vol. 20, p.p.
121-123, 1995.
[151] C. Haggans, L. Li and R. Kostuk, “Effective-medium theory of
zeroth-order lamellar gratings in conical mountings”, J. Opt. Soc. Am. A,
vol. 10, p.p. 2217-2225, 1993.
[152] H. Kikuta, H. Yoshida and K. Iwata, ” Ability and Limitation of
Effective Medium Theory for Subwavelength. Gratings”, Opt. Rev.,
vol.2, p.p. 92-99, 1995.
[153] J.K. Chen, C.Y. Hsieh, C.F. Huang, P.M. Li, S.W. Kuo, F.C. Chang,
117
“Using Solvent Immersion to Fabricate Variably Patterned Poly(methyl
methacrylate) Brushes on Silicon Surfaces “, Macromolecules, vol.41,
p.p. 8729–8736, 2008.
[154] J.K. Chen, A.-L. Zhuang, “Fabrication of a Highly Dense Line
Patterned Polystyrene Brush on Silicon Surfaces Using Very Large
Scale Integration Processing “, Journal of Physical Chemistry C, vol.
114, p.p. 11801–11809, 2010.
[155] J.-K. Chen, A.L. Zhuang, “Patterning nanocluster polystyrene
brushes grafted from initiator cores on silicon surfaces by lithography
processing “, Colloid and Polymer Science, vol. 289, p.p. 1283–1294,
2011.
[156] Rim K, Hoyt J, Gibbons J. “Analysis and fabrication deep submicron
strained Si n-MOSFETs”, IEEE Trans Electron Dev, vol. 47, p.p.
1406–1415, 2000.
[157] Kolahdouz M, Hallstedt J, Khatibi A, Ostling M, Wise R, Riley DJ,
et al. “Comprehensive evaluation and study of pattern dependency
behavior in selective epitaxial growth of B-doped SiGe layers”, IEEE
Trans Nanotechnol, vol. 8, p.p. 291–297, 2009.
[158] Nguyen LP, Beranger CF, Ghibaudo G, Skotnicki T, Cristoloveanu
S.,” Mobility enhancement by CESL strain in short-channel ultrathin
SOI MOSFETs”, Solid-State Electron, vol. 54, p.p. 123–130, 2010.
[159] Pidin S, Mori T, Inoue K, Fukuta S, Itoh N, Mutoh E, et al. “A novel
strain enhanced CMOS architecture using selectively deposited high
tensile and high compressive silicon nitride films”,. In: IEDM tech dig,
p.p . 213–216, 2004.
118
[160] Grudowski P, Adams V, Bo X, Loiko K, Filipiak S, Hackenberg J, et
al. “1-D and 2-D geometry effects in uniaxially-strained dual etch stop
layer stressor integrations”, VLSI symp tech dig, p.p. 76, 2006.
[161] Thompson S, Sun G, Choi Y, Nishida T., “Uniaxial process induced
strained Si:extending the CMOS roadmap”, IEEE Trans Electron Dev ,
vol. 53, p.p.1010–1020, 2006.
[162] Lee GW, Lee JH, Lee HW, Park MK, Kang DG. “Trap evaluations
of metal/oxide/silicon field-effect transistors with high-k gate dielectric
using charge pumping method”, Appl Phys Lett, vol. 81, p.p. 2050,
2002.
[163] Han JP, Vogel EM, Gusev EP, D’Emic C, Richter CA, Heh DW, et
al., “Asymmetric energy distribution of interface traps in n- and
p-MOSFETs with HfO2 gate dielectric on ultrathin SiON buffer layer”,
IEEE Electron Dev Lett, vol. 25(3), p.p.126–128, 2004.
[164] J.K. Chen, J.Y. Li, “rication of DNA extraction device with tethered
poly(N-isopropylacrylamide) brushes on silicon surface for a specific
DNA detection “, Sens. Actuators, B, vol. 150, p.p. 314-320, 2010.
[165] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R.J. Whyman,
“Synthesis of thiolderivatizedgold nanoparticlesin a 2-phase
liquid-liquid system”, J. Chem. Soc. Chem. Commun., p.p. 801, 1994.
[166] J.K. Chen, Z.Y. Chen, H.C. Lin, P.D. Hong, F.C. Chang, “Patterned
Poly(2-hydroxyethyl methacrylate) Brushes on Silicon Surfaces Behave
as "Tentacles" To Capture Ferritin from Aqueous Solution “, ACS Appl.
Mater. Interfaces 1, p.p. 1525-1532, 2009.
[167] T.Y. Chen, J.K. Chen, “Characterization of patterned poly(methyl
119
methacrylate) brushes under various structures upon solvent immersion
“, Colloid Polym. Sci., vol. 9289, p.p. 433, 2011.
[168] J.K. Chen, C.Y. Hsieh, C.F. Huang, P.M. Li,” Characterization of
patterned poly(methyl methacrylate) brushes under various structures
upon solvent immersion“, J. Colloid Interface Sci., vol. 338, p.p.
428-434, 2009.
[169] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K.
Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen,
E.W. Meijer, P. Herwig, D.M. de Leeuw, “Two-dimensional charge
transport in self-organized, high-mobility conjugated polymers”, Nature,
vol. 401, p.p. 685-688, 1999.
[170] J.-K. Chen, J.-Y. Li, “Synthesis of tethered
poly(N-isopropylacrylamide) for detection of breast cancer recurrence
DNA “, Journal of Colloid and Interface Science, vol. 358, p.p. 454–461,
2011.
[171] E.B. Grann, M.G. Moharam, D.A. Pommet, “Artificial uniaxial and
biaxial dielectrics with use of two-dimensional subwavelength binary
gratings”, Journal of the Optical Society of America A Optics and Image
Science, vol. 11, p.p. 2695-2730, 1994.
[172] D.H. Raguin, G.M. Morris, “Antireflection structured surfaces for the
infrared spectral region”, Applied Optics, vol. 32, p.p. 1154-1167, 1993.
[173] I. Tunc, S. Suzer, M.A. Correa-Duarte, L.M. Liz-Marzán, “XPS
Characterization of Au(core)@SiO2(shell) Nanoparticles”, J. Phys.
Chem. B, vol. 109, p.p. 7597, 2005.
[174] S.H. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, D. Poulikakos,
120
“Nanosecond Laser Ablation of Gold Nanoparticle Films”, Appl. Phys.
Lett. Vol. 89, p.p. 141126-141128, 2006.
[175] M.C.J.M. Vissenberg,“ Theory of the field-effect mobility in
amorphous organic transistors“, M. Matters, Phys. Rev. B, vol. 57, p.p.
12964-12967, 1998.
[176] B. Park, A. Aiyar, J. Hong, E. Reichmanis, “Electrical Contact
Properties between the Accumulation layer and Metal Electrodes in
Ultrathin Poly(3-hexylthiophene)(P3HT) Field Effect Transistors”, ACS
Appl. Mater. Interfaces, vol. 3, p.p. 1574-1580, 2011.
[177] T.-Y. Chen, J.-K. Chen, “Ferritin immobilization on patterned
poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces from
colloid system “, Colloid and Polymer Science, vol. 289, p.p. 433–445,
2011.
[178] J.-K. Chen, C.-Y. Hsieh, C.-F. Huang, P.-M. Li, “Characterization of
patterned poly(methyl methacrylate) brushes under various structures
upon solvent immersion “, Journal of Colloid and Interface Science, vol.
338, p.p. 428–434, 2009.
[179] B. Zhao, W.J. Brittain, “Polymer brushes: surface-immobilized
macromolecules”, Progress in Polymer Science, vol. 25, p.p. 677–710,
2000.
[180] H. Watanabe, S.M. Kilbey, M. Tirrell, “A Scaling Model for Osmotic
Energy of Polymer Brushes”, Macromolecules, vol. 33, p.p. 9146–9151,
2000.
[181] K.-Y. Yeh, L.-J. Chen, “Contact Angle Hysteresis on Regular
Pillar-like Hydrophobic Surfaces”, Langmuir, vol. 24, p.p. 245–251,
121
2008.
[182] A. Alteheld, I. Gourevich, L.M. Field, C. Paquet, E. Kumacheva,
“Multilayer polymer particles with periodic modulation in refractive
index “, Macromolecules, vol. 38 (8), p.p. 3301–3306, 2005.
[183] Z. Burton, B. Bhushan, “Hydrophobicity, Adhesion, and Friction
Properties of Nanopatterned Polymers and Scale Dependence for Microand
Nanoelectromechanical Systems”, Nano Letters, vol. 5 (8), p.p.
1607–1613, 2005.
[184] Ang K-W, Chui K-J, Madan A, Wong L-Y, Tung C-H,
Balasubramanian N, et al.”Strained thin-body p-MOSFET with
condensed silicon–germanium source/drain for enhanced drive current
performance. IEEE Electron Dev Lett, 2vol. 8(6), p.p. 509–512, 2007.
[185] Hensel JC, Feher G. “Cyclotron resonance experiments in uniaxially
stressed silicon: valence band inverse mass parameters and deformation
potentials”, Phys Rev, vol. 129, p.p. 1041–1062, 1963.
[186] Kang CY, Choi R, Song SC, Choi K, Ju BS, Hussain MM, et al. “A
novel electrodeinduced strain engineering for high performance SOI
FinFET utilizing Si (110) channel for both N and PMOSFETs”. In:
IEDM tech dig;, p.p. 1–4, 2006.
[187] Troutman RR. “VLSI limitations from drain-induced barrier
lowering”, IEEE Trans Electron Dev, vol. 26, p.p. 461–469, 1979.
[188] Lee KT, Kang CY, Park CY. “A Study of strain engineering using
CESL stressor on reliability comparing effect of intrinsic mechanical
stress”. IEEE Electron Dev Lett, vol. 30(7), p.p.760–762, 2009.
[189] Lee KT, Kang CY, Yoo OS, Young CD, Bersuker G, Park HK, et al.
122
“A comparative study of reliability and performance of strain
engineering using CESL stressor and mechanical strain. In: Proc int rel
phys symp”, p.p. 306–309, 2008.
[190] Rhee HS, Lee H, Ueno T, Shin DS, Lee SH, Kim Y, et al. “Negative
bias temperature instability of carrier-transport enhanced pMOSFET
with performance boosters”. In: IEDM tech dig, p.p. 692–695, 2005.
校內:2023-06-03公開