簡易檢索 / 詳目顯示

研究生: 羅布諾
Rao, Bruno
論文名稱: 利用氧化鋅多層同質接面結構開發直流壓電奈米發電機
Development of DC piezoelectric nanogenerators based on ZnO homojunction multilayers
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 68
外文關鍵詞: DC voltage, Doping, Device Fabrication, Flexible Substrates, Piezopotential, Stainless-Steel
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this work, we investigate the piezoelectric performance enhancement of p-n homojunctions created by deposition of alternating Zinc Oxide (ZnO) thin films with Nitrogen dopant. We use RF magnetron sputtering to deposit various configurations of ZnO on Silicon and flexible Stainless-Steel substrates. We start the investigation with deposition of a single layer Nitrogen (N2) doped ZnO thin film to dual and multiple layer alternating Nitrogen (N2) doped ZnO on undoped ZnO with a continuous deposition process (without breaking vacuum). The main purpose of the investigation was on depositing multiple thin films of ZnO with different dopants to form multiple p-n junctions. To achieve N2 doping Nitrogen gas was introduced into the sputtering chamber along with Argon as a reactive gas. We have demonstrated successful growth of multiple p-n homojunctions of ZnO thin films on Nitrogen doped ZnO thin films with proper c-axis (polar direction) oriented columnar structure and minimum surface roughness. We were able to achieve a sustained 1.2V – 1.5V DC voltage on the best configurations without any external rectification circuit. The study entails simple and easy fabrication of high output DC PENGs without the need of external rectifying circuits which can lead to reduction in costs, weight, and complexity of fabrication.

    Abstract i Acknowledgement ii Table of Contents iii List of Figures vi List of Tables x Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation 1 1.3 Objectives 3 Chapter 2 Theory 4 2.1 Crystalline Materials 4 2.2 Semiconductors 5 2.2.1 Energy bands 5 2.2.2 Intrinsic and Extrinsic Semiconductors 8 2.3 Epitaxial growth of semiconductor thin films 9 2.4 Zinc Oxide 10 2.4.1 Crystal structure 10 2.4.2 Electronic properties and defects 11 2.5 P-type ZnO 12 2.6 Previous work 13 Chapter 3 Experimental Method 15 3.1 Sputtering 15 3.2 Characterization Equipment 16 3.2.1 X-Ray Diffraction 16 3.2.2 θ/2θ Scan 18 3.2.3 Atomic Force Microscopy 19 3.2.4 Ultrahigh Resolution Scanning Electron Microscope (UHR-SEM) 21 3.2.5 Energy Dispersive spectrometer (EDS) 23 3.2.6 Hall effect measurements 23 3.2.7 Raman spectroscopy 25 3.3 Equipment used 27 3.3.1 Magnetron Sputter 27 3.3.2 PECS 27 3.3.3 XRD 27 3.3.4 AFM 27 3.3.5 SEM and EDS 27 3.3.6 Hall Effect Measurements 27 3.3.7 Electrical characterization 27 Chapter 4 Results 28 4.1 Sputtering 28 4.1.1 Substrate Preparation 28 4.1.2 Deposition 28 4.2 Structural Characterization 30 4.2.1 X-Ray Diffraction 30 4.2.2 Atomic Force Microscopy 33 4.2.3 Ultrahigh Resolution Scanning Electron Microscopy 35 4.2.4 Energy Dispersive Spectrometer 39 4.2.5 RAMAN Spectroscopy 42 4.3 Electrical Characterization 43 4.3.1 Hall Effect Measurements 43 4.3.2 IV Measurements 44 4.3.3 Output Voltage Measurements 45 4.3.4 Output Current Measurements 49 4.4 Long Term Stability Study 51 4.4.1 Atomic Force Microscopy 51 4.4.2 Scanning Electron Microscopy 53 4.4.3 Energy Dispersive Spectrometer 55 4.4.4 Output Voltage Measurements 56 Chapter 5 Discussion 57 5.1 Reduction in electron screening effect 57 5.2 Decrease in overall capacitance 58 5.3 p-n junction (DC behavior) 58 5.4 Constant voltage 58 5.5 Band Diagram 59 5.6 Mechanism 60 Chapter 6 Conclusion 62 Chapter 7 Future Work 63 References 64

    [1] Kueppers, H., Leuerer, T., Schnakenberg, U., Mokwa, W., Hoffmann, M., Schneller, T., & Waser, R. (2002). PZT thin films for piezoelectric microactuator applications. Sensors and Actuators A: Physical, 97, 680-684.
    [2] Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246.
    [3] International Energy Agency, Technology Roadmap - Solar Photovoltaic Energy. International Energy Agency, 2014 ed., 2014.
    [4] T. International Zinc Association, “Zinc... A Sustainable Material,” 2010.
    [5] B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices. Pearson Prentice Hall, 6 ed., 2006.
    [6] R. J. D. Tilley, Understanding Solids - The Science of Materials. John Wiley & Sons, LTD, 2004.
    [7] U. Müller, Inorganic Structural Chemistry. John Wiley & Sons, LTD, 2. ed., 2007.
    [8] C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, Inc., 7 ed., 1996.
    [9] P. C. Hemmer, Faste Stoffers Fysikk. Tapir Forlag, 1987.
    [10] D. J. Griffiths, Introduction to Quantum Mechanics. Pearson Prentice Hall, 2 ed., 2005.
    [11] J. A. Venables, Introduction to Surface and Thin Film Processes. Cambridge University Press, 2003 ed., 2000.
    [12] S. A. Campbell, Fabrication Engineering at the micro- and nanoscale. Oxford University Press, 3 ed., 2008.
    [13] R. B. Heller, J. McGannon, and A. H. Weber, “Precision determination of the lattice constants of zinc oxide,” J. Appl. Phys., vol. 21, no. 12, pp. 1283–1284, 1950.
    [14] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, 2005.
    [15] K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volu- metric and morphology data,” J. Appl. Crystallogr., vol. 44, pp. 1272–1276, Dec 2011.
    [16] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B, vol. 61, pp. 15019–15027, Jun 2000.
    [17] A. Janotti and C. G. Van de Walle, “Native point defect in ZnO,” Phys. Rev. B, vol. 76, October 2007.
    [18] C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B: Condensed Matter, vol. 308-310, pp. 899 – 903, 2001. International Conference on Defects in Semi- conductors.
    [19] J. I. Owen, Growth, Etching, and Stability of Sputtered ZnO:Al for Thin-Film Silicon Solar Cells, vol. 125. Forschungszentrum Jülich GmbH, 2011.
    [20] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys Rev Lett, vol. 85, pp. 1012–1015, Jul 2000.
    [21] W. Walukiewicz, “Defect formation and diffusion in heavily doped semiconductors,” Phys. Rev. B, vol. 50, no. 8, 1994.

    [22] J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, “p-type ZnO materials: Theory, growth, properties and devices,” Progress in Materials Science, vol. 58, no. 6, pp. 874 – 985, 2013.
    [23] E. C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang, “Compensation mechanism for N acceptors in ZnO,” Phys. Rev. B, vol. 64, p. 085120, Aug 2001.
    [24] W. Li, C. Kong, G. Qin, H. Ruan, and L. Fang, “p-Type conductivity and stability of Ag-N codoped ZnO thin films,” Journal of Alloys and Compounds, vol. 609, pp. 173 – 177, 2014.
    [25] T. N. Xu, X. Li, Z. Lu, Y. Y. Chen, C. H. Sui, and H. Z. Wu, “Realization of Ag-S codoped p-type ZnO thin films,” Applied Surface Science, vol. 316, pp. 62 – 65, 2014.
    [26] Bing Yin, Yu Qiu, Heqiu Zhang, Jixue Lei, Yue Chang, Jiuyu Jia, Yingmin Luo, Yu Zhao, Lizhong Hu, “Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO–ZnO p–n junction formation”, Nano Energy 14, 95–101, 2015.
    [27] Wei-Tsai Chang, Ying-Chung Chen, Re-Ching Lin, Chien-Chuan Cheng ,Kuo-Sheng Kao, Yu-Chang Huang, “Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates”, Current Applied Physics 11, S333-S338, 2011.
    [28] Keun Young Lee, Brijesh Kumar, Ju-Seok Seo, Kwon-Ho Kim, Jung Inn Sohn, Seung Nam Cha, Dukhyun Choi, Zhong Lin Wang, and Sang-Woo Kim, “P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators”, Nano Lett. 12, 1959−1964, 2012.
    [29] ZI-NENG NG, KAH-YOONG CHAN, SHAHRUDDIN MUSLIMIN and DIETMAR KNIPP, “P-Type Characteristic of Nitrogen-Doped ZnO Films”, ELECTRONIC MATERIALS, Vol. 47, No. 9, 2018
    [30] K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: Relation between the sputtering parameters and electronic properties,” J. Phys. D: Appl. Phys., vol. 33, pp. R17–R32, 2000.
    [31] B. Chapman, Glow discharge processes: Sputtering and plasma etching. John Wiley & Sons, Inc., 1980.
    [32] M. Birkholz, P. F. Fewster, and G. C., Thin Film Analysis by X-Ray Scattering. WILEY- VCH, 2006.
    [33] R. Cebulla, R. Wendt, and K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties,” J. Appl. Phys., vol. 83, pp. 1087–1095, JAN 15 1998.
    [34] V. L. Mironov, Fundamentals of Scanning Probe Microscopy. The Russian Academy of Sciences, 2004.
    [35] Y. Leng, Materials Characterization - Introduction to Microscopic and Spectroscopic Methods. John Wiley & Sons (Asia) Pte Ltd, 2008.
    [36] https://sites.google.com/site/frontierlab2011/scannig-electronmicroscope/principie-of-sem
    [37] https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
    [38] W.W. Liu, Z.Z. Zhang, B. Yao, D.Z. Shen, and C.L. Liu; Opt. Mater. (Amst). 35, 2486 (2013).
    [39] X.-W. Zhao, X.-Y. Gao, X.-M. Chen, C. Chen, and M.-K. Zhao; Chin. Phys. B 22, 024202 (2013).
    [40] Sieber B, Liu H, Piret G, Laureyns J, Roussel P, Gelloz B, Szunerits S and Boukherroub R; J. Phys. Chem. C 113, 13643 (2009).
    [41] Wang J B, Zhong H M, Li Z F and Lu W; Appl. Phys. Lett. 88, 101913 (2006).
    [42] Miran Ceh, Hsing-Chao Chen, Miin-Jang Chen, Jer-Ren Yang and Makoto Shiojiri; Materials Transactions, Vol. 51, No. 2 pp. 219 to 226 (2010)

    下載圖示
    2025-12-31公開
    QR CODE